
Robust Regression Analysis of Copy Number Variation
Data based on a Univariate Score
Glen A. Satten1*, Andrew S. Allen2, Morna Ikeda3, Jennifer G. Mulle3,4, Stephen T. Warren4

1 Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, 2 Department of Biostatistics and Bioinformatics

and Duke Clinical Research Institute, Duke University, Durham, North Carolina, United States of America, 3 Department of Human Genetics, Emory University, Atlanta,

Georgia, United States of America, 4 Department of Epidemiology, Emory University, Atlanta, Georgia, United States of America

Abstract

Motivation: The discovery that copy number variants (CNVs) are widespread in the human genome has motivated
development of numerous algorithms that attempt to detect CNVs from intensity data. However, all approaches are
plagued by high false discovery rates. Further, because CNVs are characterized by two dimensions (length and intensity) it is
unclear how to order called CNVs to prioritize experimental validation.

Results: We developed a univariate score that correlates with the likelihood that a CNV is true. This score can be used to
order CNV calls in such a way that calls having larger scores are more likely to overlap a true CNV. We developed cnv.beast, a
computationally efficient algorithm for calling CNVs that uses robust backward elimination regression to keep CNV calls
with scores that exceed a user-defined threshold. Using an independent dataset that was measured using a different
platform, we validated our score and showed that our approach performed better than six other currently-available
methods.
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Introduction

In any procedure for calling CNVs, there will be false positive

calls made. While it may seem clear that CNV calls that are longer

and/or feature a larger change in log intensity ratio (LIR) are

more likely to be validated, it is not clear how to combine length

and LIR information into a single measure that can be used to

rank CNV calls. Optimally, such a measure would correlate with

the chance that a CNV would be experimentally validated. All

current methods of calling CNVs are in some way based on

statistical information, e.g. based on a p-value for a hypothesis test

or a posterior probability from a Bayesian model, to determine

whether a series of adjacent probes should be considered a CNV.

It is not clear a priori that statistical information is the best predictor

of whether a CNV will validate, and assessing this proposition is

the first goal of our paper.

To develop a univariate measure that predicts experimental

validation, we introduce a family of scores of the form mma, where

m is a measure of CNV intensity and m is a measure of CNV

length. We choose the exponent a so that the resulting score is the

best predictor of experimental validation. We made this choice

using data on log intensity ratios (LIRs) measured using a

Nimblegen array comparative genome hybridization (aCGH)

platform, with calls made by the Nimblescan software. For a

subset of 111 putative CNVs, we used gel electrophoresis of PCR

products to determine which calls corresponded to true CNVs.

Because our score is chosen to correlate with the chance a CNV

is validated, we wanted to make calls based on this score; in

particular, we wanted a fast, easy-to-use algorithm that would call

CNVs based on their score, keeping those that exceed a user-

specified minimum score. To this end, we developed cnv.beast

(backward elimination algorithm with score-based threshold), a

novel regression-based computationally-efficient algorithm for

calling CNVs.

Although there are numerous algorithms now available for

finding CNVs from either array or gene-chip data, few are based

on regression. The majority are either change-point algorithms

(e.g., circular binary segmentation analysis and its variants) or

hidden Markov models (e.g., PennCNV, [1]). We prefer regression

to change-point analysis because regression is simple and easily

implemented, while change-point analysis is difficult. We prefer

regression to hidden variables models because of computational

efficiency, and also because hidden variables models require

parametric assumptions that are unlikely to be true. In particular,

the assumption of independent errors made in a hidden variables

model is untrue for high-density data; the effect of assuming

independent errors when errors are actually correlated is to

underestimate the null probability that a run of adjacent values are

elevated, a potentially serious error when trying to call CNVs.
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Additional methods for calling CNVs include wavelet-based

methods [2], smoothing approaches [3], and hierarchical cluster-

ing [4]. Additional approaches are described by [5] and [6].

