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Modelling neuroanatomical 
variation during childhood and 
adolescence with neighbourhood-
preserving embedding
Gareth Ball   1, Chris Adamson1, Richard Beare1 & Marc L. Seal   1,2

Brain development is a dynamic process with tissue-specific alterations that reflect complex and 
ongoing biological processes taking place during childhood and adolescence. Accurate identification 
and modelling of these anatomical processes in vivo with MRI may provide clinically useful imaging 
markers of individual variability in development. In this study, we use manifold learning to build a 
model of age- and sex-related anatomical variation using multiple magnetic resonance imaging metrics. 
Using publicly available data from a large paediatric cohort (n = 768), we apply a multi-metric machine 
learning approach combining measures of tissue volume, cortical area and cortical thickness into a low-
dimensional data representation. We find that neuroanatomical variation due to age and sex can be 
captured by two orthogonal patterns of brain development and we use this model to simultaneously 
predict age with a mean error of 1.5–1.6 years and sex with an accuracy of 81%. We validate this 
model in an independent developmental cohort. We present a framework for modelling anatomical 
development during childhood using manifold embedding. This model accurately predicts age and 
sex based on image-derived markers of cerebral morphology and generalises well to independent 
populations.

Brain development is a dynamic process that follows a well-defined trajectory during childhood and adolescence. 
Variations in neurodevelopmental trajectories over this critical period have direct consequence for adult func-
tioning and mental health. During this formative period the brain undergoes profound change: increases in brain 
size, most rapid after birth, continue into late adolescence1; myelination processes that begin in utero continue to 
progress through to the second decade of life2, and synaptic pruning leads to significant reductions in synaptic 
density during early adolescence3. Magnetic resonance imaging (MRI) provides the opportunity to study brain 
development and track these developmental processes in vivo.

Analyses of structural MRI have found that grey and white matter volumes follow different trajectories during 
adolescence. Cortical grey matter volume peaks in childhood, then gradually decreases during adolescence4,5, 
whereas white matter volume increases throughout childhood and adolescence6,7. These observations were 
recently confirmed across four independent samples, where Tamnes et al. observed consistent developmental 
trajectories characterised by a decreasing cortical thickness with increasing age and childhood increases in sur-
face area followed by subtle decreases during adolescence8. Evidence suggests that sexual dimorphism may also 
play a role in cerebral development. Sex differences have been observed in developmental studies of cortical 
thickness9 and sex-by-age interactions in area and folding have been reported in frontal and temporal cortex in 
adolescence10,11. These differences may result from delays in development along similar trajectories, the timing of 
which can coincide with pubertal onset12,13, although the accurate definition and timing of developmental peaks 
is difficult and may be at risk to potential model or sample biases14,15. Any differences between the sexes are likely 
subtle; male brains are larger throughout development16, and regional, volumetric estimates of sex differences can 
be diminished once corrected for global differences in scale4.

Taken together, these studies present a consensus view of typical cerebral development. However, longitudi-
nal studies of healthy populations have shown that individual development can deviate significantly from these 
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canonical trajectories15, highlighting the need to create models of typical growth and development of the brain 
that can be applied on an individual level. Establishing developmental trajectories for typical cerebral develop-
ment is vital to our understanding of maturational brain change and may provide a more accurate understanding 
of relationships between brain maturation and behavioural phenotypes during development.

MRI data can generally be considered high-dimensional: a single image, or cortical surface, may comprise 
over 250,000 voxels, or vertices, many of which are highly correlated and interrelated. Manifold learning refers 
to a suite of dimension reduction techniques based on the intuition that high-dimensional datasets (such as 
MRI) reside on an embedded low-dimensional manifold or subspace. The aim is to learn a mapping between the 
high- and low-dimensional data representations while preserving certain statistical properties (e.g.: variance, 
community structure) of the original data. Such methods are well established in computer vision problems17–20 
and bioinformatics21–23 to deal with high-throughput data and can allow for an easier and more intuitive inter-
pretation of important model features while retaining the underlying nonlinear relationships present between 
individual datapoints in the original dataset.

One such example, Neighbourhood Preserving Embedding (NPE) aims to preserve the local neighbour-
hood structure of the data once projected onto the manifold17. That is, communities, patterns, or between-group 
differences that exist among datasets in the high-dimensional setting are maximally preserved within the 
low-dimensional subspace. Local neighbourhoods are typically defined based on the Euclidean distance between 
samples in the high-dimensional image space, however it is possible to introduce other constraints in order to 
conduct NPE in a supervised setting (Fig. 1)17,24. For example, restricting local neighbourhoods to only include 
subjects from the same class, or diagnostic group, to enhance separation in the low-dimensional space.

