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Addressing an unmet need in
hematopoietic cell
transplantation - a single
institution experience review

Jeffrey Y.C. Wong1*, An Liu1, Chunhui Han1,
Savita Dandapani1, Timothy Schultheiss1, Joycelynne Palmer2,
Dongyun Yang2, George Somlo3, Amandeep Salhotra3,
Susanta Hui1, Monzr M. Al Malki3, Joseph Rosenthal4

and Anthony Stein3

1Departments of Radiation Oncology, City of Hope, Duarte, CA, United States, 2Department
Computational and Quantitative Medicine, City of Hope, Duarte, CA, United States, 3Department of
Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States,
4Department of Pediatrics, City of Hope, Duarte, CA, United States
Purpose: TMI utilizes IMRT to deliver organ sparing targeted radiotherapy in

patients undergoing hematopoietic cell transplantation (HCT). TMI addresses

an unmet need, specifically patients with refractory or relapsed (R/R)

hematologic malignancies who have poor outcomes with standard HCT

regimens and where attempts to improve outcomes by adding or dose

escalating TBI are not possible due to increased toxicities. Over 500 patients

have received TMI at this center. This review summarizes this experience

including planning and delivery, clinical results, and future directions.

Methods: Patients were treated on prospective allogeneic HCT trials using

helical tomographic or VMAT IMRT delivery. Target structures included the

bone/marrow only (TMI), or the addition of lymph nodes, and spleen (total

marrow and lymphoid irradiation, TMLI). Total dose ranged from 12 to 20 Gy at

1.5-2.0 Gy fractions twice daily.

Results: Trials demonstrate engraftment in all patients and a low incidence of

radiation related toxicities and extramedullary relapses. In R/R acute leukemia

TMLI 20 Gy, etoposide, and cyclophosphamide (Cy) results in a 1-year non-

relapse mortality (NRM) rate of 6% and 2-year overall survival (OS) of 48%; TMLI

12 Gy added to fludarabine (flu) and melphalan (mel) in older patients (≥ 60

years old) results in a NRM rate of 33% comparable to flu/mel alone, and 5-year

OS of 42%; and TMLI 20 Gy/flu/Cy and post-transplant Cy (PTCy) in haplo-

identical HCT results in a 2-year NRM rate of 13% and 1-year OS of 83%. In AML

in complete remission, TMLI 20 Gy and PTCy results in 2-year NRM, OS, and

GVHD free/relapse-free survival (GRFS) rates of 0%, 86·7%, and 59.3%,

respectively.
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Conclusion: TMI/TMLI shows significant promise, low NRM rates, the ability to

offer myeloablative radiation containing regimens to older patients, the ability

to dose escalate, and response and survival rates that compare favorably to

published results. Collaboration between radiation oncology and hematology

is key to successful implementation. TMI/TMLI represents a paradigm shift from

TBI towards novel strategies to integrate a safer and more effective target-

specific radiation therapy into HCT conditioning beyond what is possible with

TBI and will help expand and redefine the role of radiotherapy in HCT.
KEYWORDS

total marrow irradiation, total marrow and lymphoid irradiation, tomotherapy, VMAT,
acute leukemia, hematopoietic stem cell transplant, bone marrow transplantation,
total body irradiation
Background and rationale
Total marrow irradiation (TMI) and total marrow and

lymphoid irradiation (TMLI) are methods to deliver organ

sparing targeted radiotherapy using intensity modulated

radiation therapy (IMRT). This approach offers radiation

oncologists, hematologists and the bone marrow transplant

team the ability to reduce dose to critical organs or any other

anatomic region, while increasing dose to user-defined targets

depending on the clinical situation. TMI and TMLI represent a

departure from total body irradiation (TBI) and a paradigm shift

in the use of radiotherapy as part of the conditioning regimen in

hematopoietic cell transplantation (HCT).

The concept of TMI was first proposed in 2001. To

implement this concept required close collaboration between

radiation oncology and hematology, the development of

treatment planning methods (2002) (1–3), the design of three

initial pilot and phase 1 clinical trials (2003–2004), and

culminated in treatment of the first patient in June, 2005 (4, 5)

using a TomoTherapy HiArt System®. TMI and TMLI were

originally developed by our group to address an unmet need in

patients undergoing HCT, specifically patients with advanced,

refractory or relapsed (R/R) hematologic malignancies who have

poor outcomes with standard conditioning regimens, who could

not tolerate standard total body irradiation (TBI), and where

attempts to improve outcomes by adding or dose escalating

conventional TBI was not possible due to associated toxicities.

Clinical settings where TMI and TMLI were felt to have potential

application included 1) patients older than 60 years of age who

cannot tolerate standard TBI; 2) patients who have poor

outcomes with reduced intensity conditioning (RIC) regimens

and where the addition of TBI to RIC is not feasible (6); and 3)

patients with R/R acute leukemia where dose escalation of TBI

reduced relapse rates but also increased toxicities, negating any
02
gains in survival (7). The emphasis was on redefining and

expanding the use of radiation containing conditioning

regimens to a new group of patients, in addition to reducing

toxicities from conventional TBI for existing patients.

Since the first patient was treated with TMI in 2005, over 500

patients have been treated at this center. This review will

summarize this clinical experience; the total doses, dose

distributions, and fractionation schedules used; the approach

to planning and delivery; the rationale and results of past and

current trials; and perspectives on the future directions in

this field.
Implementation of TMI

Initial treatment planning studies

The development of TMI at this center from initial concept

to treatment of the first patient spanned 4 years and involved

from the beginning collaboration between radiation oncologists,

medical physicists and hematologists. We proposed the concept

of TMI to TomoTherapy, Inc. in 2001, prior to FDA approval of

the TomoTherapy Hi-Art system in 2002. Initially, the

TomoTherapy Hi-Art system was not designed to plan and

deliver TMI. Software and hardware modifications to the

treatment planning system had to be made by the

manufacturer since TMI planning required large complex data

sets due to the need for whole body imaging and multiple organ

contouring on a scale that had not been attempted before.

