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Increasing efforts have been made in the last decades to increase the face validity

of Alzheimer’s disease (AD) mouse models. Main advancements have consisted in

generating AD mutations closer to those identified in humans, enhancing genetic

diversity of wild-type backgrounds, and choosing protocols much apt to reveal AD-like

cognitive dysfunctions. Nevertheless, two aspects remain less considered: the cognitive

specialization of inbred strains used as recipient backgrounds of mutations and the

heuristic importance of studying destabilization of memory circuits in pre-symptomatic

mice facing cognitive challenges. This article underscores the relevance of these

behavioral/experimental aspects by reviewing data which show that (i) inbred mice differ

in their innate predisposition to rely on episodic vs. procedural memory, which implicates

differential sensitivity to mutations aimed at disrupting temporal lobe-dependent memory,

and that (ii) investigating training-driven neural alterations in asymptomatic mutants

unveils early synaptic damage, which considerably anticipates detection of AD first signs.

Keywords: inbred mice, cognitive challenges, genetic background, AD-related mutations, cognitive profile

INTRODUCTION

The genetic bases of behavior have long been an exclusive matter of study for evolutionary
biologists intended to verify the inheritance and conservation of behavioral traits across
generations or species (Atchley and Fitch, 1993). The advent of behavioral genetics in the
first decade of the 20th century represented the first attempt to estimate the weight of
genomic variations in the expression of behavioral phenotypes (Dobzhansky, 1937; Fuller and
Thompson, 1960). In this context, the utilization of tools specific to classical genetics in
rodent populations brought to light three fundamental principles. First, complex behaviors
are influenced by a very large number of genes, but the individual effect of each gene is
very small. Second, complex behavioral traits cannot be classified into discrete categories
but are continuously distributed in a way that approximates a normal (Gaussian) curve,
with the majority of individuals around the central values of the distribution exhibiting
similar phenotypes. Third, artificial selection methods (bidirectional selection or inbreeding)
allow to generate subpopulations showing well-differentiated, sometimes opposing, phenotypes,
whereas individuals in each subpopulation exhibit a remarkable phenotypic homogeneity. These
observations highly attracted the attention of neuroscientists who identified a powerful tool in
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these methods to investigate variations in neural substrates
underlying extreme, although normal, variations in behavior.

Corollary to the demonstration that gene control behavior
is the assumption that gene dysfunctions are pathogenic for
behavior. In the late 20th century, molecular genetics made it
possible to identify mutated genes in human patients showing
a variety of diseases including those impacting cognition. The
possibility to insert those genes in the mouse genome led to
build up model organisms expected to recapitulate disease-
specific neural and behavioral hallmarks. This objective was,
however, partially achieved. Restricting our survey of the
literature to data from Alzheimer’s disease (AD) mouse models,
it is apparent that the multiplicity of genomic manipulations
aimed at overexpressing the three main human mutated proteins
(APP, Tau, and presenilin (1) separately or jointly in likewise
multiple wild-type (Wt) genetic backgrounds did not entirely
reproduce, or even failed to model, the symptoms of human
pathology. Hence, strategies to refine the face validity of
AD models have been established, with a majority of those
consisting in producing mutations closer to those observed in
patients, and with little consideration of the cognitive profile
of Wt mice, these mutations were expected to disrupt. Because
neurodegenerative processes in AD patients start to develop
in the temporal lobe, disrupt episodic and spatial memory but
preserve motor-based procedural memory (Eldridge et al., 2002),
the aim of this short review is to outline the importance of
including (i) the cognitive specialization of inbred mouse strains
used as recipient backgrounds and (ii) the choice of protocols
anticipating detection of AD first signs, among the criteria to
refine the face validity of AD mouse models.

