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Abstract

Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which
have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close
proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of
Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and
Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the
eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine,
and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and ana-
lyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses),
confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastrovi-
ruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alterna-
tive mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle
to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavi-
rus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses
constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these
bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial
ecosystems.
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1. Introduction

Emerging infectious diseases have a serious impact on human
health and our economy and unfortunately, their upward trend
has not yet been halted (Mackey et al. 2014). About 60–80% of
these emerging infections originate from wildlife including bats
(Cleaveland et al. 2001; Taylor et al. 2001). Some bats (Order
Chiroptera) have been implicated as a major reservoir of patho-
genic zoonotic viruses such as rabies virus, Marburg virus,
Severe Acute Respiratory Syndrome (SARS)- and Middle East
Respiratory Syndrome (MERS)-related coronaviruses (CoVs),
Nipah and Hendra viruses (Rupprecht et al. 1995; Chua et al.
2002; Lau et al. 2005; Leroy et al. 2005; Towner et al. 2007;
Memish et al. 2013). Bats make up more than 20% of the �5,500
known terrestrial species of mammals (Nowak 1991; Vaughan
and Ryan 2000) and have a combination of features that is be-
lieved to enhance their ability to facilitate virus evolution and
transmission such as longevity, migratory activity, large and
dense roosting communities, and close social interactions
(Prendergast et al. 2002; Luis et al. 2013). Additionally, it has
been speculated that some viruses which evolved with bats
may use cellular receptors and biochemical pathways which are
conserved in mammals that evolved later, thus enhancing their
ability to transmit these viruses to other mammals including
humans (Calisher et al. 2006). Apart from human behavioral
changes (driven by increasing human populations) and spatial
expansion of agriculture, direct contact with bats through hunt-
ing, selling, and/or eating might provide great opportunity for
such zoonotic transmissions (Morse 2001), which is the case in
Lysoka, Limbe and Moyuka in the Southwest Region of
Cameroon.

Control and prevention of these emerging infections from
bats and other wildlife entails a strategy of rapid pathogen iden-
tification, to determine their origin and control further spread
to new hosts and new host species. Therefore, continuous sur-
veillance to unravel the viral communities present in bats and
other wildlife is of utmost importance to viral zoonosis preven-
tion and control endeavors (Gerald et al. 2009). However, little or
no data are available from Cameroon. In this study, we collected
and analyzed fecal samples from two species of fruit bats

(Eidolon helvum and Epomophorus gambianus), from the South
West Region of Cameroon using high-throughput sequencing.

The gut virome typically contains both eukaryotic and pro-
karyotic viruses (phages), of which the latter usually represents
the largest fraction of the gut virome in animals. However, the
phage community in the bat gut has largely been ignored, or
only the number of reads assigned to phages are briefly men-
tioned in some metagenomics data (Ge et al. 2012; Wu et al.
2012, 2016; Zheng et al. 2017). Here, we analyzed known and
novel eukaryotic viruses, as well as the bat intestinal phage
communities.

2. Results

A total of eighty-seven fecal samples from two species of bat
(E. helvum and E. gambianus) were collected from three localities
of the South West Region of Cameroon: Limbe, Lysoka, and
Muyuka (Fig. 1) (Yinda et al. 2016b). These samples were divided
over twenty-five pools of one to five samples each, enriched for
viral particles and then sequenced. Illumina sequencing yielded
a total of 218 million reads and approximately half was trimmed
out in the quality control and deduplication process. Out of the
remaining 108 million reads, 14% could be assigned as viral
while 86% was non-viral (bacterial, host, or dark matter). Most
of the viral reads were assigned as phages (89%) and about 11%
were eukaryotic viruses (as summarized in Table 1). Only a sin-
gle pool was made from the samples from E. gambianus fruit bat,
which generated mainly phage viral reads after sequencing.
Therefore, all eukaryotic genomes described here were from E.
helvum. Many of the eukaryotic viral reads belong to vertebrate
infecting viral families/orders possessing known and poten-
tially causative agents for gastroenteritis in humans. In particu-
lar, we identified members of the order Picornavirales and the
families Caliciviridae, Reoviridae, Astroviridae, Picobirnaviridae,
Circorviridae, and Parvoviridae. In addition, viruses with a high
zoonotic potential belonging to the family Coronaviridae
(Betacoronavirus), as well as viruses with a low potential of cross-
ing the species barrier (Papillomaviridae) were detected (Fig. 2).
Strikingly, most of the rotavirus (RV) (family Reoviridae) positive
samples were detected in adult pools (92%, Fig. 2B). This is
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Figure 1. Map of study site (Fako Division, South West Region, Cameroon). Pie shows the proportion of reads of eukaryotic viral families in different locations. The size

of the pie is proportional to the amount of samples analyzed at each location. Maps were created in R (version 3.2.3) (R Core Team 2016), using the raster package

(Wickham 2009) and the default plotting packages.
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unlike in other animal (including humans) wherein RV mostly
infect their young (Parashar et al. 2006). Moreover, we observed
geographical differences in the percentage of pools in which eu-
karyotic viral families were present (Fig. 2D). These differences
in the sampling sites (i.e. Limbe, Lysoka and Moyuka) maybe
due to differences in the acute infections going on at the time of
sampling or due to differences in the age of captured bats (all ju-
venile bats were from Limbe). A detailed analyses of the viruses
belonging to the order Picornavirales and the families
Papillomaviridae, Reoviridae (RVA) and Caliciviridae (Sapovirus)
have been reported elsewhere (Yinda et al. 2016a, b, 2017a,b)
Here, we analyzed the remaining viral sequences belonging to
double-stranded RNA (families Reoviridae, Picobirnaviridae, and
Partitiviridae), single-stranded RNA (families Astroviridae and
Coronaviridae) and single-stranded DNA (families Parvoviridae
and Circoviridae) viral groups. All the sizes of the contig (ge-
nomes) described in this study, together with their sequence
coverage and closest GenBank hit can be found on
Supplementary Table S1.

