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Abstract

Poor grain filling of inferior grains located on lower secondary panicle branch causes great
drop in rice yield and quality. Dynamic gene expression patterns between superior and infe-
rior grains were examined from the view of the whole transcriptome by using RNA-Seq
method. In total, 19,442 genes were detected during rice grain development. Genes
involved in starch synthesis, grain storage and grain development were interrogated in
particular in superior and inferior grains. Of the genes involved in sucrose to starch transfor-
mation process, most were expressed at lower level in inferior grains at early filling stage
compared to that of superior grains. But at late filling stage, the expression of those genes
was higher in inferior grains and lower in superior grains. The same trends were observed in
the expression of grain storage protein genes. While, evidence that genes involved in cell
cycle showed higher expression in inferior grains during whole period of grain filling indi-
cated that cell proliferation was active till the late filling stage. In conclusion, delayed expres-
sion of most starch synthesis genes in inferior grains and low capacity of sink organ might
be two important factors causing low filling rate of inferior grain at early filling stage, and
shortage of carbohydrate supply was a limiting factor at late filling stage.

Introduction

In rice seed development, the grain filling process is the most important factor related to the
yield and quality of rice grains [1]. However, aside from genotype reasons, the grain filling rate
varies according to the location on rice panicle. In rice panicle, earlier flowered spikelets on the
upper apical primary rachis branches are called superior spikelets, and the later flowered spike-
lets on lower secondary rachis branches are called inferior spikelets [2—4]. The final grain
weight and quality of superior grains are much higher than that of inferior grains. In modern
rice cultivars, the numbers of grains per panicle has greatly increased, which is beneficial for
yield improvement. However, the yield potential and grain quality are limited by poor grain
filling of later flowered spikelets at lower branch of rice spikelets [5,6]. Therefore, studies on
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the reasons of poor grain filling of inferior spikelets are beneficial to improve rice yield for cul-
tivars that have numerous spikelets on the panicle.

Starch, storage proteins and other constituents are the main accumulated reserve during
rice grain development [7]. Major biological processes are believed to require a close coordina-
tion of gene expression among many important pathways in cereal grains [8]. During rice
grain filling, sucrose produced in leaves is imported by the heterotrophic organs and used as
carbon source in starch synthesis in the amyloplast [9,10]. In cytosol, sucrose is broken down
into glucose and fructose. Then glucose/fructose are transformed into Glucose-6-P, Glucose-
1-P, and finally into ADP-glucose. The ADP-glucose is used as the raw material in starch syn-
thesis in amyloplast [11-13]. Sucrose synthase enzyme is the first key enzyme breaking sucrose
into glucose and fructose [14]. Previous study found the sucrose synthase enzyme activity in
superior grains was higher than that of inferior grains [15]. Zhu et al (2011) also reported that
the gene expression of starch metabolism-related genes was higher in superior grains by using
DNA microarray and real-time RT-PCR methods. Researches based on gene expression profile
and protein 2-D electrophoresis profile also showed genes or proteins expressed differentially
between the two kinds of grains [6,16-18].

RNA-Seq is a recently developed approach to study gene expression profiling that uses the
next generation sequencing technologies, and provides a more precise measurement of gene
transcripts dynamics on global scale in different tissues and biological contexts [19,20]. Recent
studies also showed that RNA-Seq technology was highly reproducible for both technical and
biological replicates, as compared with other methods like micro-array [21,22]. Studying tran-
scriptome dynamics provided important insights into the functional elements of the genome,
their expression patterns, and the regulation of transcribed regions in different tissues and
under different conditions [23].

In this study, we investigated the dynamics of gene expression in four developing periods of
rice superior and inferior grains by using RNA-Seq technique. In total, expressions of 19,442
genes were detected in one or more of the eight libraries constructed from superior and inferior
grain samples. Genes involved in storage protein accumulation, sucrose and starch biosynthe-
sis, plant hormone metabolism and cell cycle related genes were specifically examined and the
potential mechanisms of poor filling of inferior grains were discussed.