What Is an Inbred Mouse?
Inbreeding
Inbreeding consists of mating closely related individuals (sisters
and brothers) taken from random bred populations for about
20 generations to produce a subpopulation whose members
are homozygous, that is, have the same genotype. Inbred mice
were initially generated by physiopathologists who identified
the advantage of having individuals ruling out genetic variance
and showing homogeneous traits to better circumscribe the
nature and inheritance of several pathologies. For example,
criteria of selection to start the production of inbred lines were
“predisposition to develop neoplasia” to determine if cancer
was inherited (Little, 1915), or “immunohistocompatibility
response” to estimate the best immunological markers for tissue
transplantation (Hellstrom, 1963). Incidentally, Bagg (1920)
tested various inbred strains of mice in several multiple-choice
mazes and found that the learning performance strongly varied
between strains, whereas it was remarkably homogeneous within
each strain. Later on, Vicari (1929) compared the time spent
by DBA/2 and BALBc/ inbred mice, as well as by “Japanese
Walzer” and “myencephalic bleb” mutant mice, to run a three-
unit maze and observed that maze running times were strain-
dependent. Some decades later, two seminal studies focusing on
interstrain differences in learning and memory (Dennenberg,
1959; Bovet et al., 1969) have established the bases for behavioral
genetics. Clearly, one advantage of inbreeding for neuroscientist

interested in the genetic control of learning abilities is that
no learning criterion is involved in the selection process.
Thus, possible confounders like those evoked in the case of
bidirectional selection where, for example, low and high learners
in active avoidance might simply those having low and high
pain thresholds or being less or more anxious (Río-Ȧlamos
et al., 2015), were excluded. Another issue to be considered is
that if inbred individuals are like homozygous twins, they all
exhibit the phenotype of one single random bred individual. This
means that their behavioral and neural traits are not distributed
according to a normal curve, so an inbred population is in no way
representative of a natural outbred population. As many strains
have been accurately characterized, any neuroscientist interested
in analyzing a particular behavioral or neural phenotype can
select a priori either one strain expressing the behavioral or
neural trait of interest, or several strains to be compared for
their difference relating to this specific trait. Among the most
commonly used strains, pure inbred (C57BL/6J, DBA/2J, BALB/c,
FVB/NJ, 129SvEvTac) or mixed backgrounds (B6J/SJLJ) are
predominant (Sultana et al., 2019). The DBA/2J mouse strain
is often used to contrast the C57BL/6J strain, given that their
genotype (Bottomly et al., 2011) and phenotype (Ingram and
Corfman, 1980) are opposed in several aspects.

Inbred Mice Show Task-Specific Learning and

Memory Performance
At the dawn of neuroscience, the most popular tasks performed
to investigate learning in rodents were those designed by
experimental animal behaviorists, which prevalently required to
form motor habits or stimulus–response associations, and in
which C57BL/6J mice (C57) were identified as poor learners.
Specifically, C57 performed worse than BALBc, or DBA/2J
(DBA), in the Lashley maze (Oliverio et al., 1972), the active
avoidance (Bovet et al., 1969; Oliverio et al., 1972; Weinberger
et al., 1992), and in situations of operant or instrumental
conditioning (Renzi and Sansone, 1971) in which an elemental
stimulus was used to initiate or stop responding. When O’Keefe
and Nadel (1978) and Olton et al. (1978) identified the neural
basis of spatial cognition in the hippocampal place cells, spatial
tasks like the radial armmaze and the water maze were the golden
standards to investigate cognitive functions and their alterations
in rodents, especially in view of data showing that Alzheimer’s
disease (AD) patients with temporal lobe neurodegeneration
were selectively impaired in episodic/declarative/spatial memory.
We started testing C57 and DBA mice in a radial maze
(Ammassari-Teule and Caprioli, 1985) and observed that C57
outperformedDBA, thereby reverting their previous status of bad
learners. These findings were confirmed in other spatial protocols
(Upchurch and Wehner, 1988, 1989; Passino et al., 2002) and
extended to tasks which strongly rely on the hippocampus like
reactivity to spatial novelty (Thinus-Blanc et al., 1996), contextual
fear conditioning (Stiedl et al., 1999; Ammassari-Teule et al.,
2000; Restivo et al., 2002), cross-maze place learning (Middei
et al., 2004), and, very recently, pattern separation (Dickson
and Mittleman, 2022). The C57 predisposition to do well in
hippocampus-dependent tasks then prompted several groups
to examine the structural and functional properties of their
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hippocampus. Compared to other strains, C57 were found to
show a higher density of mossy fibers in the region inferior
to the hippocampus (Barber et al., 1974; Lipp et al., 1988;
Schwegler et al., 1988), an increased activity of hippocampal, but
not cortical, protein kinase C (Wehner et al., 1990), and long-
term stronger hippocampal potentiation (Matsuyama et al., 1997;
Nguyen et al., 2000; Gerlai, 2001a; Jones et al., 2001).