3. Double-stranded RNA viral sequences
3.1 Identification of the first near complete bat rotavirus
H genome

RVs are major enteric pathogen causing severe dehydrating di-
arrhea mostly in the young of humans and animals worldwide
(Bridger et al. 1998). RVs belong to the family Reoviridae and the
genus RV consists of nine species, A to I (Attoui et al. 2012;
Mihalov-Kovács et al. 2015). RVAs are the most common of all

the species having a wide host range including humans. Unlike
RVA, RVH, initially referred to as Novel adult diarrhoea RV was
mainly identified in humans (China and Bangladesh) and pigs
from Brazil, USA, and South Africa (Alam et al. 2007; Jiang et al.
2008; Nagashima et al. 2008; Marthaler et al. 2014; Molinari et al.
2015). We identified RVH reads in two different bat pools, in-
cluding one near complete genome. Based on genetic related-
ness, all the eleven bat RVH segments recovered were distantly
related to those of human (19–74% aa identity) and porcine (29–
80% aa identity) RVH strains. The eleven bat RVH gene segments
were more or less equally distantly related to both human and
porcine RVH strains. Similarly, based on the phylogenetic analy-
sis, bat, porcine, and human RVH strains formed three distinct
sub-clusters distantly related to each other (Fig. 3). A recent pa-
per described partial sequences of VP1, VP3 and VP4 RVH se-
quences (268, 340, and 202 nt, respectively) from South Korean
bat fecal samples (Kim et al. 2016). These Korean bat RVH
strains were only distantly related to human, porcine and the
Cameroonian bat RVH strains (nt identity of 68–71%) described
here, suggesting a broad genetic diversity of bat RVH strains
(Supplementary Fig. S1). RVH was first identified as a cause of
outbreaks of gastroenteritis in humans in China in 1997 and in a
sporadic case of adult diarrhea in Bangladesh (Alam et al. 2007;
Jiang et al. 2008). It has also been increasingly identified in pigs
but this might simply be as a results of improved surveillance
rather than recent spread. The current identification of RVH in
bats further expands its host range and opens new perspetives
on the evolutionary origin and history of this pathogen. It has
been clearly associated with gastroenetritis in humans and less
clearly in pigs as most known infections occur in co-infections

Table 1. Metadata and number of raw reads, reads after trimming and viral reads per pool.

Pool No of
samples

Sex Age Location Total raw
reads

Reads after
trimming

Phage
reads

Eukaryotic
viral reads

Total viral
reads

% viral
reads

Others
readsa

P1 4 M Adult Lysoka 7,681,616 1,267,653 831,900 6,038 837,938 66.10 429,715
P2 3 M Adult Lysoka 4,006,702 2,040,250 349,971 64,544 414,515 20.32 1,625,735
P3 4 F Adult Lysoka 7,882,440 1,548,502 624,087 76,032 700,119 45.21 848,383
P4 3 F Adult Lysoka 9,608,680 4,786,763 639,351 41,507 680,858 14.22 4,105,905
P5 3 M Adult Moyuka 7,898,316 2,115,775 694,518 936 695,454 32.87 1,420,321
P6 2 F Adult Moyuka 7,277,474 936,328 139,335 376 139,711 14.92 796,617
P7 5 M Adult Limbe 3,471,184 1,419,933 73,955 3,773 77,728 5.47 1,342,205
P8 4 M Adult Limbe 8,153,542 3,999,576 488,794 52,173 540,967 13.53 3,458,609
P9 4 F Adult Limbe 9,645,970 1,869,185 447,021 19,310 466,331 24.95 1,402,854
P10 4 F Adult Limbe 9,337,264 4,321,908 1,334,750 45,970 1,380,720 31.95 2,941,188
P11 5 M Young Limbe 8,693,798 3,746,818 1,377,106 59,786 1,436,892 38.35 2,309,926
P12 4 M Young Limbe 3,775,248 1,788,839 7,574 711 8,285 0.46 1,780,554
P13 4 M Young Limbe 12,589,288 5,804,209 2,833 2,005 4,838 0.08 5,799,371
P14 4 F Young Limbe 11,047,740 5,081,387 765,542 29,594 795,136 15.65 4,286,251
P15 3 F Young Limbe 17,437,336 7,587,472 7,534 106,990 114,524 1.51 7,472,948
P16b 2 F Adult Lysoka 8,040,290 3,252,902 466,407 105,950 572,357 17.60 2,680,545
P17 3 F Adult Lysoka 11,702,558 8,950,127 1,649,086 153,810 1,802,896 20.14 7,147,231
P18 3 F Adult Lysoka 8,844,716 5,697,807 13,708 1,217 14,925 0.26 5,682,882
P19 4 F Adult Muyoka 6,786,714 3,994,014 545,295 1,603 546,898 13.69 3,447,116
P20 4 F Adult Limbe 11,302,290 7,568,783 1,825 595 2,420 0.03 7,566,363
P21 3 F Adult Limbe 11,222,122 6,642,675 3,148 2,923 6,071 0.09 6,636,604
P22 5 F Young Limbe 11,107,052 8,112,574 667,730 334,067 1,001,797 12.35 7,110,777
P23 2 M Adult Limbe 6,385,352 4,850,518 2,780 620,961 623,741 12.86 4,226,777
P24 3 M Young Limbe 8,985,248 6,959,613 2,650,973 2,100 2,653,073 38.12 4,306,540
P25 1 F Adult Limbe 5,535,248 4,343,684 5,846 15,795 21,641 0.50 4,322,043

aThese could be reads mapping to bacteria, host or dark matter.
bOnly pool with E. gambianus samples.
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with other RV species such as RVA, RVB, and RVC (Marthaler
et al. 2014). Whether RVH causes diseases in bats is currently
unknown.