The first TMI treatment plan, where the target region was

defined as the skeletal bone, was based on a whole-body CT data

set of a 20-year-old woman with acute myelogenous leukemia

(Figure 1). Treatment planning studies compared TMI to

standard TBI using 50% transmission lung blocks with

electron boost to the underlying chest wall. This demonstrated
frontiersin.org
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median organ doses with TMI that were 20-70% of the target

dose, significantly less than TBI where most organs received

11.5-13.1 Gy and the shielded lungs 9.0-9.7 Gy. This predicted

for a reduction of acute and late toxicities compared to TBI. At

TMI doses up to 20 Gy, median doses to all organs were still

below that of TBI to 12 Gy (Figure 1A). At 20 Gy TMI lung dose

volume histogram (DVH) plots (Figure 1B) demonstrated the

minimum dose to at least 80% of the lung volume (D80) was

comparable to 12 Gy TBI.

These initial plan comparisons determined radiation dose

distributions and organ dose constraints for the initial clinical

trials. These plan comparison studies also helped to

communicate the concept and advantages of TMI and TMLI

to our hematologists, leading to clinical trial development,

acquisition of the first TomoTherapy system and the treatment

of the first patient. The highest prescribed dose level on phase I

trials was limited to 20 Gy since lung doses began to approach

that of conventional TBI with lung shielding (4), predicting for

comparable risks of pneumonitis (8). For all trials the mandible

was not included as a target structure to reduce the likelihood of

severe oral mucositis, which was a primary toxicity of the

myeloablative TBI and etoposide regimens used at this center.

TMLI preceded chemotherapy as with standard TBI regimens

used at this center. Fraction size and schedule was 1.5 to 2.0 Gy

twice a day with a minimum of 6 hours between fractions, a

fractionation schedule widely used to deliver TBI.

Figure 2 displays radiation dose distribution patterns used at

this center. The termTMI is used if the target structure is bone and

was used in an initial tandem autologousHCT trial in patients with

advancedmultiplemyeloma (Figure 2A) (9, 14). The termTMLI is

used when the major lymph node chains and spleen are added as

target regions to achieve the immunosuppression needed for

allogeneic HCT and is used at this center primarily for patients

60 years of age or older (Figure 2B) (11, 15). In patients younger
Frontiers in Oncology 03
than age 60 undergoing allogeneic HCT, liver and brain are added

as target regions to TMLI (Figure 2C) (16).

TMI and TMLI have been delivered on clinical trials at this

institution so that data could be prospectively collected to

address questions and concerns prior to treating the first

patient. Was the delivery of TMI and TMLI feasible and safe?

Would the higher dose rates compared to conventional TBI

increase organ toxicities, graft versus host disease (GVHD), or

engraftment failure? Would dose reduction to organs at risk

(OARs) and the helical tomographic or volumetric modulated

arc radiotherapy (VMAT) delivery of radiation therapy spare

circulating leukemia cells and lead to increased relapse rates?
Simulation, planning, and
treatment delivery

CT simulation is performed in the supine position.

Immobilization is with a body vac-lok™ bag (CIVCO Medical

Systems, Kalona, IA) from the base of neck to the feet, a type-S

thermoplastic head frame (CIVCO, Kalona, Iowa, IA), and

Accuform™ cushion to immobilize the head and shoulders. CT

scans are obtained using 5-8mm slice thickness. A body CT scan is

obtained with normal quiet breathing and is used of treatment

planning. 4D CT scans of the chest and abdomen are utilized to

account for any organ motion with respiration. Radiopaque

markers are placed at mid-thigh to identify the junction for

planning. If treatment will be on a Tomotherapy unit, the patient

ispositionedwith the topof thehead5cmfromthe endof the couch

and the couch height is 10 cm below the isocenter of the gantry.

Contouring is done on an Eclipse workstation (Varian

Medical Systems, Palo Alto, California). The following organs

are contoured in all patients: lungs, heart, kidneys, liver,

esophagus, oral cavity, parotid glands, thyroid gland, eyes,
A B

FIGURE 1

First TMI treatment plan comparison at City of Hope comparing in the same patient TBI 12 Gy, TMI 12 Gy and TLI 20 Gy (4). (A) Median organ
doses. (B) Dose volume histogram curves for lung.
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lens, optic chiasm and nerves, brain, stomach, small and large

intestine, breasts, rectum, testes, ovary and bladder. Target

structures are defined by the treatment team and clinical trial.

The 4D CT datasets are used for contouring the ribs, kidneys,

spleen and liver to account for any respiratory motion. Maxillary

and mandibular bones are excluded as targets to reduce oral

cavity dose. A 5-10 mm margin around the CTV is usually used

to define the PTV. The use of whole-body auto-segmentation

software has significantly reduced the time needed

for contouring.

The majority of patients to date have been treated on a

TomoTherapy system. With TomoTherapy planning system

optimum results are achieved when organ dose reduction is

performed first followed by target dose optimization. For most

plans the target receives a minimum of 85% of the prescribed

dose. Most patients are treated using a jaw setting of 5 cm,

modulation factor of 2.5, and pitch of 0.287. Legs and feet are

planned in Tomo-Direct mode or with conventional AP/PA

fields. Volumetric imaging is used for daily patient setup. On

TomoTherapy, a megavoltage CT (MVCT) or kilovoltage CT

(kVCT) scan is performed from the skull to iliac crest.

TMLI has also been delivered at this center using a Varian

TrueBeam linear accelerator (Varian Medical Systems, Palo

Alto, California) with VMAT capability (17). Four to five

isocenters are used for the upper body TMLI treatment plan,

with two arc fields typically placed for each isocenter. A 120-leaf

multi-leaf collimator is used. The leaf width is 5 mm for the

central 40 leaf pairs and 1 cm for the peripheral 20 leaf pairs. The

collimator angle is at 90°C so that the MLC leaves move along
Frontiers in Oncology 04
the longitudinal direction of the patient. Asymmetric jaws are

used along the patient’s longitudinal direction so that the two arc

fields at each isocenter cover different patient body lengths. A 6-

MV photon beam is used for all the VMAT fields. The lower

extremities are planned and treated with junctioned AP-PA

fields. For setup on the Varian TrueBeam linear accelerator,

two cone-beam CT (CBCT) scans are performed, one in the

head & neck region and the other in the abdominal and

pelvic region.