Considering strain-specific levels of performance, it became
rapidly evident that a majority of tasks in which C57 performed
poorly were those in which DBA performed well, and vice versa.
Beyond their aforementioned superiority in the Lashley maze
and active avoidance, DBA mice were found to score better
than C57 in cue-based fear conditioning (Paylor et al., 1994;
Ammassari-Teule et al., 2000) and ethanol-induced conditioned
place preference (Cunningham and Shields, 2018). On the one
hand, these findings pointed out the remarkable ability of DBA
to detect relevant elemental sensory stimuli to rapidly form
stimulus–response associations in pavlovian or instrumental
conditioning paradigms, or to implement egocentric orientation
in spatial tasks. On the other hand, their inability to form
configural representations, either of the aversive context in
conditioning tasks or of distal environmental cues for allocentric
orientation in spatial tasks, was interpreted as the consequence
of the poorly functional morphological, biochemical, and plastic
properties of their hippocampus, which led to consider them
as a natural model of hippocampal dysfunction (Paylor et al.,
1993). Supporting this view, DBA mice behave randomly in the
hippocampus-dependent simultaneous olfactory discrimination
task and do not form training-induced dendritic spines in the
hippocampus (Restivo et al., 2006).

To Have, or Not to Have, an Outstandingly Functional

Hippocampus: Advantages and Limitations in

Relation to Different Memory Systems
The notion of memory systems arises from observations initially
carried out in human subjects (Cohen and Squire, 1980) and
later in rodents (Packard et al., 1989; Packard and White,
1991; McDonald and White, 1993) that different types of
memory are governed by dissociable brain substrates. For
example, episodic, declarative, spatial, or context-based memory
are supported by temporal lobe regions, among which the
hippocampus plays a central role, whereas stimulus–response
associations and procedural memory, including motor habits,
are overall controlled by the striatum. The independence of
memory systems was demonstrated by data showing that
disrupting the neural support of one system leaves unaltered
the operations supported by the other system or even improves
the preserved system by suppressing conflictual responding
(McDonald and White, 1995).

In a majority of individuals, memory systems can be activated
separately, concurrently, or sequentially, depending on the
situation to copy with. For example, in the plus maze task
(Packard and McGaugh, 1996), rodents were first trained to turn
left to find a food reward in the unique baited arm and then
exposed to probe trials in which they were released from the
opposite starting arm. In those trials, they could either reproduce
the motor response reinforced during training (turning left)

and do not go to the baited arm or invert it (turning right)
and go to the baited arm. Interestingly, the rats were found to
turn right after a short training duration (1 week), consistent
with hippocampus-based place learning, but to turn left after
long training duration (3 weeks), consistent with striatum-based
response learning. Interestingly, inactivation of the hippocampus
after short training made the rats show striatum-based motor
learning, whereas inactivation of the dorsolateral striatum after
long training made them show hippocampal-dependent place
learning. The point is that when C57 and DBA were trained
in the same plus maze task, C57 showed place learning and
predominant hippocampal activation after both short and long
training, whereas DBA never relied on a particular system even
they prevalently activated the dorsolateral striatum (Passino et al.,
2002). Indeed, the consequence of the C57 inability to disengage
the hippocampus is that inactivation of this region at any
probe trial indeed disrupts place learning but does not promote
response learning. Similarly, the consequence of the DBA/2
inability to rely on a particular system is that the inactivation of
any region at any probe trial does not promote neither place nor
response learning (Middei et al., 2004). Thus, contrary to what
happens in rats, disrupting the neural substrate of one memory
system but does not promote the utilization of another system
in these genotypes. Indeed, the C57 propensity to engage the
hippocampus in any situation they face is also observed in fear
conditioning (FC) paradigms. Specifically, studies dissecting the
neural bases of FC in outbred populations of rats have identified
(i) tone fear conditioning (TFC) as an elemental associative
learning system involving the basolateral amygdala (BLA) but not
the dorsal hippocampus (Phillips and LeDoux, 1992; Paré et al.,
2004) and (ii) contextual fear conditioning (CFC) as a configural
learning system involving by both regions (Selden et al., 1991;
Phillips and LeDoux, 1992). Different from that observed in
these populations, C57 mice were found to concurrently activate
the BLA and the dorsal hippocampus in both CTC and CFC,
although they showed considerably less freezing in TFC than
in CFC (Pignataro et al., 2013). In line with the view that
recruiting the hippocampus in TFC is an obstacle to implement
elemental stimulus–response associations, lesions to the dorsal
hippocampus were found to enhance C57 TFC performance
(Ammassari-Teule et al., 2002).