Manifold learning methods have great potential to aid in the analysis and understanding of high-dimensional 
MRI datasets25–27 with recent examples demonstrating improved discrimination between neurological disease 
states28, mapping of developmental trajectories in the newborn brain29, and detection of white matter lesions30. 
Dimension reduction leverages the redundancy often present in high-dimensional data, acting as a form of statis-
tical regularisation and reducing the risk of overfitting models when the number of samples is much less than the 
number of model features. Importantly, these methods can serve to highlight latent patterns within the dataset 
that align with variables of interest such as age, sex or clinical diagnosis.

Recently, studies have shown that it is possible to accurately predict an individual’s age31–35 or sex36,37 based 
on MRI images alone. These methods involve the use of modern multivariate techniques to extract informative 

Figure 1.  Neighbourhood preserving embedding. (A) For a given datapoint, Xi, nearest neighbours are selected 
and weights assigned that can be used to approximately reconstruct Xi. A linear transformation, P, is then 
sought to project the data into a low-dimensional space while preserving the neighbourhood structure. (B) 
Possible supervision strategies for neighbourhood construction. In an unsupervised setting, neighbours are 
selected based on image similarity alone; alternatively, neighbours can be selected from within- or between-
classes in order to maximise/minimise group differences in the manifold structure. Similarly, neighbours can be 
selected based on the weighted combination of image similarity and that of another subject-specific attribute 
(e.g.: age). (C) Analysis pipeline for NPE analysis. For each image metric, NPE is used for subspace projection, 
before the embedded data are combined and passed on for statistical modelling.
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morphological features to act as neuroanatomical markers of age or sex in a predictive model. In this study, we 
aim to build on these observations, introducing supervised NPE as a method to isolate structured patterns of 
covariance within populations, and simultaneously modelling typical neuroanatomical variation due to age and 
sex during development. Using a multi-metric approach, we combine measures of tissue volume, cortical area 
and cortical thickness to build a model that predicts age and sex with high accuracy and generalises well to other 
developmental populations.

Results
For every participant (n = 768, age 3.0–21.0 y), we constructed maps of brain tissue volume, cortical thickness and 
cortical area from T1-weighted MRI (see Methods). For each image metric (volume, thickness and area), we pro-
jected the full image data matrix to a 3 dimensional manifold using NPE based on 10 nearest-neighbours (Fig. 1). 
In order to maximally preserve age- and sex-related variation in the embedded data, we incorporated participant 
attributes into the construction of the weighted neighbourhood matrices (Fig. 1B; see Methods).

Figure 2 shows manifold structure visualised for tissue volume (Fig. 2A), cortical area (Fig. 2B) and cortical 
thickness (Fig. 2C) calculated in the PING cohort. For each metric, an orthogonal rotation was applied to each 
manifold to maximise correlation with age and sex along the first and second axes respectively. The images show 
the (standardised) weight of the embedding vectors (model coefficients) used to project new data to the rotated 
manifold, thus important features are represented by a larger weight, and increases in volume, thickness or area 
in regions with high positive weight will result in a positive increase along the respective embedding axis and vice 
versa.

For all three modalities, age increases along the first embedding coordinate, indicated by the gradation of 
colour along the first axis of the scatter plots Increasing age (a positive embedding coordinate) is associated 
with a neuroanatomical pattern represented by relatively increased tissue volume in the cerebellum, brain stem 
and thalamus (black arrows; Fig. 2A), and ascending white matter tracts subjacent to the primary motor cortex 
(positive image weights), with relative decreases in medial frontal and parietal cortices (negative image weights, 

Figure 2.  Manifold structure for tissue volume, cortical area and cortical thickness. Manifold structure is 
visualised for tissue volume (A), cortical area (B) and cortical thickness (C). For each image metric, the first two 
embedding coordinates are plotted against each other. Each point represents a subject; the colourbar indicates 
age and markers denote sex (square: male; circle: female). Images show the embedding vectors for the first and 
second coordinates, i.e.: the model coefficients in each voxel required to transform data into the embedded 
subspace. Maps are Z-scored for comparison (colourbar).
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Fig. 2A). In the cortex, age is associated with increasing surface area in the insula and anterior cingulate cortex 
(black arrows, Fig. 2B).

Separation between sexes is shown along the second dimension (squares and circles, Fig. 2). This is associated 
with a distributed, discriminant pattern of tissue volume alterations with increases in medial posterior cingulate 
(black arrow; Fig. 2A) and primary visual cortex, and brainstem, and relative decreases in the basal ganglia, fron-
tal pole, and cerebellum (negative weights, black arrow) associated with male sex. Separation along the second 
dimension was also associated with regions of increased surface area in medial temporal and orbitofrontal corti-
ces (black arrow, Fig. 2B), and decreased cortical thickness in the anterior insula (arrow, Fig. 2C).