Three regression-based algorithms for finding CNVs are

currently available: GLAD [7], a 1-dimensional version of a

smoothing-based non-parametric regression approach developed

for analyzing 2-dimensional images, and two approaches based on

the Lasso [8], [9]. In our experience, the parameters for GLAD

are hard to tune and do not have simple interpretations; further,

GLAD is computationally intensive. The Lasso-based approach

also has several drawbacks. First, the choice of smoothing

parameters can be ad-hoc [8] or complex [9], leading to

limitations on the number of probes that can be fit [5]. Further,

it is not clear that the global optimization criterion used by the

lasso corresponds to a good choice of CNVs. For example, small

shifts in intensity over a large number of probes may be selected by

the lasso but are unlikely to correspond to CNVs. Thus we seek an

algorithm tailored to the problem of CNV detection.

The remainder of the paper is organized as follows. We first

analyze a set of experimentally-validated calls made using

Nimblegen data on the X-chromosome to determine a score

function that correlates with the chance that a called CNV

overlaps with a true CNV. We then develop cnv.beast, a novel

backward-elimination regression algorithm that keeps CNVs

having scores that exceed a user-defined threshold. Finally, we

validate our approach by using data on deletions in eight Hapmap

samples that have been experimentally determined [10]. Ely [5]

compared the ability of six previously-published methods to use

data from the Illumina 1M chip to detect the CNVs found by

Kidd et al. [10]. By analyzing these data with our algorithm, we

can assess the performance of our approach relative to existing

algorithms for calling CNVs.

Ordering CNVs by a Score that Predicts Validation
We assume that the observed data comprise the log-intensity

ratio (LIR) values at a series of probes having known position in

the genome, either from an aCGH experiment or from

quantitative intensity data from a genotyping platform (i.e.,

Illumina or Affymetrix), compared to a reference population.

Suppose that from these data, a set of putative CNVs have been

proposed. For each called CNV, let m denote a measure of the

‘length’ of the CNV (here we use the number of probes that

comprise the CNV) and let m denote a measure of the intensity or

‘height’ of a CNV (here we use the absolute value of the median

LIR across probes that comprise the CNV). We seek a univariate

score of the form mma to assign each putative CNV. The choice

a~1=2 corresponds to statistical information [6], in that a

statistical hypothesis test (e.g., a t-test) of whether the intensities

of the probes comprising the CNV are significantly different from

zero would be proportional to mm1=2. We wish to choose a so that

high-scoring CNVs have a greater chance of being validated (true).

To choose the value of a for the score, we used data on copy

number variation on the X chromosome for 41 human males

whose DNA is available through the Autism Genetics Resource

Exchange (AGRE) [11]. The copy number status of each

individual’s X chromosome was queried using three non-

overlapping but contiguous Nimblegen comparative genome

hybridization (CGH) sub-arrays. Each sub-array had approxi-

mately 700,000 probes, so that a LIR was measured at 2,020,823

probes on the X chromosome for each individual. The X

chromosome sequence was repeat masked and the PAR1 and

PAR2 regions were removed prior to probe selection. This

resulted in an average intermarker distance of 50 base pairs or 20

probes/kilobase.

Copy number variants were called using the NimbleScan (NS)

software package version 2.4, an implementation of circular binary

segmentation analysis, distributed by Nimblegen. Each sub-array

was analyzed separately. Data from non-unique probes as well as

data from approximately 5% of poorly-behaving probes having

unusually large variance was discarded. Spatial correction and

normalization were performed using NS, then segment boundaries

were determined using the default parameters (no minimum

difference in LIR that segments must exhibit before they are

identified as separate segments; two or more adjacent probes

required to call a change in LIR; maximum stringency for

selecting initial segment boundaries).

The NS package gives a list of segment boundaries; because

change in LIR across boundaries may be negligible, segment

boundaries do not necessarily correspond to CNVs. We selected as

CNVs those segments for which the absolute value of the mean

LIR was greater than the absolute value of the sum of the mean

LIR for the sub-array LIR plus one standard deviation. To identify

a parsimonious set of segments for validation, CNVs were merged

if their endpoints were within 3kB and if their mean LIRs had the

same sign. The LIR of the merged CNV was taken to be the

Figure 1. Logistic discrimination functions for Nimblegen X-
chromosome data corresponding to optimal score (a = 0.44,
solid line) and statistical information score (a = 0.5, dashed
line). Triangles correspond to true positives, ellipses to false positives.
doi:10.1371/journal.pone.0086272.g001

Table 1. Choice of Parameters in Cutoff Function.