Modifications of Experimental Parameters or Rearing

Conditions Can Abolish Interstrain Differences in

Learning and Memory
The aforementioned experiments show that C57 predominantly
form configural environmental representations in which
elemental stimuli are embedded in and need to be disentangled
to predict reinforcement and guide behavior. Thus, any
manipulation of experimental factors that facilitates
disentangling is expected to enhance cue-based performance in
this mouse strain. This possibility was demonstrated in a study
in which C57 and seven other mouse strains including DBA
were trained to press a lever upon presentation of an elemental
stimulus (tone or light) to avoid delivery of an electric footshock.
DBA showed superior avoidance performance when the tone or
the light was of short duration. However, a gradual increase in the
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stimulus duration was found to progressively abolish interstrain
differences, thereby suggesting that C57 benefited for longer cue
presentation to disentangle them from the context (Renzi and
Sansone, 1971). Interestingly, Cunningham and Shields (2018)
explored more recently the possibility that the most robust
ethanol-induced conditioned place preference (CCP) shown
by DBA compared to C57 might depend on strain differences
in sensitivity to contextual cues. They found that compared to
single cueing, multiple cueing increased CCP in both strains but
that this effect disappeared more rapidly in DBA and was not
sufficient to elevate the CCP performance of C57 to the level of
DBA. They therefore concluded that CPP differences were due to
a genotype-specific sensitivity to ethanol reward. Nevertheless,
the fact that DBA mice outperform in amygdala-dependent
conditioned taste aversion, that is, a task based on the association
of a single gustatory stimulus with illness (Dudek and Fuller,
1978; Risinger and Cunningham, 1995), suggests a more global
interpretation that DBA perform better due to the stronger
BLA modulation of striatal-based elemental cue processing
(Desmedt et al., 1998; Goode et al., 2016). Other examples which
show that interstrain differences in fear conditioning vary or
persist depending on whether freezing is recorded shortly or
long after training (Nie and Abel, 2001; Balogh and Wehner,
2003) indicate that if the predominance of a memory system
determines the nature of information each strain preferentially
relies on, the time necessary to consolidate this information is
a much important variable in the modulation of the behavioral
responses. Indeed, manipulations like environmental enrichment
(EE) or physical exercise modify cognitive abilities, attention,
and anxiety in inbred mice but paradoxically exert improving
or disrupting effects depending on the duration of and the age
mice were exposed to these manipulations (Singhal et al., 2019).
Among the principally observed strain-specific effects, EE was
found to increase attention in C57 (van de Weerd et al., 2004), to
either decrease (Chapillon et al., 1999) or increase (van deWeerd
et al., 2004) anxiety in BALB/c, to reduce reactivity to novelty
in both C57 and DBA (Dickson and Mittleman, 2021), and to
accentuate C57 vs 129S6/SvEV differences in locomotor activity,
anxiety, and social interactions (Abramov et al., 2008). Thus, no
univocal, strain-independent beneficial effect of EE of behavior
was observed.

ALZHEIMER-ASSOCIATED MUTATIONS

AND GENOTYPE OF THE BACKGROUND

MOUSE

From the creation of the first transgenic mice, it clearly appeared
that controlling the characteristics of the recipient strain was
crucial to reveal or maintain expected transgene effects because
inserting a mutated gene in different mouse strains was found to
produce variable phenotypes and because it was observed in some
cases that a phenotype was progressively losing its specificity
due to non-specific mutations or uncontrolled environmental
effects, thereby preventing data reproducibility.Multiple research
groups with an expertise in mouse behavior genetics (Crusio,
1996; Gerlai, 1996, 2001b; Wehner and Silva, 1996; Crawley et al.,

1997; Wolfer and Lipp, 2000; Lassalle et al., 2008) identified such
risks and proposed several solutions.