Figure 3A shows the joint manifold structure visualised after concatenating all three image metrics and per-
forming a final dimension reduction on the concatenated coordinate data, =Y Y Y Y( , , )c v t a  using PCA29. This 
demonstrates how individual variation associated with age and sex during development can be captured along 
two orthogonal dimensions in this population.

Model accuracy.  Using 10-fold cross-validation, we predicted age in the PING cohort with a mean absolute 
error (MAE) of 1.54 years (correlation between chronological and predicted age = 0.926; Fig. 3B). Using a linear 
discriminant classifier, we predicted sex with an accuracy of 80.9% (Fig. 3C).

Our model was robust to site variation in the PING cohort: performing NPE without the additional site con-
straint did not affect the prediction accuracies (MAE = 1.49 y, accuracy = 80.0%) and there was no significant 

Figure 3.  Age and sex prediction with manifold embedding. (A) The first two coordinates of the joint manifold 
are shown, each point represents a subject; the colourbar indicates age and markers denote sex (square: male; 
circle: female). (B) Using 10-fold cross-validation, age and sex were predicted based on the concatenated 
manifold coordinates. Gaussian Process regression was used to predict age, shown plotted against chronological 
age (colourbar shown as in A). (C) Predicted class probabilities are shown for males (blue histogram) and 
females (yellow). (D) Predicted age error is shown for each site in PING separately. (E) Sex classification 
accuracies for each site in PING.
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association between acquisition site and absolute age estimation error (ANOVA: F6,761 = 1.95, p = 0.07; Fig. 3D). 
Classification accuracy was similar across sites, ranging from 75.0–85.9% (Fig. 3E).

We repeated this analysis, accounting for differences in global scale by correcting voxel-(vertex-)wise meas-
ures of tissue volume, cortical surface area and thickness metrics for intracranial volume, total surface area and 
mean cortical thickness, respectively. After correcting for global scale, we achieved a cross-validated MAE of 1.79 
years, and an accuracy of 71.4% in the PING cohort (Fig. 4).

Contribution of each metric.  To assess the individual contribution of each set of image metrics to the 
final model, we also performed the analysis using only tissue volume, cortical thickness or cortical area data. We 
found that the joint model combining all three metrics outperformed single metric models for both age and sex 
prediction (tissue volume only: MAE = 1.69, accuracy = 71.9%; area: MAE = 2.77, accuracy = 72.7%; thickness: 
MAE = 2.07, accuracy = 71.5%). Figure 4 shows MAE and classification accuracies for each tissue metric with and 
without correction for variations in global scale.

After correcting for variation due to global scale, the ability to discriminate between sexes was reduced for 
tissue volume (classification accuracy = 58.3%) and cortical area (52.7%), but not cortical thickness (70.1%). 
In contrast, global scaling significantly increased error in age prediction estimates based on cortical thickness 
(MAE = 4.62 y), but had little impact on models using tissue volume (1.66 y) or cortical area (2.96 y).

Associations between model accuracy and age.  To determine if model accuracy varied with age, we 
partitioned our data into 10 approximately equal-sized bins and calculated MAE and classification accuracy in 
each (Table 1). Age prediction error ranged from a minimum of 1.23 y at around 9 years of age, to a maximum 
of 2.55 y in the oldest participants (mean age = 20.3 y). In contrast, classification accuracy ranged from 69% to 
87%, with discrimination lowest in the youngest participants (mean age = 4.5 y) and highest at around 16 years. 
After correction for global scale, the minimum MAE was 1.50 (mean age 11.7 y; maximum MAE = 2.9, mean age 
22.3 y), and the lowest and highest classification accuracies were 65.3% in the youngest group, and 80.3% at 16 
years.

Associations between model accuracy and cognition.  In order to determine if deviations from the 
average developmental trajectory of the brain coincided with differences in cognitive performance we compared 
predicted age errors (the difference between age estimated from MRI using the above model and true, chronolog-
ical age) with cognitive scores in PING.

In the PING cohort, no significant associations were found between NTCB scores (corrected for age, sex, 
socioeconomic status and genetic ancestry) and predicted age error after correcting for multiple comparisons 
(Table 2).