Parameter Default Value

mmin 6

mmax 30

mmin 0.25

a 0.5

doi:10.1371/journal.pone.0086272.t001

Robust Regression Analysis of CNV Data

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e86272



weighted average of the unmerged LIRs, weighted by the number

of probes. Finally, to increase reliability, CNVs were only called if

the probe density was greater than 9 probes/kB (i.e., slightly less

than half of the average probe density for these data, 20 probes/

kB).

Using Nimblescan as described above, we obtained 414 putative

CNVs. Experimental determination of validation status using PCR

amplification followed by gel electrophoresis was successfully

completed for 111 putative CNVs called among 41 persons. For

generalizability to multiple platforms, we quantile normalized the

LIR data before further analysis. Based on examination of both

the X-chromosome data described above and data from Affyme-

trix arrays (data not shown), we chose to quantile normalize to a t

distribution with 5 degrees of freedom, scaled so that the median

absolute deviation (MAD) was 0.2. For each called CNV we

counted the number of probes m and took the intensity m to be the

absolute value of the median LIR for the quantile-normalized

data.

We fit a logistic regression model with validation status (V = 1 if

validated, V = 0 if not) as the outcome, using the log of the absolute

intensity ln(m) and the log of the number of probes ln(m) as

predictor variables, i.e.

ln
Pr½V~1jm,m�
Pr½V~0jm,m�~a1za2 ln (m)za3 ln (m) ð1Þ

CNVs found in the same individual as well as overlapping

CNVs found in multiple individuals were treated as independent

when fitting this model. The region of m and m values where V = 0

is more likely and the region of m and m values where V = 1 is more

likely is separated by the decision boundary where

Pr½V~1jm,m�~ Pr½V~0jm,m�, which corresponds to the line

ln (m)~{
a1

a3

{
a2

a3

ln (m) ð2Þ

Note that for any scoring function of the form S~mma,

contours of constant score are also straight lines of the form (2)

with
a1

a3

~{ ln (S) and
a2

a3

~a. Scoring based on statistical

information thus corresponds to
a2

a3

~
1

2
.

By fitting the logistic model, we found
âa2

âa3
~0:44 and that a 95%

confidence interval for
âa2

âa3
obtained using the delta method (on the

log scale) was (0.32, 0.59). Figure 1 shows a plot of validation status

by ln(m) and ln(m), with the logistic regression discrimination

function (2). Visual examination of Figure 1 suggests that a scoring

function of the form mma is valid, as the proportion of validated

CNVs increases perpendicular to lines of constant score. Note that

the choice a~
1

2
lies in the confidence interval for a and is thus

consistent with these data. In Figure 1 we also plot the

discrimination function obtained by fitting model (1) subject to

the restriction
âa2

âa3
~

1

2
. Visual examination of Figure 1 shows that

the restricted model predicts experimental validation almost as

well as the unrestricted model. Thus, statistical information as

measured by mm
1=2 correlates with experimental validation, and

for all subsequent analyses in this paper, we used the choice a~
1

2
.

A Regression Approach to CNV Calling using a Backward
Elimination Algorithm with a Score-based Threshold

We describe cnv.beast, a novel backward elimination algorithm

for regression analysis of CNV data that is based on the availability

of a univariate score function for ordering CNVs. The algorithm is

based on a regression model in which LIR data from an individual

is regressed on a series of step functions having jumps at each

probe. We treat each step function (jump) as a CNV (with length

given by the distance to the nearest jump and height given by the

change in predicted magnitude) so that a score for each term can

be calculated. Then, the algorithm implements backward elimi-

nation until each term in the regression model has a score higher

than a user-specified cutoff S*, while also eliminating CNVs that

contain fewer than mmin probes or have intensity less than mmin. Any

univariate scoring function can be used; here we use mma with

a~
1

2
.