The Same Mutated Gene in Different

Backgrounds Produces Different

Phenotypes
First-Generation Models: Mutant HAPP

Overexpression
One of the first transgenic murine models of Alzheimer’s
disease is the Tg2576 mouse developed by Hsiao et al. (1996)
which overexpresses human APP (isoform 695) containing the
double mutation K670N, M671L (Swedish mutation) under the
control of the hamster prion protein promoter. This hemizygous
mutation was originally introduced in a C57(B6)× SJL F1 hybrid
background and stabilized by repeatedly backcrossing mutant
mice with B6 × SJL F1 hybrids. The main issue addressed
at that time was confounding effects due to the insertion of
the mutated gene and those due to the transgene per se. It
was therefore proposed to backcross the transgenic lines to
one or even more inbred strains for at least three generations
before performing phenotypic characterization in F1 hybrids.
This strategy, however, revealed to be inadequate as repeated
backcrossing to inbred lines produced non-specific performance
impairments, reduced fertility, and, in some cases (FVB/N or
B6), was found to be lethal. This prompted Lassalle et al.
(2008) to insert the HuAPP695-SWE transgene in three different
backgrounds (homogeneous: C57; heterogeneous: CBAJ; and
hybrid: B6J/SJLJ) and to perform phenotyping in F1 generations
after only one generation backcrossing. Comparisons included
evaluation of anxiety in the elevated plus maze, spatial learning
in the water maze, and fear conditioning. The results showed
that Tg (+) C57 mice were globally more active and less
anxious than their Tg (-) counterparts, as well as than Tg (+)
and Tg (-) in other backgrounds. The calculation of a spatial
index in the water maze revealed that even though this index
was rather comparable between Tg (-) B6/SJL, C57, and CBA,
the genetic background significantly modulated the expression
of the transgene, with the lower spatial index being found
when the mutation was expressed in the C57 background. Fear
conditioning data did not provide evidence of differences in CFC
performance between the three Tg (+) and Tg (-) backgrounds
possibly because the experiments were carried out in 17-month-
old female mice and, hence, recruited additive effects of sex
and age to those of background and mutation. Nevertheless,
this study provided the first demonstration that the behavioral
characteristic of the recipient mouse was defining the degree of
mutation-induced cognitive impairment. After two years, Rustay
et al. (2010) compared the effect of the Swe mutation in the
B6/SJL and 129 backgrounds and reported more deleterious
effects at late ages in the 129 backgrounds for parameters that
were not properly cognitive (locomotor activity, spontaneous
alternation) and for which Tg (-) 129 were scoring lower than Tg
(-) B6/SJL. Interestingly, models in which three (APP, PS1, and
tau) or five (two APP and three PS1) familiar ADmutations were
concurrently inserted in mouse genomes were predominantly
developed in a C57 background (Sterniczuk et al., 2010; Forner
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et al., 2021; Sil et al., 2022) or hybrid backgrounds with a B6
component. Confirming the inadequacy of the DBA background
for AD mutations, insertion of the APPswe and PSEN1de9
mutated genes in DBA exacerbated lethal seizures and even
lessened amyloid deposition (Jackson et al., 2015).