Alternative parameter settings.  Prediction accuracies in the PING cohort were robust to altering the 
number of neighbours, k, used in manifold construction (k = 5: classification accuracy = 80.9%, MAE = 1.51 y; 

Figure 4.  Age and sex prediction after correction for global scaling. (Top) Mean absolute error for the full 
manifold and for each imaging metric are shown before and after correction for individual differences in global 
scale. (Bottom) Corresponding sex classification accuracies for the full manifold and for each imaging metric.
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k = 20: accuracy = 79.7%; MAE = 1.53 y), and the number of manifold dimensions, d (d = 5: accuracy = 80.1%, 
MAE = 1.59 y; d = 10: accuracy = 81.1%, MAE = 1.59 y).

Finally, we found that using NPE for subspace projection outperformed dimension reduction with PCA 
(MAE = 1.61 y, accuracy = 71.2%; correcting for global scaling, MAE = 1.91 y, accuracy = 54.4%).

External model validation.  To test the external validity of this modelling approach, we projected imaging 
data acquired from typically developing controls in two independent populations (ABIDE and ABIDE-II) onto a 
low-dimensional manifold constructed from the PING dataset. Using this approach, we predicted age in ABIDE 
with an MAE of 1.65 years (correlation: 0.825; Fig. S1A), and sex with an accuracy of 80.0% (Fig. S1B; 1.87y 
and 71.2% after correction for global scaling). We achieved similar results in ABIDE-II (Fig. S1; MAE = 1.54, 
correlation: 0.817; accuracy = 80.2; 1.80 y and 70.6% after correction for global scaling). In contrast to the PING 
data, a main effect of site was evident in both ABIDE and ABIDE-II age prediction error (F16,407 = 1.86, p = 0.02; 
F14,424 = 16.56, p < 0.001; Supplemental Information; Fig. S1C,D). When considering MAE and accuracy over 
sites in ABIDE and ABIDE-II, we find a positive correlation between mean cohort age and MAE (i.e: age predic-
tion is worse in sites with older participants; ABIDE r = 0.23, ns; ABIDE II r = 0.78, p < 0.001), however, as in the 
PING cohort, we see an improvement in sex prediction accuracy with increasing age (ABIDE r = 0.72, p < 0.001; 
ABIDE-II r = 0.22 ns).

Discussion
In this study, we use manifold learning to generate a parsimonious description of typical brain development dur-
ing childhood and adolescence. By combining measures of tissue volume, cortical thickness and cortical area, we 
show how patterns of anatomical variation can be used to accurately predict age and sex between the ages of 3 and 
21 years. We show that this model is not strongly affected by site-to-site variation in image acquisition and yields 
accurate predictions across different study populations.

We demonstrate that supervised NPE can be used to predict biological age from MRI with a mean error 
of around 1.5 years. This is in line with previous reports in this population. Using a set of 231 pre-selected, 
image-based features from T1, T2 and diffusion-weighted MRI, Brown et al. developed a nonlinear model of 
cerebral maturation to predict age in the PING cohort, achieving an MAE of 1.03 years31. Using just T1-weighted 
image features, Brown et al. reported an MAE of 1.71 y, comparable to the MAE reported in this study. Using a 
similar approach, Franke et al. reported an MAE of 1.1 years in a cohort aged 5 to 1838. Using nonlinear mapping 
functions (i.e.: kernels) in machine learning allows for the use of linear methods to discover highly nonlinear 
boundaries or patterns in the original data by creating an implicit feature space39. While flexible, a limitation of 
these methods is the inability to identify important features in the space of the original dataset. An alternative 
approach may be to use regularised linear regression across all cortical regions, although this method depends 
upon an initial cortical parcellation35. By calculating a linear mapping between the original, high-dimensional 

Bin n mean age MAE male (%) accuracy

1 75 4.48 1.69 38 (50.1) 69.33

2 79 7.31 1.32 44 (55.7) 79.75

3 71 8.96 1.33 38 (53.5) 78.87

4 79 9.63 1.23 35 (44.3) 82.28

5 77 11.72 1.40 43 (55.8) 81.82

6 80 12.89 1.46 52 (65.0) 82.50

7 77 14.52 1.29 47 (61.0) 81.82

8 76 16.15 1.46 36 (47.4) 86.84

9 74 17.63 1.62 34 (46.0) 81.08

10 80 20.29 2.55 38 (47.5) 83.75

Table 1.  Age and sex prediction accuracy at different ages.