Figure 2. Illustration of situation where removed jump does
not have smallest value of d. As illustrated, we would remove the
probe at k2 rather than the probe at k1, and then the probe at k4 rather
than the probe at k3 even though d1vd2 and d3vd4 The solid
horizontal line corresponds to a log-intensity ratio of 0.
doi:10.1371/journal.pone.0086272.g002

Figure 3. Illustration of cleanup step. As the backward elimination
step has terminated, each jump is larger than the appropriate cutoff. At
the start of the cleanup step, S(k1) and S(k3) would be set to zero,
decreasing b(k3) ~j jS(k4){S(k3)j j and hence making it a candidate for
removal if it becomes smaller than the appropriate cutoff.
doi:10.1371/journal.pone.0086272.g003
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We use backward elimination to avoid masking. Masking occurs

in forward selection algorithms when a term that would

correspond to one boundary of a CNV is not entered into the

model because the term that corresponds to that CNVs other

boundary is not yet in the model. For example, a CNV comprised

of probes 80–120 would be described by two terms in equation (3):

b(k79)I ½iwk79� and b(k120)I ½iwk120�. A forward selection algo-

rithm that adds these terms one at a time may find that neither

term should be added by itself. By using backward elimination,

and by starting with a possible term at each probe, we hope to

avoid masking.

We advocate quantile normalization of the log intensity ratios

even if the numerator and denominator have already been

normalized, so that the same cutoffs can be used for all datasets. As

described previously, we normalized to a student t distribution

with 5 degrees of freedom, scaled so that the median absolute

deviation was 0.2. We made this choice so that our cutoffs for

quantile normalized data could also be reasonably applied to

untransformed data if necessary.

Regression Analysis of CNV Data
Let yi,i~1, � � � ,N denote the log intensity ratio for data on N

probes from a single chromosome or chromosomal subregion for a

single individual. The goal of our analysis is to fit step functions to

the yis to determine the locations of the jumps (places where the

copy number may change) and the magnitude of these changes.

We assume that the (normalized or centered) yi can be described

using the model

yi~
XJ{1

j~1

b(kj)I ½iwkj �zei ð3Þ

where kj is the location (probe number) of the jth of J change

points, b(kj) is the change in log intensity ratio between probe kj

and kj+1 and I ½iwk�~1 if i.k and 0 otherwise. Our goal is to

select the change points kj and the values b(kj). We denote the

resulting step function fit to the data yi by

S(t)~
XJ{1

j~1

b(kj)I ½twkj �, k1 v t v kJ

While it is possible to determine fit by using least squares, i.e. by

minimizing

yi~
XJ{1

j~1

b(kj)I ½iwkj �
 !2

, ð4Þ

we instead propose a robust regression approach that minimizes

yi~
XJ{1

j~1

b(kj)I ½iwkj �
�����

�����, ð5Þ

which is robust to isolated large values that are present in CNV

data even after quantile normalization.

When J~N and consequently kj~j, the model is saturated and

has (N{1) jumps (i.e., takes a different value between each probe).

This model is clearly over-fit. When using least squares, one

approach to thinning the set of jumps is to use the Lasso, which

corresponds to minimizing the saturated model (4) subject to the

constraint that
PJ{1

j~1

b(j)j jƒl for some appropriately chosen

smoothing parameter l [2], [9]. Here we adopt a different

approach which is specifically tailored to the CNV problem, is

computationally efficient when using (5), and features a novel

backward-elimination algorithm that allows control of the

intensity, length and score of CNVs that are detected.

Our backward elimination algorithm begins with the saturated

model (J~N) having N{1 terms, and removes one term from (3)

at each step. Thus, at the beginning of the rth step, there are N{r

terms in the model; we denote the probes that are in the model at

the start of the rth step by k
(r)
1 ,k

(r)
2 , � � � ,k(r)

N{r. At each step, we

remove a single jump, i.e. we remove a single value k
(r)
j from the

set of jumps.