Second- and Third-Generation Models: App Gene KI

Mutations
These models were generated using the App gene knock-in
strategy to overproduce pathogenic Aβ without overexpressing
APP with the objective to avoid artifacts due to APP
overexpression per se. Murine Aβ sequences (Swedish,
Beyreuther/Iberian, artic) were humanized by changing
amino acids that differ between mice and humans and then
introduced separately or concurrently to generate APPNL,
APPNL−F, or APPNL−G−F mice expressing Wt human Aβ under
control of the mouse App locus (Nilsson et al., 2014; Saito et al.,
2014). The point is that if humanized Aβ does increase the
face validity of these models as far as amyloidosis is concerned,
the consequences of App-KI manipulation on neural and
behavioral parameters do not differ much from those observed
in the first-generation transgenic models. App-KI mice show
the same increased glutamate release probability and intense
astrocytosis/gliosis around the Aβ plaques, discordant results
regarding hippocampal LTP (decreased or intact), and late
memory impairments (Nilsson et al., 2014; Baglietto-Vargas
et al., 2021; Benitez et al., 2021). Furthermore, the fact that
robust amyloidosis and its metabolic consequences took at
least 18 months to emerge has led to the development of
third-generation models, that is, double KI mutants obtained
by crossing APPNL−G−F mice with mice bearing PS1-KI (Sato
et al., 2021) to accelerate the detection of mutation effects. In
these studies, however, (i) the genetic background (until now
C57) is never mentioned in the method section of articles,
suggesting that it is per se irrelevant if the mutant mouse is
viable; (ii) the focus is predominantly placed on the pathogenic
inflammatory/metabolic cell alterations engendered by multiple
Aβ species and on the possibility to rescue them by rectifying
the mutated genomic sequences; (iii) mutation effects are
investigated separately at the neural (Jun et al., 2020) or
behavioral (Sakakibara et al., 2019; Sutoko et al., 2021) levels
and therefore do not inform on the status of neural circuits
when mice face cognitive challenges, that is, when these circuits
actually come into play.

SYSTEMS NEUROSCIENCE APPROACHES

Memory formation requires changes in neuronal network
connectivity mediated by modifications in the strength and
number of synapses. Since the discovery that synapses are
primary targets of Aβ oligomers (Selkoe, 2002), central to the
validation, an ADmouse model is the demonstration that deficits
in hippocampal-dependent memory associate with hippocampal
synaptic dysfunctions. A survey of the literature indicates
that dysfunctions including dendritic spine loss or long-term
potentiation (LTP) deficit have been identified in the majority of
ADmouse models but mostly under naive conditions. Increasing
evidence reveals, however, that studying structural, functional,

and molecular alterations which develop in the hippocampus
when animals are given memory tasks anticipates detection
of synaptic failure and unveils pathogenic or compensatory
reorganization of brain circuits, which might otherwise not be
observed in naive conditions.

Training Discloses Neural Alterations in

APP Mutants
Heterozygous B6-Tg/Thy1APP23Sdz (APP23) mice show
amyloid plaques in the hippocampus (Sturchler-Pierrat and
Staufenbiel, 2000) and severe deficits in hippocampal-dependent
tasks (Lalonde et al., 2002; Vloeberghs et al., 2006) around 12
months of age. When trained in a water maze at the age of 7
months, they swim regularly but show increased latencies and
travel a longer distance to find the submerged platform than
Wt C57 controls. Nevertheless, the fact that both groups reach
the same level of performance at the end of training indicates
that mutant mice exhibit more delay in learning than mice
with an incapability to learn. Following training, mice were
euthanized to evaluate the effect of the learning experience on
dendritic spines and synaptic activity. Spine density measured
on CA1 neuron dendrites in non-training and pseudo-training
conditions was not found to vary between mutant and Wt mice.
Differently, more spines were counted post-training in the
mutant mice, thereby indicating that circuits unaltered at rest
undergo stronger learning-induced remodeling. Indexes of basal
synaptic transmission like input–output curves and paired-pulse
facilitation were indistinguishable between genotypes in all
experimental conditions, but CA3–CA1 long-term potentiation
decayed more rapidly in the mutant mice (Middei et al., 2010).
Together, these findings allow the following conclusions to
be made. The observation that mutant mice perform same
as the Wt mice at the end of training suggests that formation
of novel synapses might compensate for the rapid decay of
synaptic plasticity.