3.2 Identification of novel picobirna-like RNA-dependent
RNA polymerase-encoding genome segments using the
invertebrate mitochondrial genetic code

Picobirnavirus (PBV) is the only genus in the family
Picobirnaviridae, and their members consist of non-enveloped,

icosahedral virions containing a bisegmented double-stranded
RNA genome of about 4 kb. The larger segment (�2.2–2.7 kb) en-
codes a capsid precursor, and the smaller segment (�1.2–1.9 kb)
encodes the RNA-dependent RNA polymerase (RdRp) (Rosen
et al. 2000). PBVs have been identified in feces of several mam-
mals, birds, and invertebrates, and in the respiratory tract of
pigs and humans (Pereira et al. 1988; Smits et al. 2011, 2012;
Mondal and Majee 2014;). PBVs are currently classified into two
genogroups (Smits et al. 2011; Malik et al. 2014) and recently, a
large number of novel PBV-like sequences from insects have
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Figure 2. Viral family content. The heat map shows the presence of eukaryotic viral families in feces from all 25 bat pools in relation to different parameters (A)

Individual pools; (B) Age; (C) Sex; (D) Location. Blue square: presence of viral family in pool (>1% total reads of that pool); white square: absence of viral family in pool

(<1% total reads of that pool). E. overview of the most abundant families and genera identified in bats in this study based on assigned reads. Low abundant mammalian

viruses not in this figure are: Astroviridae, Circoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, and Papillomaviridae. Other low abundant plant/insect viruses

not in the figure: Alphatetraviridae, Chrysoviridae, Dicistroviridae, Genomoviridae, Luteoviridae, Nodaviridae, Phycodnaviridae, and Picornavirales. The viruses of a

family that could not be assigned to any known genus are referred to as others. Families represented by less than 100 reads were excluded.
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been described (Shi et al. 2016). Here, we identified five contigs
with a PBV-like RdRp sequence. Surprisingly, these RdRP open
reading frames (ORFs) could not be identified using the standard
genetic translation code, and only when alternative genetic
codes were used, a single large ORF could be identified. All these
alternative genetic codes are those of invertebrate mitochondria
and have in common a reassignment of the TGA stop to another
amino acid (e.g. a tryptophan). An RdRp-based phylogenetic
tree indicated that all PBV-like sequences in GenBank globally
fall into two main clusters. One cluster mainly contains PBVs
that use standard genetic code for protein translation, while the

other clade contains PBV-like sequences that make exclusive
use of the alternative genetic code for translation (Fig. 4A).
Exceptions to this rule are the Chinese strain (Hubei picobirna-
like virus 3) and the Cameroonian strain (Lysoka picobirna-like
virus P16-366), both of which use an alternative genetic code,
despite clustering within PBVs that use standard genetic code.
In the clade of PBV-like viruses that use the alternative genetic
code, three of the novel bat strains, P11-378, P14-90, and P15-218
share >98% aa identity and clustered with Beihai picobirna-like
Virus 4, 5, and 6 identified in hermit crabs in China (Fig. 4A). The
distant phylogenetic clustering of these strains with crustacean
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Figure 4. (A) Phylogenetic tree of the RdRp amino acid sequence of PBVs. Tree was constructed using the LG þ G amino acid model using RAxML, with the autoMRE
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viruses, suggest either that these viruses are true crustacean vi-
ruses (instead of bat infecting viruses), or (more likely) that
there is a lack of available sequence data of this virus from other
potential host species, which does not allow us to make a rea-
sonable assumption about its true host species at this moment.
Only for the Cameroonian strain P16-366, a capsid sequence
could be identified in our metagenomics data. In an attempt to
identify the ‘missing’ highly divergent capsid sequences we
used a custom build database containing all known PBV capsid
genes and used HMMER to search the sequencing pools in
which we found the PBV RdRps. However, no capsid sequences
could be identified. As an internal control, we used the same
procedure to successfully identify the previously identified cap-
sid sequence in the pool containing picobirna-like virus P16-
366. Furthermore, for the PBV-like RdRp sequences derived from
crustaceans and also using the alternative codons, no capsids
had been described either (Shi et al. 2016). This could also be be-
cause of the inability of the used methods (DIAMOND and
HMMER motif finder search; Finn et al. 2011; Buchfink et al.
2015) to detect highly divergent capsid sequences.

The identification of these PBV-like RdRp sequences without
an apparent capsid is reminiscent to that of mitoviruses (family
Narnaviridae), which are known to infect the mitochondria of fun-
gal species (Polashock and Hillman 1994; Hong et al. 1999). Their
genome also consists of a double-stranded RNA element that en-
codes only an RdRp but does not form encapsulated viral parti-
cles. This virus genome is transmitted horizontally through
mating (anastomosis) or vertically from mother to daughter cells
(Shackelton and Holmes 2008). Apart from mitoviruses, only
damselfish virus-like agents (a DNA virus) are known to infect
mitochondria, although their mode of replication and transmis-
sions is yet to be delineated (Schmale et al. 2009). To further in-
vestigate if indeed these PBV-like strains could be infecting the
mitochondrion, we performed a principle component analysis
(PCA) of the codon usage bias of different known mitochondrial
genome sequences, mitoviruses, classical PBVs and PBV-like vi-
ruses using an alternative genetic code (Shi et al. 2016). Based on
this analysis, the four PBV-like sequences identified in this study
(P11-300, P11-378, P14-90, and P15-218) clustered closely together
with other viruses using the alternative genetic code, such as
mitoviruses, and other in crustacean/insect PBV-like viruses
(Fig. 4B). The Cameroonian strain P16-366, clustered more closely
with mitochondrial genomes (Fig. 4B). Most of the PBVs using a
standard genetic code, clustered away from sequences using the
alternative genetic codes, although there were some exceptions.