Backward elimination is facilitated by the following observa-

tions. First, the values of b(j) that minimize either (4) or (5) for the

saturated model are

b̂b(j)~yjz1{yj ,

so that the saturated model can be easily fit. Second, at the rth step

of backward elimination, the least-squares estimator of b̂b(k
(r)
j ) is

b̂b(kj)~
1

k
(r)
jz1{k

(r)
j

 ! Xk(r)
jz1

i~k
(r)
j

z1

yi{
1

k
(r)
j {k

(r)
j{1

 ! Xk(r)
j

i~k
(r)
j{1

z1

yi,

while the L1 estimator of b̂b(k
(r)
j ) is

b̂b(kj)

~ median yi,k
(r)
j viƒk

(r)
jz1

n o
{median yi,k

(r)
j{1viƒk

(r)
j

n oð6Þ
Importantly, note that removing a term from (3), say k

(r)
j� , only

affects the values of b̂b k
(r)
j�{1

� �
and b̂b k

(r)
j�z1

� �
. As a result,

backward elimination can be carried out very efficiently; for each

term removed it is only necessary to update the two adjacent

coefficients.

Backward Elimination using a Score-Based Threshold
Algorithm, and the Cutoff Function

We now describe how we choose which jumps to eliminate so

that only CNVs having ‘large’ scores are retained. We define the

‘gap’ between the probe k
(r)
j and the nearest probes remaining in

Table 2. CNV.BEAST calls and Validation Status.

Validation Detected by CNV.BEAST

Status: Yes No

True 38 6

False 50 17

doi:10.1371/journal.pone.0086272.t002
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the model (i.e., probes for which b k
(r)
j

� �
=0) to be

g
(r)
j ~ min k

(r)
j {k

(r)
j{1,k

(r)
jz1{k

(r)
j

� �
with the convention that

k
(r)
N{rz1~N and k

(r)
0 ~1. Thus, the gj is simply the distance to

the nearest jump. We wish to eliminate terms for which the change

in intensity is ‘small,’ considering the size of the gap. Noting that

b(kj) is the magnitude of the change in intensity at probe kj, we

therefore wish to keep the jump at kj only if the score b(kj)
�� ��ga

j is

‘large.’ This suggests that we keep terms for which

b(kj)
�� ��§ D

ga
j

,

for some value D. However, we also wish to ensure that all CNVs

that are kept are comprised of at least mmin probes. To avoid jumps

of very small magnitude that involve many probes, we also require

that CNVs comprised of more than mmax probes also have intensity

larger than mmin. To accomplish all of these goals, we replace the

cutoff D=ga
j by the cutoff function C(g), defined by

C(g)~

M, g v mmin

mminma
max

ga
, mmin ƒ gvmmax

mmin, mmax ƒ g

8>><
>>:

where M is some very large number (say, 1016) that is much larger

than the absolute value of the largest log intensity ratio in the data.

The ‘default’ values of the parameters mmin, mmax and mmin were

selected based on our experience with our algorithm, and are

given in Table 1. Users may vary these parameters in our software

implementation, if they so desire.

Having chosen the form of the cutoff function C(g), we take as

the goal of our algorithm that, at termination, we should have

b(k
(r)
j )

��� ���§C g
(r)
j

� �
ð7Þ

for all terms remaining in the model. To this end, we define

Figure 4. Logistic discrimination functions for Illumina Hapmap data corresponding to optimal score (a = 0.59, solid line) and
statistical information score (a = 0.5, dashed line). Triangles correspond to true positives, ellipses to false positives.
doi:10.1371/journal.pone.0086272.g004

Table 3. Comparison of Sensitivity and FDR.

Method # of calls Sensitivity1
# of calls
.6kbp FDR2

Circular Binary
Segmentation

315 0.218 104 0.788

Hidden Markov
Model

20,226 0.287 1,081 0.957

Segmentation/
Cluster

837 0.208 55 0.691

Wavelet-based
Segmentation

13,665 0.198 187 0.840

Fused Lasso 655 0.248 130 0.808

Robust
Smoothing

37 0.059 29 0.690

CNV.BEAST 195 0.299 167 0.826

1Sensitivity is the number of true deletions that overlap at least partially with a
called deletion, divided by the number of true deletions.
2FDR is the number of called deletions that do not overlap even partially with a
true deletion, divided by the number of called deletions.
doi:10.1371/journal.pone.0086272.t003
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d(r)
j ~ b(k