NTCB score

Linear regression

pR2 F1,615

Flanker 0.000 0.018 0.892

Attention 0.000 0.068 0.794

Picture Sequence Memory 0.007 4.292 0.039

List Sorting 0.001 0.469 0.494

Picture Vocabulary 0.003 2.118 0.146

Reading 0.000 0.072 0.789

Dimensional Change Card Sorting 0.001 0.315 0.575

Pattern Comparison 0.007 4.247 0.040

Table 2.  Associations between predicted age error and cognitive score in PING.
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data and the low-dimensional embedded manifold, NPE produces a set of basis vectors that – through linear 
combination – can approximately reconstruct the original dataset, capture nonlinear relationships and provide 
interpretable voxel-(vertex-)wise maps of feature importance17.

We show examples of these vectors in Fig. 2 for each image metric. The images represent distributed pat-
terns of neuroanatomical variation that highlight regional importance within the model. As reported previously, 
increasing age is reflected a lower-to-higher-order trajectory characterised by reduced tissue volume in frontal 
and parietal regions, coupled with increased white matter tissue and brain stem volume6,40,41. Increasing age was 
also associated with increased cortical surface area most prominent in the insula and cingulate cortex. This agrees 
with previous reports of high rates of cortical surface area expansion during childhood in regions associated with 
higher-order intellectual function42,43.

We also find that male sex is predicted by a pattern of neuroanatomical variation including increased brain 
tissue volume in the posterior cingulate and occipital lobe, volumetric decreases in the basal ganglia and insula, 
alongside a pattern of reduced cortical surface area in medial frontal regions and decreased cortical thickness in 
the insula. We highlight that the manifold embedding coordinates defined by NPE are orthogonal by construc-
tion; as such, the patterns shown in Fig. 2 reflect anatomical variation independently associated with age and sex 
during development.

Sexual dimorphism during development is a contentious issue. Developmental trajectories for cortical grey 
and white matter appear similar between sexes4,6 with perceived sex differences often assigned to variation in 
physical size1,44. In a longitudinal study of 387 subjects aged 3 to 27, Lenroot et al. reported increased frontal 
grey matter volume in females and increased occipital white matter in males, after accounting for brain size13. 
Conversely, Sowell et al. reported thicker parietal and posterior temporal cortex in females, independent of age9. 
These discrepant findings may reflect the different timing of puberty or the differential effects of testosterone on 
brain development males and females45. In addition, male brains are larger than females throughout develop-
ment16, and correcting for differences in global scale can diminish perceived sex differences in regional, cerebral 
volumes4. After correcting for global differences in intracranial volume, total surface area and mean cortical 
thickness, we were still able to achieve relatively accurate predictions of age and sex across development, although 
both were maximised with the inclusion of global scaling information.

Concerning differences in global scale that vary with age or sex, we report accuracies of both corrected and 
uncorrected metrics, using ICV, total surface area and mean cortical thickness as covariates. Previous develop-
mental studies have used ICV, or alternatively brain tissue volume (specifically: parenchymal volume, excluding 
ventricular CSF) to correct regional measures of volume, both of which have advantages and disadvantages15. 
As a consensus on the use of ICV or brain tissue volume to correct volumetric measures is lacking4, we report 
uncorrected and ICV-corrected accuracies, though we note that brain tissue volume and ICV correlated strongly 
in the PING cohort (r = 0.87) and our model performance was not affected by the use of brain tissue as a covariate 
instead of ICV.

Importantly, our study confirms recent reports that multivariate analyses that consider whole-brain patterns 
of variation in brain morphometry can reliably and accurately discriminate sex, even if large within-class, or 
between region, variability exists36,37. We also show that this dimorphic pattern is evident even at very young ages, 
achieving a classification accuracy of around 69% (65% after global correction) in the youngest participants (aged 
3–5 y). It is important to consider that this finding does not imply that all females have e.g.: a smaller posterior 
cingulate than all males, or even that the cingulate is on average smaller in females across populations. We suggest 
that this pattern of variation is one of a number (including the pattern of age-related variation described above) 
that exist concurrently within a population. An individual’s anatomical phenotype can then be viewed as arising 
from the weighted expression of these patterns, with the weight dependent on e.g.: age, sex, environmental or 
genetic factors. As such, tissue volume or cortical thickness, measured at a single point reflects the combination 
of multiple, distributed patterns of variation and, as such, may vary greatly over a population and not necessarily 
in line with a given covariate of interest (e.g.: sex).