Based on the following combined observations for the
Cameroonian PBV-like sequences P11-300, P11-378, P14-90, and
P15-218: (1) a mitochondria like genetic code needed to translate
the RdRp, (2) a potential absence of PBV-like capsid (after HMMER
motif finder search; Eddy 2011), and (3) PCA analyses clustering
them closely with mitoviruses, we speculate that these four PBV-
like RdRp sequences might have a similar life style as mitovi-
ruses, without an extracellular virion phase. However, it is not
fully clear how to explain the observation that strain P16-366
uses an alternative genetic code, clusters with other sequences
using the alternative code in the PCA analyses, and yet clusters
with classical PBVs in the phylogenetic tree in genogroup II, and
has a capsid sequence in the high-throughput sequencing data.
Further analyses will have to shed light on this hypothesis.

3.3 Identification of novel divergent partiti-like viruses

Partitiviruses are viruses of the family Partitiviridae possessing a
30–35-nm diameter spherical particle which contains a

bisegmented double-stranded RNA genome (Nibert et al. 2014).
The larger genome segment (dsRNA1) codes for the RdRp while
the smaller segment (dsRNA2) encodes one (or two) coat pro-
tein(s) (Buck and Ghabrial 1991). Also, these segments are
encapsidated in separate virus particles, which must therefore,
simultaneously infect the host for successful propagation (Buck
and Kempson-Jones 1973; Szeg}o et al. 2010). Partitiviruses are
known to infect plants, fungi and an apicomplexan protist of
the genus Cryptosporidium and are classified into five genera
based on phylogenetic analysis: Alphapartitivirus, Betapartitivirus,
Gammapartitivirus, Deltapartitivirus, and Cryspovirus (Nibert et al.
2014). Here we identified thirty-nine partiti-like RdRp se-
quences. Surprisingly, only eight of the strains fall within these
established genera: five of which clusters with fig cryptic virus
(genus Deltapartitivirus) while the other three are closely related
to viruses of the genus Gammapartitivirus. Twenty-eight of the
sequences form several new and divergent clusters with a vary-
ing degree of relatedness to recently described unclassified in-
vertebrate partiti-like viruses from China (Shi et al. 2016)
(Supplementary Fig. S2). Overall, these data suggest a far greater
diversity of viruses in this family, than was previously recog-
nized, warranting the creation of multiple novel genera inside
the family Partitiviridae. Here, capsid sequences were recovered
only for fig crytic-like partitiviruses of the Deltapartitivirus genus
and not for other sequences. This is most likely due to high ge-
netic divergence, not allowing their identification using
DIAMOND search. Given that partitiviruses are known to infect
plants, fungi, and protist, it is most likely that these viruses are
derived from the plants and fruits on which the bats feed.

4. Single-stranded RNA viruses
4.1 Identification of bat astrovirus and a novel bat
bastro-like virus

Recently, viral genomes with characteristics of both astro- and
hepatitis E-like genomes (called bastrovirus) were identified in
human stool samples from the Netherlands. Analysis of these
genomes revealed they are made up of two ORFs: ORF1 contain
non-structural domains that share identity with domains from
members of the family Hepeviridae while ORF2 contain struc-
tural protein that shares the highest sequence identity with
members of the Astroviridae (Oude Munnink et al. 2016). Further,
unpublished sequences of bastrovirus and bastro-like viruses
have been identified from rats, pigs, and bats from Vietnam.
Here we describe a novel bastro-like virus in bats from
Cameroon and analysis of the genome showed the same ge-
nome organization as those found in humans, rats, and other
bats (Fig. 5A). A phylogeny based on the capsid (Fig. 5B) showed
a cluster of human bastrovirus closest to astrovirus and dis-
tantly related to HEV strains. Most of the animal bastroviruses
form a monophyletic clade except for the two highly divergent
strains Bat_Bastrovirus-like_virus/VietNam/Bat/17819_21 and
Bat_Bastrovirus/VietNam/Bat/16715_30. Inside this bastrovirus
cluster, strains cluster according to their bat, rat or porcine host
species, including the Cameroonian (Bat_Bastrovirus/CMR/Bat/
P24) and Vietnamese (Bastrovirus/VietNam/Bat/16715_78) bat
bastrovirus strains (77% amino acid similarity). The RdRp phylo-
genetic tree shows that bastroviruses and hepatitis E viruses
form a unique clade, distinct from astroviruses (Fig. 5C). All bas-
troviruses form a monophyletic clade, and again they cluster
per host species, including the Cameroonian and Vietnamese
bat strains (KX907133 and KX907131, 77% amino acid identity).
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The only exception was Bat_Bastrovirus-like_virus/VietNam/
Bat/17819_21, forming a distinct outgroup.

Therefore, the capsid and the RdRp regions of bastrovirus
are more phylogenetically related to those of astroviruses and
hepatitis E viruses, respectively, confirming the previous find-
ings, and the hypothesis of an (ancient?) recombination event
(Oude Munnink et al. 2016). Furthermore, the observation that
the Cameroonian strain CMR/Bat/P24 clustered with two bat
strains from Vietnam in the RdRp tree and only with strain,
Bat_Bastrovirus/VietNam/Bat/16715_30 in the capsid tree, sug-
gests the occurrence of additional recombination events within
the bastroviruses.