Synaptic Compensatory Mechanisms in

2-Month-Old 3xTg-AD Mice
The 6–8-week-old 3xTg-AD mice exhibit intact synaptic
plasticity at rest. Nevertheless, differently from Wt mice,
they show increased synaptic depression when their synaptic
homeostasis is altered by suppression of ryanodine receptor
(RyR)-evoked calcium signaling. The authors hypothesize that
in baseline conditions, 3xTg-AD mice exhibit increased activity
of this receptor which, by augmenting RyR-evoked calcium
release, blocks the predisposition of mutant synapses to exhibit
long-term depression (Chakroborty et al., 2012). The authors
successively demonstrate that compensatory maintenance of
synaptic plasticity is mediated by an augmentation of nitric oxide
levels, a presynaptic regulator of calcium release which increases
glutamatergic transmission (Chakroborty et al., 2015). Although
this study does not examine the functional consequences of
Ry-R manipulations in vivo, these data support the relevance
of detecting compensatory synaptic changes in presymptomatic
AD mice to be targeted by pharmacological approaches aimed to
prolong them over time.
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Training Experience Reveals Neural

Compensation in Pre-Symptomatic APP

Mutants
Tg2576 mice and their Wt C57 controls trained for CFC at the
age of 2 months show the same reactivity to footshocks and
exhibit immediate c-fos activation in the dorsal CA1 region of the
hippocampus and the basolateral region of the amygdala (BLA).
When returned 24 h later to the safe training context, all mice
show intense freezing, but differently fromWtmice, mutant mice
do not exhibit any sign of c-fos activation or dendritic spine
remodeling in CA1, instead they show c-fos overactivation and
dendritic spine remodeling in BLA, in line with the view that the
latter region compensates for hippocampus failure and sustains
their intact CFC performance. Examination of Aβ levels 24 h after
CFC in the mutant mice non-returned to the conditioning cage
indicates a selective increase in Aβ42 oligomers in CA1 but not
BLA. This is shown by Western blot analyses using the amino-
terminal specific anti-Aβ42 antibody AD54D2 and the carboxy-
terminal specific anti-Aβ42 antibody (clone 295F2), as well as
by immunofluorescent detection of Aβ using the D54D2 and
the carboxy-terminal specific antibody 12F4. In the Wt mice,
the Aβ42 signal is about undetectable in both regions at rest,
and no rise is observed following CFC. Thus, CFC learning
triggers immediate release of Aβ species in the hippocampus
of cognitively asymptomatic Tg2576 mutants (Pignataro et al.,
2019). Validation of a causal link between the CFC-induced
Aβ rise and absence of hippocampus activation/remodeling
in cognitively asymptomatic Tg2576 mice comes from data
which show that CFC-trained mutant mice receiving intra-
hippocampus injections of DAPT, a gamma secretase inhibitor
which reduced Aβ levels, show regular formation of hippocampal
spines with no longer compensatory formation of spines the
BLA. Therefore, this is the first study to provide evidence of
neural compensation consisting of enhanced synaptic activity
in brain regions spared by Aβ load. Furthermore, it unravels
an activity-mediated mechanism by which neuronal activation
produced during CFC encoding triggers Aβ oligomerization
in the hippocampus and prevents synaptic rearrangements in
this region. Indeed, the observation that learning activates
compensatory circuits allowing mutant mice to maintain an
intact memory delineates entirely novel therapeutic avenues in
the AD field. Considering that “compensatory circuits” recruit
regions unaffected by Aβ load, their stimulation might be more
beneficial to prolong cognitive efficiency than stimulation of
disrupted “canonical circuits.”

CONCLUSION

Is There an Ideal Background for

Overexpressing Mutant APP?
Although it may appear trivial, the first requirement for the
recipient background of an APPmutation is to exhibit sufficiently
elevated episodic memory capacities likely to be significantly
altered by the mutation. At the first sight, B6 mice appear
appropriate given their optimal episodic memory scores, even
though their outstandingly functional hippocampus is a priori
not representative of the natural genetic heterogeneity of AD

patients and even represents an obstacle to the natural evolution
toward procedural memory (Passino et al., 2002) which becomes
rapidly predominant in AD patients (Eldridge et al., 2002) and
AD rat models (Ammassari-Teule et al., 2002). This limitation,
however, is not fully overcome by inserting mutations in mixed
backgrounds. For example, expression of APPswe in B6/SJL
mice generates fivemutant phenotypes (black, white-belly agouti,
albino, tan with pink eyes, and silver with pink eyes), with
the three later ones showing poor contextual memory due to
vision problem. These observations highlight the importance of
controlling the sensory phenotype of strains and substrains of
mice, which can result in the loss of function (deafness, Zheng
et al., 1999; blindness, Brown and Wong, 2007), as well as a gain
of function (resistance to noise-induced hearing loss, Street et al.,
2014; enhancement of olfactory conditioning in mice with vision
defects, Brown and Wong, 2007).