A review of organ doses on over 200 patients treated at this

center with TMLI has recently been published by Han et al. (18).

Tables 1, 2 provide select mean organ doses for patients treated

at 12 and 20 Gy TMLI. Average dose-rates are 130-180 cGy/

minute to the target and 70-90 cGy/minute to the lung. TMI and

conventional TBI planning and delivery at this center require

similar time and resources (19). Details regarding simulation,

immobilization, planning, and treatment delivery have

previously been published by Liu et al. (19), Han et al. (18)

and Schultheiss et al. (1, 2, 5).
Review of clinical results

Initial demonstration of feasibility,
acceptable toxicities and dose escalation
using TMI

Somlo et al. first reported the results of a Phase I/II trials

using TMI in patients with multiple myeloma undergoing
A B C

FIGURE 2

The term TMI is used if the target is bone (A) and was used in a tandem autologous HCT multiple myeloma trial (9, 10). TMLI adds the major
lymph node chains and spleen as target regions and is used in allogeneic HCT regimens (B) (11). In some studies, TMLI also includes the liver
and brain to 12 Gy while other target regions (bone, lymph nodes and spleen) are escalated to 20 Gy (C) (12, 13).
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autologous tandem HCT (9). High dose melphalan conditioning

is often used (20, 21). Myeloablative TBI added to high dose

melphalan was not feasible due to dose-limiting mucositis (22).

Since this trial was the first-in-human use of TMI and given the

concerns of increased toxicities due to higher dose-rate, TMI was

delivered without concurrent chemotherapy and a fractionation

schedule similar to standard TBI was used.

Patients with Salmon-Durie stage I-III multiple myeloma

and with stable or responding disease after first line therapy

were entered. Patients first received melphalan (200 mg/m2)

followed by autologous HCT. Six to ten weeks later they

received TMI to bone (Figure 2A) followed by a second

autologous HCT. TMI dose was escalated from 10 to 18 Gy.

The fractionation was 2 Gy delivered twice a day with 6 hours
Frontiers in Oncology 05
between fractions. Median organ doses were 11% to 81% of

the prescribed bone dose (9), A maximum tolerated dose

(MTD) of 16 Gy was defined based on toxicities seen at 18 Gy

(1 patient with reversible grade 3 pneumonitis and 1 patient

with grade 3 hypotension attributed to engraftment

syndrome). This was followed by an expansion of patients

treated at 16 Gy TMI (10). Of the 54 patients on this study, 30

patients (55.6%) underwent TMI at the MTD of 16 Gy.

Median follow-up of surviving patients was 12.3 years (9.2 -

15.5+). Overall survival (OS) at 10 years were 38.8% with a

progression-free survival (PFS) plateau of 20.4%. The first

patient with stage I disease remains in remission 18 years

after TMI. TMI for multiple myeloma before autologous HCT

warrants further study.
TABLE 2 Summary of mean organ dose (Gy) for patients treated with 20 Gy TMLI (n = 120).

Organ at Risk Mean Dose ± SD (Gy)20 Gy TMLI Range (Gy)20 Gy TMLI

Bladder 9.71 ± 1.49 5.96 – 14.56

Esophagus 6.50 ± 0.87 3.17 – 8.73

Heart 7.38 ± 0.56 5.78 – 8.55

GI - Lower 10.15 ± 1.11 6.60 – 13.23

GI - Upper 9.01 ± 1.34 6.24 – 12.59

Kidneys 7.28 ± 0.69 5.39 – 9.08

Lens 2.55 ± 0.41 1.78 – 4.36

Lungs 8.48 ± 0.83 6.22 – 10.19

Oral Cavity 4.43 ± 0.97 2.95 – 7.08

Parotids 8.05 ± 1.31 5.64 – 12.21

Rectum 6.46 ± 0.88 4.58 – 9.06

Thyroid 8.01 ± 2.13 3.67 – 17.12
Target structures are bone, major lymph node chains and spleen with liver and brain limited to 12 Gy (Figure 2C) (18).
TABLE 1 Summary of mean organ dose (Gy) for patients treated with 12 Gy TMLI (n = 108).

Organ at Risk Mean Dose ± SD (Gy)12 Gy TMLI Range (Gy)12 Gy TMLI

Bladder 7.60 ± 1.53 3.75 - 11.47

Brain 6.68 ± 0.88 5.09 - 8.99

Esophagus 4.95 ± 0.92 3.19 – 7.72

Heart 6.12 ± 1.01 3.80 – 8.39

GI - Lower 5.91 ± 0.87 4.61 – 9.00

GI - Upper 5.22 ± 0.84 3.78 - 7.82

Kidneys 5.68 ± 1.37 3.10 – 8.34

Lens 2.17 ± 0.94 1.00 – 6.93

Liver 7.22 ± 0.94 3.17 – 9.07

Lungs 6.20 ± 0.61 4.40 – 7.41

Oral Cavity 3.20 ± 0.61 1.78. – 5.05

Parotids 5.43 ± 1.12 3.41 – 9.61

Rectum 4.87 ± 1.00 2.36 – 7.54

Thyroid 5.98 ± 1.70 3.08 - 12.15
Target structures are bone, major lymph node chains and spleen (Figure 2B) (18).
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Dose escalation of TMLI in younger
patients (< 60 Years Old) with relapsed/
refractory acute leukemia