4.2 Identification of novel Betacoronavirus

CoVs are enveloped single-stranded, positive sense RNA viruses
that belong to the Order Nidovirales, Family Coronaviridae and
Subfamily Coronavirinae. This subfamily is made up of four gen-
era: Alphacoronavirus, Betacoronavirus, Deltacoronavirus, and
Gammacoronavirus (Adams and Carstens 2012). Gamma-CoV and
Delta-CoV mainly contain bird viruses as well as a few mamma-
lian viruses, whereas Alpha- and Beta-CoV infect mainly mam-
malian species (Drexler et al. 2014). Since bats were implicated
as reservoir hosts for SARS-related CoVs, subsequent studies in
bats have identified a great diversity of Alpha-CoV and Beta-CoV
(Lau et al. 2005; Li et al. 2005). Furthermore, it has also been es-
tablished that bats are potential reservoir host for the human
CoV 229E and MERS-CoV, although it is now more plausible that
the intermediate host of human MERS-CoV is dromedary camel
(Annan et al. 2013; Chan et al. 2015; Corman et al. 2015; Sabir
et al. 2015). The genus Beta-CoV is further classified into lineages

A–D, and has been identified in a wide variety of hosts including
humans, numerous domestic and peridomestic animals, and
multiple bat species (41, 42). Infection of E. helvum with lineage
D Beta-CoV has been reported at high frequency in Kenya and re-
cently in Nigeria (Tong et al. 2009; Tao et al. 2012; Leopardi et al.
2016). Here we identified five near complete CoV genomes from
E. helvum fruit bats in Cameroon. All the strains identified here
belong to the lineage Beta-D. Phylogenetic analysis of at least
700 nt of the representative sequences of the subfamily
Coronovirinae showed that in the Beta-D lineage, all strains (in-
cluding four novel strains from this study) are generally clus-
tered by host species (Supplementary Fig. S3). One exception
was the Cameroonian strain CMR66, which clustered with
Rousettus spp, D Beta-CoV strains, indicating that despite the ex-
istence of bat host-CoV co-evolution, there have been occa-
sional interspecies events either within the Chiropteran order or
to other orders (Tao et al. 2017).

5. Single-strand DNA viruses
5.1 Identification of novel viruses of the family
Parvoviridae

Parvoviridae is a family of small non-enveloped viruses encoded by
a single-stranded DNA genome of �4–6 kb with two ORFs: ORF1
encodes the non-structural protein(s) which has replicase activity,
while ORF2 encodes the structural or capsid protein(s) (King et al.
2012).The family is further divided into the subfamilies Parvovirinae
and Densovirinae. Members of the subfamily Parvovirinae infect ver-
tebrates, while members of the subfamily Densovirinae infect inver-
tebrates (Liu et al. 2011; Cotmore et al. 2014). The subfamily
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Parvovirinae is comprised of ten genera: Dependoparvovirus,
Copiparvovirus, Bocaparvovirus, Amndoparvovirus, Aveparvovirus,
Protoparvovirus, Tetraparvovirus, Erythroparvovirus, Marinoparvovirus,
and Chapparvovirus (Cotmore et al. 2014; Phan et al. 2015; Yang
et al. 2016). The subfamily Densovirinae is comprised of five genera:
Ambidensovirus, Brevidensovirus, Hepandensovirus, Iteradensovirus,
and Penstyldensovirus (Cotmore et al. 2014). We identified two par-
vovirus and five densovirus genomes in this study. The parvovi-
ruses identified are BtBoV/CMR/2014 and BtPV/CMR/2014, which
clustered together with members of the genera Bocaparvovirus and
Chapparvovirus, respectively (Supplementary Fig. S4). Strain BtBoV/
CMR/2014 was rather divergent from all other bocaviruses with
<45% aa similarity with the closest bocavirus BBoV-SX/CHN/2010
(HQ223038) and BBoV-H18/CHN/2008 (HQ291308). On the other
hand, BtPV/CMR/2014 had an aa identity of 49–65% with members
of the genus Chapparvovirus and clustered closest to Ghanaian E.
helvum parvovirus (BtPV2/GHN/2009, JX885610) with an aa identity
of 65%. Both novel parvoviruses share <85% amino acid identity in
the NS1 protein and therefore likely constitute new species within
their respective genera (Cotmore et al. 2014).

We also identified five sequences of the subfamily Densovirinae
named as Cameroonian bat densovirus 1-5 (CMRBtDV1-5). We
had near complete genomes of CMRBtDV1-CMRBtDV4 (genome
lengths of 3,823, 4,327, 4,327, and 5,017 nt respectively) but only
1,761 nt of CMRBtDV5. CMRBtDV1-CMRBtDV3 had a genome orga-
nization of two ORFs, ambisense to each other (Supplementary
Fig. S5A) while that of CMRBtDV4 surprisingly showed four ORFs
(two non-structural and two structural) instead of the typical two
ORFs for ambidensoviruses (Supplementary Fig. S5B). This type of
genome origination was also noticed in the closely related
Dysaphis plantaginea densovirus isolate, DplDNV (FJ040397; Ryabov
et al. 2009) and therefore this is unlikely to be a sequencing arti-
fact. Among all the novel densoviruses, the closest to a known
densoviruses was CMRBtDV4, which was nested within the genus
Ambidensovirus with an aa identity of 52% with DpLDNV (Ryabov
et al. 2009). The other four identified densoviruses formed two
distinct distantly related clades with less than 20% aa identity to
all other DVs (Supplementary Fig. S6). CMRBtDV2 and CMRBtDV3
are almost 99% identical and closest to CMRBtDV1 (44% aa iden-
tity), but with just 17% and 18% aa identity to CMRBtDV4 and
CMRBtDV5, respectively. These two clades (CMRBtDV1,
CMRBtDV2 and CMRBtDV3, and CMRBtDV5) constitute putative
novel genera in the subfamily Densovirinae since both share <30%
identity with all other DVs.

Parvoviruses have been identified in fecal and blood samples
of bats around the world (Canuti et al. 2011; Ge et al. 2012;
Kemenesi et al. 2015; Lau et al. 2016); however, none of these
have been associated with any specific diseases (also the situa-
tion here). It is possible that these parvoviruses strains infect
these bats without causing any diseases, as it is the case for
many bat viruses. Unlike parvoviruses, the presence of densovi-
ruses in bats is very unlikely to be associated with infection
given that they have not been shown to infect vertebrates (Liu
et al. 2011; Cotmore et al. 2014).