In contrast to previous reports, we do not find strong evidence that deviation from a predicted developmental 
trajectory corresponds to adverse functional or behavioural outcome in healthy individuals. Previously, the differ-
ence between chronological age and age predicted from neuroimaging has been framed as an index of accelerated 
or delayed development or aging, depending on the direction of the discrepancy46. Recently, Erus et al. reported 
that a significant increase in predicted brain age compared to chronological age in childhood (predicted by a 
multi-modal MRI assessment) was indicative of precocious cognitive development (and vice versa), suggesting 
that complex cognitive phenotypes could be captured as variation along a single dimension of brain develop-
ment33. In this study, we did not find any statistically significant associations between measures of cognitive func-
tion and age prediction error in typically-developing individuals. In the PING cohort, Akshoomoff et al., found 
that age, sex, socioeconomic status and genetic ancestry explained between 57% and 73% of variance in each of 
the NCTB scores47. After correcting for these factors, we found that brain age estimation error explained at most 
0.7% of the remaining variance (in memory and pattern comparison tests).

This suggests that model error in age prediction in this context does not reflect the impact of an underlying 
latent variable associated with cognition. This discrepancy is likely due to differences in model construction 
between methods. Here, we use NPE to extract a single dimension of anatomical variation that aims to maximally 
preserve specific age-related structure in the data. As such, the reported pattern may lie orthogonal to neuro-
anatomical correlates of (non age-related) cognitive performance and as mentioned above, such patterns, while 
coexistent within the population, will not vary as a function of each other. Indeed, once corrected for age-related 
variation, measures of cognition will, by definition, lie orthogonal to age, and thus age-specific neuroanatomical 
variation. Other methods that predict age based on the appearance of the brain as a whole, might better reflect 
the conflation of cognitive and age-related ‘components’ during development, such that model error captures 
variation in anatomy aligned with cognition33.
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We found that age prediction accuracy decreased slightly with increasing age. In the PING cohort, MAE was 
lowest at around 9 years, and highest at 20. Other studies have found similar discrepancies35,48 and this may indi-
cate the increasing difficulty of discrimination between individuals in early adulthood compared to childhood 
and adolescence, suggesting that image-based prediction is most accurate during the periods when the rate of 
anatomical change is greatest1,31.

In an effort to assess the external validity of this approach, we tested the accuracy of the NPE model con-
structed in the PING dataset to predict age and sex in a comparative population. Overall, we found this model 
was able to age and sex to the same level of accuracy in the ABIDE cohorts (Fig. S1A,B). We also observed a 
trend towards a model-based underestimation of age in the older participants. However, although no effect of 
site was found in the PING cohort, there was a significant effect of site on accuracy in both ABIDE and ABIDE-II 
(Fig. S1). This effect appeared to be compounded by the uneven distribution of age across sites, with the mean 
age within site ranging from 8.15 years to 20.75 years (Table S2), and the older sites showing significantly poorer 
model performance (e.g.: site p in ABIDE; sites a and k in ABIDE-II; Fig. S1).

Our findings suggest that the anatomical maturation of the brain during childhood and adolescence can be 
accurately modelled within a low-dimensional subspace. That is, variation along two axes is sufficient to capture 
individual variations due to age and sex within a population with relatively high accuracy. In contrast, func-
tional or cognitive development is not well represented by variation along these axes. This suggests that addi-
tional, orthogonal dimensions of development are required to more accurately model individual trajectories. 
Alternatively, this approach may benefit from incorporating information from additional imaging modalities (e.g.: 
functional MRI) in order to more fully capture phenotypic variation associated with cognitive development33,49.

Subspace projection methods, such as NPE, bring focus to reliable and robust patterns that can predict pheno-
typic characteristics based on the brain’s shape and appearance. Global, linear methods including PCA and ICA 
have proven highly effective in identifying patterns in MRI data analysis27,50,51. However, as PCA seeks to preserve 
global properties of the data it may be dominated by sources of confounding variance, e.g.: site-to-site variation52. 
Alternatively, nonlinear embedding methods can often achieve highly-accurate embeddings based on local geom-
etry, allowing visualisation of complex geometry in low-dimensional space but can not be easily applied to new, 
unseen datapoints19,53. NPE somewhat combines these approaches, calculating a linear embedding that allows the 
projection of unseen data into a previously defined subspace, learned from local neighbourhood geometry. In a 
clinical setting, this framework could be extended to explore anatomical patterns underlying developmental or 
neuropsychiatric disorder, or stratifying clinical populations by locating individuals within clusters based on the 
expression of different neuroanatomical imaging components. Indeed, combining functional, diffusion and pos-
sibly genetic information into a larger manifold framework and considering similarities over multiple modalities 
to model local neighbourhoods and communities within large datasets could provide a more complete model of 
individual variation during this time period. In addition, the projection of longitudinal data onto the manifold 
could enable individuals to be tracked over time, an important consideration for developmental studies15. With 
increasing sample sizes from large-scale imaging studies, there is also great potential for the application of deep 
learning to such problems54,55.

In summary, we present a framework for modelling anatomical development during childhood. This model 
accurately predicts age and sex based on image-derived markers of cerebral morphology and generalises well to 
independent populations.