There is a dose response for acute leukemia. For chloromas

local control rates are approximately 20% after doses < 10 Gy,

40% after 10-20 Gy and over 80% after doses > 20 Gy (23). A

decrease in relapse rate with higher TBI doses has been

observed (24–26). Randomized phase II single institution

trials have compared 12 Gy versus 15.75 Gy TBI combined

with cyclophosphamide (Cy) (7, 27). In patients with AML in

first remission, TBI to 15.75 Gy resulted in a reduction in

relapse rate (14% versus 39% p = 0.06), but an increase in NRM

rate (38% versus 19%, p = 0.05), resulting in no difference in

overall survival between the two arms (7). A higher incidence

of grade 3-4 hepatotoxicity, grade 3-4 renal toxicity, grade 2

mucositis and GVHD was observed with the higher TBI dose

(28, 29). These data suggest that a more targeted form of

radiotherapy such as TMLI, which reduces dose to the liver,

kidneys, lungs, oral cavity, esophagus and GI tract, is needed

before clinically important dose escalation becomes feasible

with acceptable toxicities. In addition, escalation of

conditioning regimens by adding chemotherapy to

myeloablative regimens in patients with active leukemia

resulted in long term cure in up to 30-40% cases, indicating

that escalation of conditioning intensity may induce cure in

some patients with advanced leukemia (30).

Dose escalation trials at this center were initiated in

patients with R/R AML and ALL. Long term OS and PFS

rates in these patients are less than 20% after standard

allogeneic HCT (31). TMLI, busulfan [days -12 to -8 (800

uM min)] and etoposide [day -3 (30 mg/kg)] conditioning was

evaluated in a phase I trial (32). TMLI dose was 12 Gy (n=18)

and 13.5 Gy (n=2) at 1.5 Gy twice daily. The target structures

were bone and bone marrow, major lymph node regions and

spleen. Liver and brain received 12 Gy. (Figure 2C). Twenty

patients were treated, with 19 patients still with detectable

blasts in marrow and 13 detectable circulating blasts prior to

HCT. Grade 4 dose limiting toxicities of stomatitis and

sinusoidal obstructive syndrome (SOS) were seen at 13.5 Gy.

Hepatotoxicity was likely due the combination of busulfan and

a liver dose of 12 Gy, each of which has been associated with a

risk of SOS. TMLI dose escalation was not feasible with

this regimen.

Stein et al. (16) reported results of a phase I trial using a

conditioning regimen of escalating doses of TMLI [(range: 12-20

Gy, in 2 Gy increments) 1.2 - 2 Gy twice a day, from day -10 to

day -6] with Cy (100 mg/kg day -3) and VP-16 (60 mg/kg day

-5). in a phase I trial of 51 patients with R/R AML (n=33) and

ALL (n=16) (NCT02446964). The target structures were bone

and bone marrow, major lymph node regions and spleen. Liver

and brain were kept at 12 Gy. (Figure 2C). Fifty patients had
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detectable blasts in marrow (median 52%, range 5-98%

involvement) and 27 patients had circulating blasts in the

week prior to HCT conditioning. Dose-limiting toxicity (DLT)

(Bearman scale grade 3 mucositis) (28) was observed in 1 patient

at the 15 Gy dose level. No further DLTs were observed up to 20

Gy. All patients engrafted without delays. Median follow-up was

24.6 months in surviving patients. The 1-year OS was 55.5% and

PFS was 40.0%. NRM rates were 3.9% at day 100 and 8.1% at

1-year.

A subsequent phase II trial evaluating the same regimen is

currently ongoing at this center (NCT 02094794). A recent

analysis of the first 57 patients with AML (n=43) and ALL

(n=14) treated with TMLI doses of 20 Gy reported a 1-year

NRM rate of 6% and 2-year OS and PFS of 48% and 33%,

respectively, which compare favorably to published results (12,

33). All patients engrafted. Mean organ doses were 20-51% of the

target dose. Mean organ doses (Gy) were lung 9.1, kidneys 7.3,

GI tract 10.3, esophagus 6.7, and oral cavity 4.3. In summary

TMLI to 20 Gy can be safely delivered with etoposide and

cyclophosphamide with low NRM rates of <10% and with

encouraging PFS and OS in patients < 60 years old with R/R

acute leukemia.

These trials are in patients with relapsed and refractory

acute leukemia with detectable blasts in marrow and

circulation just prior to TMLI. These patients have a dismal

outcome after HCT with a long-term survival of 16% to 19%

(31). Patients with acute leukemia who relapse after first

remission are usually unable to achieve a second remission

with salvage chemotherapy and have very few therapeutic

options outside of clinical trials (34). Patients with relapsed

and refractory acute leukemia are not transplanted at most

center. Therefore, there are no consensus standard of care HCT

regimens that the results of these trials can be compared to.

Case examples that follow illustrate the type of patients entered

on these studies.

Case example. A 29-year-old female with relapsed AML in

marrow, CNS and lymph nodes. The patient initially achieved

complete remission after 7 + 3 induction and 1 cycle

consolidation with high dose cytarabine. She developed right

orbital and CNS relapse. She received intrathecal chemotherapy

followed by whole brain radiotherapy to 12 Gy. She then

developed back and left leg pain from enlarged retroperitoneal

and bilateral common iliac and internal iliac lymph nodes. Bone

marrow and lymph node biopsies were positive for AML. She

was started on mitoxantrone, etoposide and cytarabine

chemotherapy. Prior to transplant CSF and marrow were

negative for disease but FDG-PET scan demonstrated

persistently positive lymph nodes. She received TMLI 20 Gy

(12 Gy to liver and brain), etoposide, and cyclophosphamide

followed by matched related donor stem cell infusion. She

remains relapse free at 6 years and 1 month with mild oral

and cutaneous chronic GVHD.
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TMLI integrated with reduced intensity
conditioning fludarabine and melphalan
in older patients (> 60 years old) with R/
R acute leukemia
In patients older than 60 years of age, myeloablative

regimens can lead to unacceptably high NRM rates of ~20% at

100 days and 40% at 3 years (35). In these patients reduced

intensity conditioning (RIC) regimens have been used (36) and

are better tolerated, but can be less cytotoxic and rely more on

the graft-versus-leukemia (GVL) effects to eradicate disease. As a

result RIC regimens can result in a significant increase in relapse

rates and decrease in OS and relapse-free survival (RFS) (37).