5.2 Identification of a novel single-stranded circular
DNA virus

Circular Rep-encoding ssDNA (CRESS-DNA) viruses are a diverse
group of viruses known to infect a wide range of hosts including
crustaceans, fungi, a variety of plants (family Germiniviridae and
Nanoviridae) and vertebrate species (family Circoviridae) (TFF
et al. 2013; Yu et al. 2010). Recent studies have identified CRESS-

DNA sequences in other environments including aquatic set-
tings, insects and stool of animals (Dayaram et al. 2014; Zawar-
Reza et al. 2014; Ng et al. 2015). Generally, the genomes of most
CRESS-DNA viruses are 2–3 kb in length. Genomes of CRESS-
DNA generally encode both a replication initiator protein (Rep)
and a capsid protein (Cap), and contain a DNA stem loop struc-
ture required for the initiation of DNA replication (Stenger et al.
1991). Here we were able to obtain complete genomes of two
CRESS-DNA sequences in different pools tentatively named Bat
CyV-LimbeP14/CMR/2014 and Bat CyV-LysokaP4/CMR/2014 with
genome length of 1,784 and 1,791 nt, respectively. Both genomes
contain two ORFs encoding a Rep and capsid protein with small
intergenic region between the 30 ends of major ORFs. They also
contain the circovirus nonanucleotide motif TAGTATTAC at the
apex of a potential stem–loop structure (Supplementary Fig.
S7A). They share 99% identity on the Rep gene and both have
the highest amino acid and nucleotide identity (75 and 70%, re-
spectively) to a human cyclovirus strain from Pakistan
(GQ404845_CyV-PK5034/PAK/2007). The phylogenetic analysis of
the Rep sequences (cyclovirus, Supplementary Fig. S7B) showed
that both identified genomic sequences clustered with the
above mentioned human strain. Also, cycloviruses have been
found in bats from China and the USA (Li et al. 2010; Ge et al.
2011). Given that these were insect eating bats, the authors pos-
tulated that cycloviruses found in bat feces might infect insects
consumed by bats rather than the bats themselves. This same
assumption was used to explain the presence of cyclovirus
found in humans stool (Rosario et al. 2012). Following this argu-
ment, their presence in fruit-eating bats highlight the possibility
of consumption of insect-contaminated fruits. However, the
real hosts of these viruses are yet to be determined.

6. Bacteriophages

There were 498 contigs annotated as phages by VirSorter.
Further comparison to GenBank showed that they belonged to
the Myoviridae (74 contigs), Podoviridae (22 contigs), and
Siphoviridae (20 contigs) families, whereas the rest were unas-
signed (382 contigs). To assess differences in the bacteriophage
communities of different bats, we compared the bacteriophage
richness between female and male bats (Supplementary Fig.
S8A, P ¼ 0.657); adult and young bats (Supplementary Fig. S8B,
P ¼ 0.109) and between the three locations sampled
(Supplementary Fig. S8C). Interestingly, Lysoka presented a sig-
nificantly higher richness than Limbe, but not Moyuka, which is
likely due to the low sample size from Moyuka bats. To further
look into the location differences, we then clustered the three
different locations on a PCoA using a binary jaccard matrix dis-
tance (Supplementary Fig. S8D). We observed a distinct cluster-
ing of the three locations (R2 ¼ 0.3553, P ¼ 0.001). Even though
we cannot determine the putative drivers of these differences,
we can speculate that these locations might have different
fruits accessible, leading to a distinct gut flora in the bats.
Furthermore, the diversity of these phages also reflects the bac-
terial flora harbored inside the bats, suggesting that bats from
these locations might have quite diverse microbiota. However,
given the disparity in the sampling number at different sites,
this should be interpreted with caution. Using searches with
CRISPR sequences against the phage community revealed that
the most likely hosts of these phages are bacteria of the genera
Enterobacter, Enterococcus, Escherichia, Klebsiella, Veillonella, and
Salmonella (Table 2).
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7. Discussion/Conclusion

In the recent past, there has been an increased interest in bat vi-
ruses from all over the world because of the implications of bats
as a reservoir for deadly viruses like rabies virus, Marburg virus,
SARS- and MERS-related CoVs, and Nipah and Hendra virus.
Many virome studies have identified numerous viruses in dif-
ferent viral families around the world (Donaldson et al. 2010; Li
et al. 2010; Ge et al. 2012; He et al. 2013; Ng et al. 2013; Chen et al.
2014; O’Shea et al. 2014; Wu et al. 2016). Most of these studies
have been conducted in China and the USA and most of the
viruses identified from Africa have been limited to individual
virus screening or isolation (Razafindratsimandresy et al. 2009;
Drexler et al. 2012, 2013; Weiss et al. 2012; Baker et al. 2013;
Quan et al. 2013; Corman et al. 2015; Tao et al. 2017; Waruhiu
et al. 2017). Of all these, only two studies report screening of bat
viruses in Cameroon with the identification of hepaciviruses,
pegiviruses and alphaherpesviruses (Razafindratsimandresy
et al. 2009; Quan et al. 2013). Different from these previous
reports, this study characterize the entire fecal virome of one of
the most eaten bat species (E. helvum) in Cameroon
(Mickleburgh et al. 2009) using high-throughput sequencing.