(r)
j )

��� ���{C g
(r)
j

� �
;

note that d
(r)
j v0 if the jump at k

(r)
j violates (7) and d

(r)
j §0

otherwise. Thus, in general, we choose to remove the jump at k
(r)
j�

that corresponds to the smallest (i.e., the most negative) value of

d(r)
j . When k

(r)
j� is removed, b k

(r)
j�{1

� �
, b k

(r)
j�z1

� �
, g

(r)
j�{1, g

(r)
j�z1,

d(r)
j�{1, and d(r)

j�z1 are updated, concluding the rth step of the

algorithm. The algorithm is terminated at the first step r* for which

d
(r�)
j §0 for 1ƒjvr�{1, at which point all remaining jumps

satisfy (7).

Our backward elimination algorithm can be efficiently executed

with a single pass through a sorted list of the values of d
(r)
j . After

each step, there are only three values of d(r)
j that are out of order;

d
(r)
j�{1, d

(r)
j� and d

(r)
j�z1 so that it is easy to update the list of sorted

values of d
(r)
j required for subsequent steps of the algorithm.

Alternative Selection Criterion for Adjacent Jumps in the
Same Direction

As described above, we choose to remove the jump at k
(r)
j� that

corresponds to the smallest (most negative) value of d
(r)
j . In some

situations, as illustrated in Figure 2, this is unwise. Note that for

this situation, b(k2):S(k3){S(k2)w b(k1):S(k2){S(k1)w
while g1~g2 (because the probes at k1 and k2 are each their

closest neighbors) so that d1vd2, suggesting that we remove k2

before k1. Similarly, we may be tempted to remove k3 before k4.

However, this may under-estimate the true length of the CNV.

Worse, if the (remaining) jumps at k2 and k3 satisfy k3{k2ƒmmin,

they will be removed and a CNV will not be called. Thus,

whenever two adjacent jumps occur in the same direction that take

S(k) further from zero, the first jump will be kept in preference to

the second (even if d for the first jump is smaller than the second).

Similarly, whenever two adjacent jumps occur in the same

direction that result in S(k) being moved closer to zero, the second

jump will be kept in preference to the first (even if d for the second

jump is smaller than the first). Formally, these conditions can be

stated as follows. When considering whether to remove a probe at

position k
(r)
j , we instead remove the probe at position k

(r)
jz1 if: (1)

b k
(r)
j

� �
b k

(r)
jz1

� �
w0, (2) k

(r)
j {k

(r)
j{1wmmin and k

(r)
jz1{k

(r)
j ƒmmin,

and (3) S k
(r)
jz2

� ���� ���w S k
(r)
j

� ���� ��� Similarly, when considering

whether to remove a probe at position k
(r)
j , we instead remove

the probe at position k
(r)
j{1 if: (1) b k

(r)
j{1

� �
b k

(r)
j

� �
w0, (2)

k
(r)
j {k

(r)
j{1ƒmmin and k

(r)
jz1{k

(r)
j wmmin, and (3) S k

(r)
jz1

� ���� ���w
S k

(r)
j{1

� ���� ���.
Overlapping Blocks for Large Probesets

Although our algorithm is computationally efficient, calculating

medians for large numbers of probes between CNVs slows the

algorithm as the number of probes N increases. To handle datasets

with large numbers (,200,000) of probes, we have developed a

variant of our algorithm that breaks the calculation into

overlapping blocks of M probes. The mth such block comprises

data yi on probes
(m{1)M

2
z1ƒiƒ

(mz1)M

2
for 1ƒmƒ

2N

m
{1; a final block comprising data yi on probes

N{Mz1ƒiƒN is also used. The algorithm described above

is then implemented on each block. Then, the algorithm is

restarted using data yi on all probes, but only allowing terms into

model (3) that were retained in at least one of the block analyses.