Attempts to add standard 9 Gy TBI to a RIC regimen to reduce

relapse rates resulted in unacceptable toxicities (6). Organ

sparing targeted radiotherapy such as TMLI is needed (11, 15,

38, 39), specifically for older patients with limited HCT options,

who present frequently with more aggressive and chemo-

resistant disease, are unable to tolerate standard myeloablative

regimens (40, 41), and where reduced intensity conditioning

(RIC) regimens can be associated with increased relapse

rates (37).

Rosenthal et al. in a pilot trial (NCT 00544466) evaluated

TMLI 12 Gy (1.5 Gy twice a day, days -7 to -4) added to an

established RIC regimen of fludarabine (flu) (25 mg/m2/d Days

-7 to -4) and melphalan (mel) (140 mg/m2 Day -2) in patients

with R/R acute leukemia in patients > 60 years old or those who

could not tolerate TBI containing regimens due to co-

morbidities (11, 15). Flu-mel is a frequently used conditioning

regimen in high risk acute leukemia patients in complete first or

second remission (CR1/CR2), which is the reason TMLI was

added for R/R acute leukemia with higher tumor burden. The

target structures included bone/marrow, major lymph node

regions and spleen (Figure 2B). Brain and testes were included

in patients with ALL. Sixty-one patients were treated with a

median age of 55 years (9-70 years) (15). Acute leukemia

comprised 72% of the study population (AML 57% and ALL

17%). The most common toxicity was mucositis. All patients

engrafted without delays. Median follow-up was 7.4 years. Five-

year OS, event free survival (EFS), cumulative incidence of

relapse (CIR), and NRM were 42%, 41%, 26%, and 33%,

respectively. Results confirmed that the addition of 12 Gy

TMLI to Flu/Mel was feasible, with favorable long-term

outcomes and with a NRM rate that was comparable to flu/

mel alone (42–45).

Case example. A 65-year-old male with AML was entered on

this trial with induction failure. He had failed to achieve

remission after 7 + 3 induction chemotherapy, cladribine,

cytarabine, idarubicin, decitabine, high dose cytarabine and NK

cells, and anti-CD34 antibody-chemotherapy conjugate therapy.

He was referred to City of Hope from another tertiary bone

marrow transplant program for this trial. He received 12 Gy
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TMLI, fludarabine 25 mg/m2 for 5 days, melphalan 140 mg/m2

followed by matched related donor stem cell infusion. He remains

relapse free at 5.5 years and has mild GVHD of the gut (mouth

and stomach).

A successor phase I trial (NCT 03490569) is ongoing and is

focused on dose escalation in this same population. To reduce

toxicities and allow for dose escalation, the regimen was

modified to evaluate TMLI 12-20 Gy (1.5-2.0 Gy twice a day,

days -9 to -5) combined with reduced doses of fludarabine (30

mg/m2/d Days -4 to -2) delivered after instead of concurrent

with TMLI and reduced doses of melphalan (100 mg/m2

Day -2).
TMLI added to strategies to
reduce GVHD in patients with
haplo-identical donors

Graft versus host disease (GVHD) remains a major cause of

morbidity and mortality in patients undergoing allogeneic HCT

(46). Strategies to reduce GVHD are especially important in

patients without a matched donor such as those with haplo-

identical donors. GVHD prophylactic regimens traditionally

have used methotrexate, calcineurin or mTOR inhibitors,

mycophenolate mofetil and anti-thymocyte globulins. Post-

t ransp lant cyc lophosphamide (PTCy) i s a potent

immunosuppressive agent that has been successfully used in

combination with a calcineurin or mTOR inhibitors to prevent

GVHD in HLA-matched and haploidentical transplants in

multiple studies (47–54). PTCy also can be used as a single-

agent GVHD prophylaxis after myeloablative HLA-matched

related or unrelated bone marrow transplant (47). The

mechanisms of action pf PTCy are thought to involve

preferential killing or functional impairment of alloreactive T

cell and enrichment of the regulatory T cell population which are

more resistant to PTCy (47, 55–58).

These strategies while reducing GVHD can reduce the graft

versus leukemia (GVL) effects, potentially resulting in higher

relapse rates, as demonstrated in patients with AML undergoing

haplo-identical donor HCT with RIC conditioning regimens and

PTCy (59). Al Malki et al. evaluated the addition of dose

escalated TMLI to an established PTCy conditioning regimen

(39) to further reduce relapse rates without contributing to NRM

or GVHD. The target structures were bone and bone marrow,

major lymph node regions and spleen. Liver and brain were

treated to 12 Gy. In a phase I trial (NCT02446964) 31 patients

[median age 37 (21–58)] with high-risk or R/R acute leukemias

or myelodysplastic syndrome underwent haplo-identical HCT

conditioning with TMLI, concurrent fludarabine (25 mg/m2/day

on day -7 to day -3) and Cy (14 mg.kg/day on days -7 and -6).

TMLI dose was escalated from 12 to 20 Gy. GVHD prophylaxis

was PTCy (50 mg/kg/d on days +3 and +4) with tacrolimus/

mycophenolate mofetil. All patients engrafted. With a follow-up
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of 23.9 months for the whole cohort, 2-year NRM was 13%;

cumulative incidence of day 100 grade 2-4 and 3-4 acute GvHD

were 52%, 6%, respectively and chronic GVHD at 2 years was

35%. For patients at the recommended phase 2 dose (RP2D) of

20 Gy (n=12) the 1-year relapse rate, PFS and OS were 17%, 74%

and 83%; respectively. HaploHCT with TMLI with PTCy was

safe and feasible, with promising low relapse rates achieved with

acceptable GVHD or NRM.