Most of the viral reads recovered were assigned to bacteri-
ophages and this is consistent with previous reports as re-
viewed in (Clokie et al. 2011). The other viral reads were
eukaryotic and belonged to viruses of the order Picornavirales
and the families Astroviridae, Caliciviridae, Circorviridae,
Coronaviridae, Papillomaviridae, Parvoviridae Picobirnaviridae,
and Reoviridae. Apart from CoVs, one strain of RVA (Yinda
et al. 2016b), bat parvovirus and bat cyclovirus identified here
were rather divergent from known viruses, suggesting that
there is still a large number of unidentified viruses present in
bats. Only one pool (P16, Table 1) was constituted of E. gam-
bianus samples. Though this pool had a large amount of viral
reads, most were phages and almost no complete mamma-
lian virus was present in the pool. Therefore, all the novel eu-
karyotic viruses described here were identified in E. helvum
and since only one pool was made from E. gambianus fruit bat,
no reasonable comparison could be made between viruses
identified in the different bat species. The presence of a vast
spectrum of mammalian viruses in E. helvum reveals that this
bat species may indeed also act as reservoirs for diverse
mammalian viruses in Cameroon.

The identification of Rotavirus H (RVH) in bats from
Cameroon and Korea (Kim et al. 2016), further broadens the
breath of viruses found in bats so far. Given that this is the first
near complete RVH genome identification in bats, more in vivo
and extensive molecular epidemiologic studies are required to
completely understand their genetic diversity and geographical
spread. Furthermore, the phylogeny of RVH shows clear distinct
clades of human, porcine and bat indicating that no interspecies
transmission of this virus occurred in the recent past. In the
same light, the presence of bastrovirus previously described
only in humans (Oude Munnink et al. 2016) further indicates the
increasing breath of viruses in bats. On the other hand, the bas-
trovirus capsid and the RdRp trees show different topologies
and are phylogenetically related to astroviruses and hepatitis E
viruses, respectively. This is in line with previous findings that
hypothesize a recombination event between members of the
family Astroviridae and Hepeviridae in the distant past (Oude
Munnink et al. 2016). Furthermore, we observed phylogenetic
incongruence within the bat bastroviruses, suggesting the oc-
currence of additional recombination events. These recombina-
tions indicate that multiple bastroviruses may co-circulate andT
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also co-infect the same host. A better understanding of the evo-
lutionary history, host range and zoonotic potential of bastrovi-
ruses will be revealed without a doubt with ongoing and future
virome studies in humans and animals. Whether or not these
strains of RVH and bastrovirus can cause diseases in bats still
need to be investigated.

For several viruses, there seems to be a taxon (species or
genus)-specific host restriction. For bat CoVs, a single epidemio-
logical unit of continental populations of E. helvum seems to ex-
ist (Gloza-Rausch et al. 2008; Peel et al. 2013; Razanajatovo et al.
2015). Also, the parvovirus strain BtPV/CAM/2004 is genetically
related to a Ghanaian E. helvum strain and a similar observa-
tions was made for RVA, where a RVA strain from Cameroonian
E. helvum bat was related to a known Kenyan strain (Yinda et al.
2016b). However, the presence of the novel E. helvum CoV strain
CMR66 in an exclusively Rousettus spp. clade (Supplementary
Fig. S4) shows an example of interspecies transmission between
bat species. Such occasional interspecies events either within
the Chiropteran order or to other orders, account for emerging vi-
ral zoonotic outbreaks like SARS and MERS (Tao et al. 2017). This
is particularly easy in regions where there is close proximity be-
tween human and bats as is the case in the Southwest Region of
Cameroon (Mickleburgh et al. 2009).

In addition to these well studied virus families, most of the
novel densoviruses and partitiviruses are phylogenetically di-
vergent from existing genera of their respective sub-family
(Densovirinae) or family (Partitiviridae). This indicates the need
for the creation of more genera within this (sub) family.

Additionally, we described for the first time in bat,
picobirna-like sequences that use an alternative invertebrate
mitochondrial genetic code. This observation together with our
PCA analyses and the lack of an identifiable capsid sequence
suggests that these PBV-like sequences might behave like mito-
viruses, infecting mitochondria and not having an extracellular
virion phase. Though experimental characterization of these vi-
ruses is needed to test this hypothesis, recent identification of
bacterial ribosomal binding site in PBV genomes may suggest
that prokaryotes are the potential hosts of PBVs
(Krishnamurthy and Wang 2018). Therefore, the question on
what the true host of PBVs is still to be fully answered.

Eidolon helvum mainly feeds on fruit juice. In addition, they
are reported to chew up soft wood and bark, apparently to ob-
tain moisture (Happold 1987). The region were these samples
were collected are regions characterized by the presence of
plantations and dense tropical forest which represent their
prime habitat (Ossa et al. 2012; Benneh and DeLancey 2017).
Therefore, these identified plant/insect viruses might just re-
flect the consumption of virus infected fruits or leaves contain-
ing insects, larvae, or eggs infected with these viruses. However,
the virome of these plants and insects are yet to be investigated,
hence no final conclusion can be made on the true host origin
of these potential plant/fungi/insect associated viruses.

Nearly all animal virome studies ignore the bacteriophage
content of stools. Here, we investigated the bat phageome,
which revealed a great geographical diversity in the bat phage
populations. Furthermore, the corresponding potential host
bacterial species of these phages are similar to those that also
live in the human gut. This raises the question if bacteriophages
can also be transmitted from animals to humans. Whether this
occurs and whether or not this might influence the human gut
microbiota remains the subject for further studies.

Noticeably, all bats from which samples were collected ap-
peared healthy and showed no overt signs of disease, further
suggesting that bats can either co-adapt or tolerate diverse

viruses through their unique metabolic and immune systems
(Shi 2010).