When M is sufficiently large (50,000 probes) we have observed

negligible difference in the output of the block and standard

versions of our algorithm. We analyzed data on chromosome 2

from 104 individuals, each data set having 148,812 probes, and

found no differences in output when using 50,000 (corresponding

to 5 blocks) and the analysis done in a single block. The block

algorithm can substantially reduce the run time for large N. For

example, an analysis of 700,000+ probes that took 9K minutes,

when run as a single block, completed in 1K minutes when run

using 15 blocks of 50,000 probes, with identical results. Timings

are for a core duo laptop with a 2.53 GHz clock speed and 3 GB

RAM.

Figure 5. Empirical FDR for calls longer than 6000 base pairs, Hapmap data.
doi:10.1371/journal.pone.0086272.g005
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The Cleanup Step
At the termination of the algorithm just described (either with or

without the use of blocks), the log-intensity ratios predicted by (3)

form a step function in which each jump is ‘large enough’

compared with the gap between adjacent retained probes to satisfy

our model selection criterion (7). However, because we have not

required that the predicted log-intensity ratio return to zero

between adjacent CNVs, it can occur that the predicted intensity

between probes is actually less than mmin (see Figure 3). Thus, once

the algorithm has terminated, we implement a ‘cleanup step’ in

which we re-start the backward elimination (treating the entire

data as a single block) with the requirement that all predicted

values be either zero or greater than mmin. This corresponds to

replacing (6) with

b̂b(kj)~h median yi, k
(r)
j viƒk

(r)
jz1

n o
; mmin

� �
{h median yi, k

(r)
j{1viƒk

(r)
j

n o
; mmin

� �
where h(x ; mmin)~x if xj j§mmin and 0 otherwise.

Finally, even after the cleanup step, some regions may have

several jumps before returning to zero. Typically, this occurs for

long CNVs. When the predicted LIR has the same sign over the

entire region, we use the average intensity over the region,

weighted by the number of probes. In those rare cases where a sign

change occurs, we consider the probe at which the sign changes to

be a boundary between two (adjacent) CNVs. Thus, if a region has

first positive and then negative LIR values, we could consider that

two CNVs are adjacent; if this occurs, we separately average the

predicted intensities over any jumps occurring in regions where

the LIR was positive and negative. Scores are then calculated

using the length of the region and the averaged intensity.

Validation using Experimentally Verified Samples
We first applied our algorithm to the Nimblegen data that we

used previously to determine the score exponent a. Here our goal

is to compare the quality of the calls made by Nimblescan to those

made by cnv.beast. Of the 111 Nimblescan calls that we have

determined validation status experimentally, 44 were found to be

true. Using the parameter values in Table 1, cnv.beast detected 88

of the 111 calls; however, of the 23 calls missed by cnv.beast, 17

(74%) failed to experimentally validate (see Table 2). Overall,

cnv.beast made 638 calls compared with 414 calls made using our

filtering of the calls made by Nimblescan.

To assess the performance of our approach in an independent

dataset, we analyzed Illumina 1M data from eight Hapmap

participants. Deletions among these individuals were determined

experimentally by Kidd et al. [10] using fosmid-ESP with

additional confirmation by a second method. Deletions in these

data were also called by Ely [5] using six CNV-calling programs,

allowing us to compare the performance of cnv.beast with

previously-existing methods. The methods chosen (and the names

of the R packages used) were circular binary segmentation analysis

[12] (DNAcopy), hidden Markov partitioning [13] (aCGH),

segmentation-clustering [14] (segclust), wavelet segmentation [2]

(waveslim), fused lasso segmentation [9] (FLasso), and robust

smooth segmentation [3] (smoothseg). The last three methods also

utilized the R package ‘cluster’.

We first validated that our choice of CNV score was predictive

of validation in these data by fitting the logistic regression model

(1) to quantile-normalized data. We found good agreement between

the exponent we obtained using Nimblegen X-chromosome data

and the Illumina data; the estimated exponent was 0.59 with

95% confidence interval (0.34, 1.04). In Figure 4 we compare

the best-fitting logistic model to the case a~
1

2
. Comparing

Figure 4 with Figure 1, we note the higher proportion of false

positive calls due to the exhaustive enumeration of deletions in

these data compared with the more selective approach taken in the

Nimblegen data.