A phase II trial in patients < age 60 with R/R acute leukemia

is ongoing (NCT04262843). For patients age 60 or older with R/

R acute leukemia a phase I haploidentical HCT trial (NCT

03490569) of TMLI 12-20 Gy (1.5-2.0 Gy twice a day, days -9

to -5), fludarabine (30 mg/m2/d Days -4 to -2), melphalan (100

mg/m2 Day -2) and PTCy (50 mg/m2 days +3 and +4)

is ongoing.
TMLI in patients with AML in complete
remission undergoing allogeneic HCT

Allogeneic HCT is the preferred curative approach for

patients with high risk AML in complete remission.

Myeloablative TBI containing conditioning regimens are often

utilized. Given the encouraging results in R/R disease, we

extended the evaluation of TMLI to AML in CR1/CR2. Stein

et al. evaluated in a pilot trial (NCT03467386) a novel

conditioning regimen of TMLI 20 Gy without pretransplant

chemotherapy, together with PTCy to reduce the risk of GVHD,

in patients with AML in CR1/CR2 undergoing matched donor

allogeneic HCT. The target structures were bone and bone

marrow, major lymph node regions and spleen treated to 20

Gy and liver and brain treated to 12 Gy. Dose escalated TMLI

was intended to reduce relapses and to offset the possible

reduction in GVL from PTCy. In 18 patients [(median age 40

(19–56)] no grade 3-4 Bearman toxicities or toxicity-related

deaths were observed. All patients engrafted without delays. The

cumulative incidence of moderate-to-severe cGVHD was 11·9%.

Disease relapse at 2 years was 16·7%. At a median follow up of

24.5 months, 2-year estimates of NRM, OS, relapse free survival,

and GVHD-/relapse-free survival (GRFS) rate were 0%, 86·7%,

83·3%, and 59.3%, respectively (13). These results compare

favorably to historical results at this center where GRFS was

39% at 2 years using TBI 13.2 Gy combined with Cy or etoposide

and tacrolimus/sirolimus prophylaxis in patients with AML in

remission (60). Based on these encouraging results a larger phase

2 trial has been initiated.
Toxicities with TMI and TMLI

TMI and TMLI have the potential to reduce toxicities

compared to TBI. Intermediate and long-term toxicity data

were reported on 142 patients who received TMI or TMLI
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from 2005 to 2016 and who were entered on a study which

prospectively followed patients up to 8 years after TMI or TMLI

(61, 62). In addition to standard follow-up, thyroid panel,

ophthalmologic exams, pulmonary function studies, serum

creatinine, glomerular filtration rate, and urine analysis were

performed at 100 days, 6 months, 1 year and annually up to 8

years. Median TMI dose was 14 Gy with most patients receiving

either 12 Gy (n=64) or 16 Gy (n=30). Median follow-up (range)

for all patients was 2 years (0–8) and for alive patients (n=50) 5.5

years (0–8). One patient developed reversible radiation

pneumonitis (RP). The crude incidence of RP was 1/142

(0.7%). The cumulative incidence of infection and RP (I/RP)

was 22.7% at 2 years post TMI. Mean lung dose (MLD) ≤ 8 Gy

was associated with a significantly lower rate of I/RP (2-year CI

20.8% vs 31.8%, p=0.012). The incidence of hypothyroidism,

cataract formation and radiation induced renal toxicity was

6.0%, 7.0% and 0%, respectively.

Toxicities appear to be less compared to that reported for

conventional TBI. Renal toxicity can range between 0% and

46.7% (63, 64). Rates of hypothyroidism requiring medication

replacement range from 10.5% to 12.0% (65–67) and cataract

formation has been reported to be as high as 89-100% (63, 68).

These toxicities have been shown to correlate with total dose and

dose per fraction (8). Therefore, the lower rates of toxicity

observed with TMI and TMLI are likely due to organ sparing

and reduction in organ dose using IMRT compared to

conventional opposed fields used to deliver TBI (69). With

conventional TBI these organs would usually receive the full

total body dose.

Lung doses in this study were lower than that reported with

conventional TBI and probably explain the observed low

incidence of radiation pneumonitis. This compares favorably

to conventional TBI where radiation pneumonitis rates are

approximately 28 to 31% even with the use of lung shielding

and fractionation (70–72). Keeping MLD ≤ 8 Gy is

recommended to limit the risk of pulmonary I/RP and is a

dose constraint on all current trials. The lower incidence of

intermediate to late toxicities and no cases of non-engraftment

to date suggest that the higher dose rates with the current

fractionation schedules do not contribute to organ or marrow

dysfunction and are consistent with published pre-clinical

studies (73, 74).
Organ sparing on recurrence rates
after TMLI

TMLI has raised concerns that organ sparing will spare

leukemia cells and increase recurrence rates. We reported on

extramedullary (EM) recurrences in the first 101 patients

undergoing allogeneic HCT with TMLI at this center. With a

median follow-up of 12.8 months, 13 patients developed EM

relapses at 19 sites. There was no relationship between dose and
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EM relapse. Nine EM relapses occurred in full dose regions (≥ 12

Gy), 5 at sites receiving close to the full dose (10.1 to 11.4 Gy)

and 5 at sites receiving 3.6 to 9.1 Gy (75). In multivariate analysis

EM disease prior to HCT was the only predictor of EM relapse as

has been reported by others (76–79). The risk of EM relapse was

comparable to that seen with other HCT conditioning regimens

(76, 80–82). These data suggest the use of TMLI does not

increase the risk of relapse in non-target regions compared to

other conditioning regimens. Our current practice is to continue

to offer patients with a history of EM disease TMLI conditioning

regimens on clinical trials. Sites of active EM disease sites prior

to HCT are included in the target regions. EM relapse rates

continue to be monitored on all TMLI trials at this center.
Discussion and future directions

TBI remains a critically important component of the

conditioning regimen in patients undergoing HCT with

randomized trials continuing to demonstrate superior

outcomes with TBI regimens compared with non-TBI

regimens (83–88). The role of TBI is the elimination of

malignant cells and to provide immunosuppression to prevent

rejection of donor hematopoietic stem cells. Fractionation and

organ shielding improve the therapeutic ratio of conventional

TBI with reduced toxicities and improved outcomes (89–94).