The second requirement is to choose a strain showing a
cognitive, even mild, deficit at a sufficient early age to have
the performance of the wild-type counterpart unaffected by
aging. Apparently, C57 mice align again with this criterion. For
example, Tg2576 in a C57 background shows a CFC deficit
associated with a decrease in hippocampal spines (D’Amelio
et al., 2011) and the presence of Aβ oligomers already at 3 months
of age (Pignataro et al., 2019), whereas the Tg2576 mutation in a
B6/SJL background is still considered as a late AD model.

In addition, these observations raise another equally
important question, namely, the choice of experimental
protocols allowing to anticipate neural dysfunctions at a stage
where no, or mild, cognitive impairment is observed to start
therapies when maximal effectiveness can be expected.

Alternative Strategies: Incorporating

Genetic Diversity Into Mouse Models of AD
The fact that inbred mouse strains do not reflect the phenotypic
variability observed in natural populations limits a priori the face
validity of AD models. One strategy alternative to the insertion
of human-like mutations in a single genome is increasing the
genetic diversity of recipient mouse backgrounds to generate
well-differentiated phenotypes carrying the same mutation.
For example, Onos et al. (2019) B6 mice expressing APPswe
and PS1de9 (APP/PS1) transgenes were backcrossed for six
generations with three wild-derived strains (CAST/EiJ, WSB/EiJ,
and PWK/PhJ). As expected, they obtained large phenotypic
differences between mice substrains as far as cognitive ability,
neurodegeneration, plaque load, cerebrovascular health, and
cerebral amyloid angiopathy were concerned. Transcriptional
analyses revealed, however, that the “strain” factor was the
largest source of variation suggesting a potential risk of
this breeding method, that is, the possibility that wild-type
genomes include AD risk genes. For example, crossing B6 males
with deletion of Cacna1c and Tcf7l2 genes associated with
multiple psychiatric diseases with wild-type females from 30
inbred laboratory strains resulted in highly variable, sometimes
opposing, effects (Sittig et al., 2016). Thus, if the translatability
of data obtained by studying mutations in one single inbred
genotype is limited, highly diversified backgrounds require
careful genotypic/phenotypic characterization prior to insertion
of mutations. With the same objective of differentiating AD
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phenotypes, the utilization of recombinant inbred (RI) strains
overcame issues relating to unknown wild-type-derived genomes
since they were established to detect gene segregation and
linkage and for identifying associations between behavior and
quantitative trait loci (QTL) accounting for variations in behavior
(Plomin et al., 1994). RI strains were obtained by crossing
two inbred parental strains (e.g., B6JxDJ) giving raise to
F1 or F2 generations maintained under a strict inbreeding
regimen. After at least 20 generations, individuals in each
RI lines were found to be genetically homogeneous, whereas
families of RI lines exhibited genetic diversity. Mapping of
quantitative trait loci with small or very large effects allowed
to build up genetic reference panels providing databases on
genotypes x phenotype interactions (Peirce et al., 2004). Taking
advantage of these databases, Neuner et al. (2019) created
the AD-BXD panel of transgenic mouse strains. This panel
was established by crossing 5xFAD female mice to male mice
from the BJxDJ genetic reference panel until 27 F1 AD-BxD
strains were generated. The 5xFAD mutation being hemizygous,
half of mice carried no transgene and served as isogenic
control for mutations. This method considerably extended AD

phenotypes for traits including “age onset of symptoms” and

“acceleration of memory decline” but also allowed to identify
variations in genes regulation. Specifically, the expression of
genes controlling neural activity, structure, and function was
decreased, whereas the expression of immune response genes
was increased. This approach appears undeniably insightful
for personalized medicine if followed by systems neuroscience
analyses estimating structure–function relationships in the subset
of strains of interest for the trait under examination (e.g.,
early vs. late AD onset, abrupt vs. progressive emergence of
cognitive alterations).
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