8. Methods
8.1 Sample collection and preparation

Fecal samples were collected from Cameroonian fruit-eating
bats, E. helvum and E. gambianus from Limbe (4�1020.87600N
9�11043.59500E), Lysoka (4�8053.46300N 9�14043.08700E), and Moyuka
(4�17025.62500N 9�24052.18600E) in Southwest Region of Cameroon
between December 2013 and May 2014. Bats were captured
around fruit trees at night using mist nets as previously de-
scribed in Yinda et al. (2016a,b). Morphological features (weight,
forearm length, sex, reproductive state, and age [adult or juve-
nile]) of captured bats were assessed and used to determine the
species as described in (Yinda et al. 2017b). None of the captured
animals showed physical signs of disease. Samples were tem-
porally kept at �20�C at Biotechnology Unit, University of Buea,
Cameroon and later transferred to the Laboratory of Clinical
and Epidemiological Virology, Leuven, Belgium and stored at
�80�C. A total of eighty-seven fecal samples were collected
(eighty-five from E. helvum and two from E. gambianus) from
which twenty-five pools (of one to five samples per pool) were
made based on age, sex, and location. To enrich for viral parti-
cles these pools were treated using the NetoVIR protocol
(Conceicao-Neto et al. 2015) and sequenced on the Illumina
HiSeq 2500 platform for 300 cycles (2 � 150 bp paired ends).

8.2 Genomic and phylogenetic analysis

NGS reads were analyzed as described in (Yinda et al. 2016a,b)
Briefly, after raw reads were trimmed and de novo assembled us-
ing trimmomatic and SPAdes, respectively (Bankevich et al.
2012; Bolger et al. 2014), the assembled contigs were annotated
by DIAMOND with the sensitive option using the GenBank’s
non-redundant (nr) database (Buchfink et al. 2015). From the
contigs, ORFs were identified and further analyzed for con-
served motifs identification in the amino acid sequences using
NCBI’s conserved domain database (CDD) (Marchler-Bauer et al.
2015) and/or Pfam (Finn et al. 2014). To rule out the possibility of
false positive, the presence of some of the viruses were con-
firmed on original samples by PCR (bastrovirus, CoV (66/2014/
CMR, N704-P13), densovirus (CAMBtDV2, CAMBtDV4) and RVH;
list of primers in Supplementary Table S2). Additionally, we
checked for common contigs across our NGS runs which may
indicate contamination from other samples or commercial kits
and these were excluded from the analysis. Amino acid align-
ments were used for all trees except CoV and RVH alignments
and for each of these nt alignments, a test for substitution satu-
ration was performed using Dambe (Xia 2017). Alignments of vi-
ral sequences were made with Muscle implemented in MEGA7
(Molecular Evolutionary Genetics Analysis version 7) (Kumar
et al. 2016) or MAFFT (Multiple Alignment using Fast Fourier
Transform) (for Picobirnaviridae and Partiviridae, because of the
high genetic diversity in these families) (Katoh et al. 2002). After
trimming with trimAL (Capella-Gutiérrez et al. 2009), substitu-
tion models were determined using ModelGenerator (Keane
et al. 2006) and phylogenetic trees constructed using RAxML
(Stamatakis 2014), with the autoMRE flag, which enables a pos-
teriori bootstopping analysis. All trees were visualized in
FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and midpoint
rooted for purposes of clarity. Only bootstrap values >70% are
shown except at branches and clusters including the described
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bat virus. The choice of the sequence type (nucleotide or amino
acid) for alignment and phylogenetic analysis was based on the
genetic relatedness between the novel strains and reference
strains, and the classification criteria of the viral family/genera
to which the virus strain belongs.

8.3 Codon usage bias and PCA

To find support for the hypothesis that picobirna-like viruses
possessing a genome that uses alternative codons, would infect
mitochondria, we used a codon usage bias analysis. Briefly, we
obtained PBVs, mitoviruses and mitochondria sequences that
exhibit different genetic codes (3, 4, 5, 9, 10, 13, 14, 21, and 24
[https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi])
from GenBank. From these sequences, we obtained the codon
usage bias using the codon usage tool (Stothard 2000). We ex-
cluded codons that vary between genetic codes and genetic
codes for which there is only one sequence (10, 14, 21, and 24). A
list of the accession numbers of the sequences used for PCA is
in Supplementary Table S3. PCA was performed and the figure
was created in R (R Core Team 2016) using the built-in stats and
ggplot2 (Wickham 2009) packages.

8.4 Phageome analysis

For identification of bacteriophages, scaffolds >1 kb were classi-
fied using VirSorter (decontamination mode; Roux et al. 2015).
Only scaffolds assigned to Categories 1 and 2 were considered
bacteriophage contigs and were filtered for redundancy at 95% nt
identity over 70% of the length using Cluster Genomes (Dios et al.
2014). Then, trimmed reads from each bat sample were mapped
using Bowtie 2 (Langmead and Salzberg 2012) to the bacterio-
phage contigs and the generated BAM files were filtered to re-
move reads that aligned at <95% identity using BamM (http://
ecogenomics.github.io/BamM/). Abundance tables were obtained
and normalized for total number of reads. For the richness com-
parison, Mann-Whitney tests were used and for the clustering,
an Adonis test was performed. All downstream analysis were
done in R Core Team (2016) using the vegan package (Oksanen
et al. 2017). Furthermore, to identify the potential corresponding
bacterial species of the bacteriophage contigs identified by
VirSorter, a database of this contigs was made to which a nucleo-
tide BLASTn search (100% identity without gaps) was performed
using a fasta file of CRISPR sequences (Grissa et al. 2007) as query.

8.5 Ethics approval and consent to participate

Ethical authorization for the protocol and the use of animal
samples was obtained from the Cameroon National Ethics
Committee, Yaoundé. All animal experiments were performed
in accordance with the Ministry’s National Ethics Committee
guidelines.

Data availability

All sequences were deposited in GenBank (accession numbers
are in Supplementary Table S1). Raw reads were submitted to
the NCBI’s Short Read Archive (SRA) under the project ID
PRJNA344863.
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Supplementary data are available at Virus Evolution online.
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