Increased toxicities associated with higher dose-rates diminishes

above 5 cGy/minute and is further reduced if TBI is fractionated

(73, 95–98).

There are limitations with conventional TBI. Dose escalation

is not feasible due to increased toxicities and regimen related

mortality. TBI is also not tolerated in older patients. TMI and

TMLI were developed by our group to address these limitations

and an unmet need, specifically patients with advanced,

refractory or relapsed hematologic malignancies who have

poor outcomes or cannot tolerate standard myeloablative

conditioning regimens, and where attempts to improve

outcomes by adding or dose escalating conventional total body

irradiation (TBI) was not possible due to associated toxicities.

The emphasis was on redefining and expanding the use of

radiation containing conditioning regimens to a new group

of patients.

Most patients treated on TMLI trials at this center are

patients with R/R acute leukemia who have no standard-of-

care HCT options. The results in this population are very

encouraging when compared to historical results and

demonstrate that: 1) TMLI results in lower incidences of

toxicities compared to TBI (61); 2) all patients have

successfully engrafted; 3) extramedullary relapses are

infrequent and comparable to other conditioning regimens

(75); 4) TMLI doses to 20 Gy, with etoposide and

cyclophosphamide in younger patients (< 60 years old) is safe

with a 1-year NRM rate of 6% and 2-year OS and PFS of 48%
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and 33%, respectively (12, 33); and 5) in older patients (≥ 60

years old), adding 12 Gy TMLI to fludarabine and melphalan is

feasible with an NRM rate similar to fludarabine-melphalan

alone, and with encouraging 5-year OS and EFS of 42% and 41%,

respectively (15). The results of these studies warrant larger scale

multi-center trials to confirm that these single center results can

be reproduced.

More recently TMLI strategies at this center have been

extended to other patient populations. Dose escalated TMLI

has been added to a PTCy GVHD reduction regimen in R/R

acute leukemia patients undergoing HCT with a haplo-identical

donor with promising low relapse rates achieved without an

increase in GVHD or NRM (39). This approach warrants further

investigation given the initial promising results and rapid

expansion of haplo-identical HCT.

Given the encouraging results in R/R disease, TMLI is now

being evaluated in patients with AML in CR1 and CR2

undergoing matched donor allogenic HCT with results that

compare favorably to similar patients treated with traditional

TBI and conventional GVHD preventative regimens at this

center. This approach is now being evaluated in a larger phase

II trial which may eventually lead to a randomized trial

evaluating this regimen as a possible alternative to current TBI

or non-TBI containing conditioning regimens.

Since initiation of TMI trials at this center, other centers

have reported their experience, although most of the experience

remains limited to date. Detailed reviews of the TMI clinical

experience have recently been published (38, 99–101). Most

trials have evaluated myeloablative doses of TMI as part of the

conditioning regimen prior to allogeneic HCT. A Phase I trial of

TMI (3–12 Gy 1.5 Gy twice daily) with fludarabine (40 mg/m2/

day × 4) and busulfan (4,800 mM∗min) reported a MTD of 9 Gy

in patients 18-65 years of age with high risk disease. NRM was

29%, RFS was 43% and OS was 50% (102). A phase II trial of this

regimen is ongoing. A Phase I trial combining dose-escalated

TMI from 12 to 18 Gy (3 Gy/day) with fludarabine (25mg/m2 on

days−9 to−7) and cyclophosphamide (60 mg/m2 on days −8 and

−7), established an MTD of 15 Gy (103). Other groups are

evaluating larger fraction sizes of up to 5 Gy (104). A phase I trial

in patients with relapsed hematologic disease undergoing second

or greater allogeneic HCT were treated with TMI doses of 6 to 12

Gy. The 2-year NRM, PFS and OS was 17%, 48% and 50%,

respectively. The recommend TMI dose was 12 Gy in younger

patients and 9 Gy in older patients (105). Initial results of an

ongoing prospective pilot trial evaluating TMI and Cy in

patients with high risk AML, ALL, or MDS who were older

than 50 years old or with comorbidities unable to undergo TBI

based regimens were reported (106). With a median follow-up of

14 months, relapse rate was 0% and median OS was 313 days

(20–784).

In AML patients undergoing allogeneic HCT with a haplo-

identical donor, a pilot trial reported results combining Treg/

Tcon adoptive immunotherapy to reduce GVHD with
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myeloablative TBI or TMLI and low dose chemotherapy (107–

109). The conditioning regimen included TBI for patients up to

age 50 years and total marrow/lymphoid irradiation for patients

age 51 to 65 years. TMLI was delivered in 2 daily fractions of 1.5

Gy (TMI) and 1.3 Gy (TLI) (total doses 13.5 Gy and 11.7 Gy

respectively), followed by thiotepa, fludarabine, and

cyclophosphamide. The probability of moderate/severe

cGVHD/relapse-free survival was 75% (109).

Trials are in progress evaluating TMI instead of TBI in

patients with acute leukemia in remission. At Beijing 307

Hospital a conditioning regimen of TMI 12 Gy in 4 Gy daily

fractions combined with pre-transplant Cy (60 mg/kg/d x 2) and

at the University Hospitals of Geneva TMI 12 Gy at 4 Gy per day

with a simultaneous boost to active marrow to 13.5 Gy in older

patients (40-80 years of age) are being evaluated. Other centers

have combined TBI with TMI to select targets areas as a form of

localized boost (110, 111).