Methods
Imaging data.  To model typical neurodevelopment, 3 Tesla, T1-weighted MRI data were obtained from 
the PING Study56. The PING cohort comprises a large, typically-developing paediatric population with partic-
ipants from several US sites included across a wide age and socioeconomic range. The human research protec-
tions programs and institutional review boards at all institutions (Weil Cornell Medical College, University of 
California at Davis, University of Hawaii, Kennedy Krieger Institute, Massachusetts General Hospital, University 
of California at Los Angeles, University of California at San Diego, University of Massachusetts Medical School, 
and Yale University) participating in the PING study approved all experimental and consenting procedures, and 
all methods were performed in accordance with the relevant guidelines, regulations and PING data use agree-
ment31. Written parental informed consent was obtained for all PING subjects below the age of 18 and directly 
from all participants aged 18 years or older. Exclusion criteria included: a) neurological disorders; b) history of 
head trauma; c) preterm birth (less than 36 weeks); d) diagnosis of an autism spectrum disorder, bipolar disorder, 
schizophrenia, or mental retardation; e) pregnancy; and f) daily illicit drug use by the mother for more than one 
trimester56. Similar proportions of males and females participated across the entire age range.

The PING cohort included 1493 participants aged 3 to 21 years, of whom 1249 also had neuroimaging data. 
Of these, n = 773 were available to download from NITRC (https://www.nitrc.org). T1 images were acquired 
using standardized high-resolution 3D RF-spoiled gradient echo sequence with prospective motion correction 
(PROMO) at each site, with pulse sequences optimized for equivalence in contrast properties across scanner 
manufacturers (GE, Siemens, and Phillips) and models56.

In addition to imaging data, participants undertook comprehensive behavioural and cognitive assessments 
(NIH Toolbox Cognition Battery, NTCB47; and provided a saliva sample for genome-wide genotyping. The NTCB 
comprises seven tests (Flanker, Picture Sequence, List Sorting, Picture Vocabulary, Reading, Dimensional Change 
Card Sorting, Pattern Comparison) that measure abilities across six major cognitive domains, including cognitive 
flexibility, inhibitory control, and working memory47.

External validation data.  For model validation, a comparative neurodevelopmental population was 
obtained from the ABIDE and ABIDEII datasets57,58. These datasets represent a consortium effort to aggregate 
MRI datasets from individuals with autism spectrum disorder and age-matched typically-developing controls. 

https://www.nitrc.org
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Contributions per site ranged from 13 to 105 typically-developing participants per site chosen as matched con-
trols for the ASD population at each site. For both studies, 3 Tesla, T1-weighted MRI were acquired from 17 sites; 
images and acquisition details are available at http://fcon_1000.projects.nitrc.org/indi/abide. All participating 
sites received local Institutional Review Board approval for acquisition of the contributed data.

For further details, see Supplemental Information.

Image processing.  Quality control assessment for the PING data is detailed in Jernigan et al.56. In brief, 
images were inspected for excessive distortion, operator compliance, or scanner malfunction. Specifically, 
T1-weighted images were examined slice-by-slice for evidence of motion artefacts or ghosting and rated as 
acceptable, or recommended for re-scanning. After additional, on-site, visual quality control assessment, we 
removed a further 5 participants, resulting in a final sample of n = 768 (mean age = 12.3 y; range: 3.2–21.0 y; 404 
male). Site-specific demographic data are shown in Table S1.

For all subjects, vertex-wise maps of cortical thickness and cortical area (estimated on the white matter 
surface) were constructed from T1 MRI with FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu). Briefly, this 
process includes removal of non-brain tissue, transformation to Talairach space, intensity normalisation, tissue 
segmentation and tessellation of the grey matter/white matter boundary followed by automated topology correc-
tion. Cortical geometry was matched across individual surfaces using spherical registration59–62. Any images that 
failed initial surface reconstruction, or returned surfaces with topological errors, were manually fixed using white 
matter mask editing and re-submitted to Freesurfer until all datasets passed inspection.

In addition, whole-brain tissue volume maps were estimated using deformation-based morphometry63,64. 
Each participant’s T1 image was intensity normalised, corrected for bias field inhomogeneities and aligned 
to MNI 152 space using diffeomorphic nonlinear registration (ANTs)65,66. Transformed images were visually 
inspected to ensure alignment to the template images and voxel-wise maps of volume change induced by the 
nonlinear deformation were characterised by the determinant of the Jacobian operator, referred to here as the 
Jacobian map. Each map was log-transformed so that values greater than 0 represent local areal expansion in the 
subject relative to the target and values less than 0 represent areal contraction.