Cnv.beast performed well when compared to the six methods

considered by Ely (see Table 3). Details of the implementation of

these six methods in these data can be found in Ely (2009). We

note first that our algorithm processed data from all eight

individuals in 6K minutes on a core duo laptop with a

2.53 GHz clock speed and 3 GB RAM. Note that cnv.beast had

the second smallest number of calls (195) but the highest

proportion of true deletions that were at least partially covered

by a called region (29.9%). To compare with Ely, we calculated

the false discovery rate (FDR) only for calls that exceeded 6000

base pairs in length. Of the 167 calls we made that exceeded this

threshold, 138 did not overlap with a true deletion, for a false

discovery rate of 82.6%. The only methods with notably lower

FDR made fewer true discoveries (9 for SmoothSeg and 17 for

SegClust) than the 29 we made.

Although the FDR of cnv.beast was 82.6% overall, it is possible

to achieve lower FDRs by further filtering the list of called CNVs

to those having score greater than some specified value. For

example, the FDR for our method among calls made by cnv.beast

using the default parameters in Table 1, that further have score

greater than 2.5, is 69.2% while the FDR for calls having score

greater than 5 is 50%. Considering only calls with score greater

than 2.5 where the FDR of our method is comparable to SegClust

(17) and SmoothSeg, our method finds 20 true deletions, more

than found by either SegClust or SmoothSeg (9). These results

suggest that overall, our method outperforms the six competing

methods compared by Ely [5]. A plot of the empirical FDR is

given in Figure 5. This plot suggests that the score is very useful in

prioritizing which calls to experimentally validate.

Discussion

CNVs are characterized by both height (intensity) and length

(number of probes), making it difficult to predict which calls are

valid. Using X-chromosome high-density Nimblegen array CHG

data, we propose a univariate score that incorporates both

intensity data and the number of probes in a call, and that

predicts the probability a CNV is valid. We then showed that the

same score is a valid predictor of experimental validation in

Illumina gene chip data.

Based on the concept of a univariate score, we then developed

cnv.beast, a novel backward elimination regression algorithm that

keeps terms corresponding to CNVs that exceed a user-defined

threshold. Using data from eight Hapmap participants, we showed

that cnv.beast had superior performance when compared to the

six other methods considered by Ely [5]. Cnv.beast has been

successfully used to find CNVs that are risk factors for

schizophrenia and autism [15–17].

Because our score correlates with the chance of validation, it is a

useful quantity to calculate for CNVs called by any method. The

plot of FDR as a function of score for the eight Hapmap

individuals shown in Figure 5 suggests that the score can be used

to prioritize called CNVs for experimental validation. In this

context, it is important to quantile normalize data before

calculating the score. It is also advantageous to use the median

LIR over a region as the measure of intensity, so that calls are not

influenced by a single (or a small number of) outlying LIRs.
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As a univariate quantity, the score can facilitate Monte-Carlo

significance testing. Specifically, if we can generate replicate

datasets that are known to have no signal, then for each replicate

dataset, we can record the largest score found among all CNVs

detected. This distribution can then be used to assign a p-value to

the CNVs observed in the original data. Hypothesis testing of this

type is difficult without a univariate measure to order CNVs.

Further, cnv.beast, which is fast even for datasets with many

probes, is ideal for this kind of Monte-Carlo analysis. This

approach has been implemented by Satten et al. (2012) [18].

Many algorithms for calling CNVs were initially developed for

data from cancer cell lines, where copy number changes are often

long and hence may be easier to detect. As Table 3 illustrates, the

data quality of current CNV platforms is poor when applied to

DNA from normal cells, regardless of the algorithm used for

calling variants. In order to be useful for association studies (the

goal of many studies that use CNVs) it is currently necessary to

validate CNV calls using a second technology. Because experi-

mental validation is laborous, slow and expensive, a predictor of

validation status such as the score we propose, could be useful in

prioritizing which CNV calls to validate, regardless of what

algorithm is used to make the calls.

Software Availability
A fortran program to unleash the power of the beast, as well as

an R shell to run it and a pdf file with usage notes, is available at

http://www.duke.edu/,asallen/Software.html.
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