TMI trials have also been reported in patients with multiple

myeloma. A phase II trial reported results of 50 patients who

underwent a tandem autologous HCT using TMI 12 Gy (4 Gy

daily) conditioning followed by a second autologous HCT using

melphalan 200 mg/m2. Additional boost to 24 Gy was delivered to

active FDG-PET lesions. The 5-year OS and PFS were 74% and

55%, respectively (112). Other groups have administered TMI

concomitantly with melphalan prior to autologous HCT. A phase

I trial combined TMI with melphalan (200 mg/m2) in patients

with relapsed or refractory disease (113). An MTD was not

reached and the authors concluded that 9 Gy TMI could be

combined safely with melphalan. A French multicenter Phase I

TMI dose escalation trial evaluating TMI with melphalan (140

mg/m2) in first relapse patients has been completed (114). TMI as

a single modality (14, 16 and 20 Gy at 2 Gy twice daily) in 9

patients with relapsed multiple myeloma prior to autologous HCT

has been reported (115). No dose limiting toxicities were observed.

A phase I trial at this center is evaluating the combination of 9 Gy

TMI with the RIC regimen of fludarabine and melphalan in

advanced patients undergoing allogeneic HCT (116).

The implementation of TMI and TMLI has led to using IMRT

to deliver TBI (IM-TBI) at this center (NCT04281199) and other

centers primarily in patients with acute leukemia in complete

remission undergoing allogeneic HCT (117, 118). At this center

IM-TBI is performed on prospective clinical trials with uniformly

applied dose constraints to reduce bias and to have a IM-TBI

clinical guideline foundation upon which to build on in future

clinical trials. Our main reasons for implementing IM-TBI are to

reduce lung dose and to accurately track radiation dose in TBI

patients. Conventional 2D TBI dosimetry only provides an

estimate of organ and total body dose as it does not use 3D CT

based dosimetry. Both helical tomographic and VMAT IMRT can

be used to deliver IM-TBI (119–123). Advantages include

improved dose uniformity and improved sparing of critical

organs compared to conventional TBI delivery methods (119).

This has the potential to reduce toxicities, as predicted from
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demonstrate that a mean lung dose of ≤ 8 Gy results in an increase

in OS or a decrease in pulmonary toxicity, respectively. It is

important to note that IM-TBI and TMI/TMLI are non-

competing approaches being evaluated in different patient

groups. Also, unlike TMI or TMLI, myeloablative doses of IM-

TBI in older patients and dose escalation is not feasible due to

increased toxicities. This will only be possible with dose

distributions that spare more normal organs and approach that

of TMI and TMLI. As a result, IM-TBI is limited to the sameHCT

populations that undergo conventional TBI and will have to

demonstrate reduced toxicities and superior outcomes if it is to

replace conventional TBI.

Combining different forms of targeted systemic radiotherapy

such as TMLI and targeted radiopharmaceutical therapy should

be evaluated. TMI/TMLI can be viewed as a form of targeted

“systemic” radiotherapy that utilizes CT imaging to target

anatomic regions likely to harbor disease. Another form of

targeted systemic radiotherapy is radioimmunotherapy (RIT)

which utilizes radiolabeled monoclonal antibodies to target

cancer cells that express a specific antigen. Antibodies directed

against CD45, CD33, CD66, CD22, CD25, and CD20

radiolabeled with 131I, b-emitters, or a-emitters have been

evaluated in clinical trials as single agents, in combination

with other therapies, incorporated in HCT conditioning

regimens as an alternative to TBI (125–137), or combined

with myeloablative doses of TBI (138–141) in patients with

hematologic malignancies. A phase I trial at this center is

currently evaluating the combination of RIT added to 12 Gy

TMLI, fludarabine and melphalan in R/R acute leukemia

undergoing matched donor allogenic HCT (NCT05204147).

TMLI and RIT are potentially complementary and can address

the limitations of each modality. The addition of RIT to TMLI

can add additional dose to cancer cells, including cancer cells

in circulation and in organs not targeted by TMLI. With RIT

there is unintended normal organ uptake, making TMLI better

positioned to be combined with RIT than standard TBI. Finally,

radiolabeled antibodies and other radiopharmaceuticals are

being evaluated as molecular imaging agents at this center to

refine targeting of TMLI in the future (142, 143).
Conclusion

TMI and TMLI continue to be actively investigated at this

center and at an increasing number of centers worldwide which

has been recently reviewed (144, 145). Figure 3 summarizes the

clinical trial strategies currently ongoing at this center. Clinical

results show significant promise and demonstrate the ability to

offer TMI and TMLI to older patients or those with co-

morbidities, regimen related toxicity and mortality rates that

are in general lower compared to standard myeloablative

conditioning regimens, the ability to dose escalate, and
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encouraging response and survival rates in R/R disease. The

initial concerns of increased toxicities, engraftment failure and

relapses due to higher dose-rates and organ sparing have not

been observed and prospective trials continue to monitor this.

These results support the use of helical tomographic or

volumetric arc based IMRT for the delivery of TMI and TMLI

in future clinical trials.

This rapidly developing field should move towards

developing uniform planning and treatment guidelines and

standardized reporting of organ doses and dose-rates.

Multicenter trials are needed to confirm results reported by

single institutions and to answer important questions that

remain. The optimum fractionation schedules, fraction sizes,

chemotherapy agents, and chemotherapy/TMI/TMLI

sequencing need to be defined. Future clinical trials will

investigate radiation dose distributions which will span a

continuous spectrum ranging from IM-TBI with lung sparing,

to IM-TBI with multi-organ sparing, to TMI/TMLI without dose

escalation, and to TMI/TMLI with dose escalation. The

appropriate dose distributions, target regions, target doses, and

organs to spare for each clinical scenario need to be determined.

Ultimately clinical trials need to demonstrate that TMI based

conditioning regimens offer advantages over current approaches.

In conclusion, the development and implementation of TMI

and TMLI requires a collaborative effort between radiation

oncology and hematology to apply technology advances in

radiation oncology to address an unmet need in HCT and to

shift the paradigm towards more effective and safer strategies to

integrate radiation therapy into HCT conditioning beyond what

is possible with TBI. TMI and TMLI hold significant promise in

redefining and expanding the role of radiotherapy in

hematopoietic cell transplantation.
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FIGURE 3

Overview of TMI, TMLI and IM-TBI clinical applications in patients with acute leukemia undergoing allogeneic hematopoietic cell transplantation
at this center.
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