Prior to analysis, both tissue volume maps and cortical thickness and area maps were smoothed with a 
Guassian kernel of 10 FWHM.

Manifold learning.  The aim of Neighbourhood Preserving Embedding is to calculate a linear transforma-
tion, P, to map a high-dimensional ×n D dataset = X X X X{ , , , }n1 2  into a low-dimensional n × d subspace 

= Y Y Y Y{ , , , }n1 2  where d D and =Y P XT  while preserving the local neighbourhood structure of the 
data17. The process is illustrated in Fig. 1. For a given data point Xi, an adjacency matrix is first constructed, plac-
ing an edge between Xi and Xj only if Xj belongs to the set of k nearest neighbours of Xi. Following this, a set of 
weights, W, is calculated that approximately reconstruct Xi from its neighbours and a linear projection, P, sought 
to optimally preserve this structure in the low-dimensional space, Y17. NPE is closely related to Locally Linear 
Embedding19, but one of the major benefits that NPE confers is that the solution generalises to new datapoints, 
allowing unseen data to be projected onto the manifold without re-calculating the embedding.

The analysis pipeline used in this study is shown in Fig. 1C. For each image metric (tissue volume, cortical 
thickness, cortical area), data were first mean-centred and projected to an orthogonal subspace via singular value 
decomposition (SVD), while retaining 95% of variance, to reduce computational complexity and avoid overfit-
ting. NPE was then performed using k = 10 neighbours, projecting data to =d 3 dimensions. In order to maxi-
mally preserve age- and sex-related variation in the embedded data, we incorporated participant attributes into 
the construction of the adjacency matrices. Nearest neighbours were selected based on the product of two adja-
cency matrices, A and a, where the i j( , )th element of each matrix represents the (normalised) similarity between 
images, A, and age, a, of subjects i and j, respectively and =A 0i j, , if ≠S Si j, where S indicates the sex of the par-
ticipant. In order to reduce potential bias in image similarities due to site effects, we also introduced an additional 
constraint: =A 0i j, , if =s si j, where s indicates the site/scanner of image acquisition, although this had little effect 
on the final embedding.

This resulted in three sets of coordinates, Yv, Yt, and Ya, representing the low-dimensional embedding of tissue 
volume, v, cortical thickness, t, and area, a, data. We concatenate the embedding coordinates to produce a final 
low-dimensional representation of the combined, multi-metric image data for statistical analysis.

Statistical analysis.  Internal validity of the model was assessed using 10-fold cross-validation. We used 
90% of the PING participants as a training set, calculating the manifold embedding coordinates for each imaging 
modality and combining them into a single representation. To predict age, we used a Gaussian Process Regression 
(GPR) model with the concatenated manifold coordinates as features and age as a dependent variable67. To pre-
dict sex, the combined coordinate set was sent to a linear discriminant classifier. Image data from the remaining 
10%, the test set, were then projected onto the joint manifold and the fitted models used to predict age and sex. 
Mean absolute error in age estimation (MAE) and correlation between true age and predicted age are reported, 
alongside classification accuracies for sex. This process was repeated for each fold, reconstructing the manifold 
each time, such that all PING participants were part of the test set exactly once.

External validity was assessed by projecting the combined ABIDE and ABIDE-II datasets57,58 onto a manifold 
constructed from the full PING dataset and predicting age and sex using models trained on the PING data (see 
Supplemental Information).

To determine if errors in image-derived age estimation correlated with cognitive performance, we performed 
a further set of analyses using available cognitive data. Of the PING dataset, n = 617 had complete records for 
NTCB score, family socioeconomic status (household income and parental education), and genetic ancestry56,68. 

http://surfer.nmr.mgh.harvard.edu


www.nature.com/scientificreports/

1 0SCIenTIfIC REPOrTS |  (2017) 7:17796  | DOI:10.1038/s41598-017-18253-6

NTCB scores were corrected for age, sex, socioeconomic status and GAF47 and linear regression used to deter-
mine associations between age estimation error (based on cross-validated age predictions) and corrected cogni-
tive scores.

All statistical analysis was performed in Matlab R2105b (Natick, MA).

Data and code availability.  PING data are available from http://pingstudy.ucsd.edu subject to a data usage 
agreement.

ABIDE data are available from http://fcon_1000.projects.nitrc.org/indi/abide.
The original Matlab code to perform NPE and linear graph embedding is available from http://www.cad.zju.

edu.cn/home/dengcai/Data/code/.
In addition, we have made available example code to perform supervised NPE at: http://developmentalimag-

ingmcri.github.io.
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