Materials and Methods
Plant materials and sampling

Oryza sativa spp. japonica cv. Xinfeng 2 was planted in field (34°5’ N, 113°35’ E, 94m altitude)
which belongs to Henan Agricultural University for field experiments purpose. No specific per-
missions were required for all field experiments in this study. The field studies did not involve
endangered or protected species. Xinfeng 2 was a japonica rice cultivar developed by Guifeng
Wang and cultivated in Huanghuai river basin, China. The superior grains was defined as
spikelets positioned on the upper three primary branches, and the inferior grains was defined
as spikelets positioned on the lower three proximal branches as described by Peng et al (2011).
The flower day of spikelet was defined as 0 day after fertilization (DAF). Superior grains were
sampled at 10, 15, 21, 27 DAF. After inferior spikelets flowered, which is normally 5~7 days
later than superior grains [24], inferior grains were also sampled at 10, 15, 21, 27 days after
inferior spikelet flowering. Both superior and inferior grains were separated from the panicle
and frozen in liquid nitrogen for RNA extraction. Dynamic changes of grain weight of superior
and inferior grains were measured at 5, 10, 15, 21, 27, 35DAF according to the method used by
Peng et al [5].
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Fig 1. Grain weight of superior and inferior grains on the rice panicle. Grains were sampled at 5, 10,
15,21,27,35 days after fertilization, and the average dry weight of grains was measured.

doi:10.1371/journal.pone.0137168.g001

RNA isolation, library construction, sequencing and digital tag profiling, quantitative real-
time RT-PCR (Q-PCR) validation of RNA-Seq sequencing data were conducted by methods
used by Peng et al (2013) [25]. Screening of differentially expressed genes was analyzed as
described in Peng et al (2014) [26].

Results
Grain weight changes of superior and inferior grains

During the grain filling process, superior grains showed rapid weight increase after fertilization.
The grain weight reached stationary phase at 21DAF and did not change much till final stage.
However, the inferior grains weight increased relatively slowly compared with that of superior
grains and kept on increasing till late filling stage. Besides, the final grain weight was much
lower than that of superior grains (See Fig 1).

Summary of seed digital gene expression profiling

In the eight sample libraries, 3,181,415 to 6,025,486 raw tags were generated by high through-
put sequencing. After removing low quality tags, 3,015,196 to 5,897,726 clean tags were
obtained in each library. Of these clean tags, 82.07% to 91.96% could be mapped to rice genes
(Rice Genome Annotation Project, Release 7), and 48.36% to 60.56% tags could be unambigu-
ously mapped to known gene locus. Expressions of 10,799 to 16,657 genes were detected in
each library, and 19,442 genes were detected in at least one library in total. The summary of the
tags and gene number information for each sample was shown in Table 1. Expressions of each
gene measured by transcripts per million (TPM) were listed in S1 Table. Six genes involved in
starch synthesis, IAA synthesis and homeostasis and transcription related genes were chosen
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Table 1. Summary of sequencing and annotation results in the four filling stages of superior and inferior grains.

10DAF_S
Total tag number 4,961,639
Total clean tag number 4,801,042
Clean tag number mapped to gene 4,304,523
Percent of clean tag mapped to gene 89.66%
Number of unambiguously mapped Tag 2,722,587
Percent of unambiguously mapped tag 56.71%
Unknown clean tag number 261,076
Percent of unknown clean tag 5.44%
Number of genes detected 14,967

15DAF_S

6,025,486
5,897,726
5,223,911
88.58%
3,571,894
60.56%
445,393
7.55%
13,681

21DAF_S

3,559,090
3,377,893
3,098,828
91.74%
1,990,299
58.92%
155,811
4.61%
12,148

27DAF_S

3,181,415
3,015,196
2,772,762
91.96%
1,825,206
60.53%
157,501
5.22%
10,799

Note: “DAF” indicates day after fertilization; “S” indicates superior grain; “I” indicates inferior grain.

doi:10.1371/journal.pone.0137168.t001

10DAF_I

5,862,147
5,644,440
4,685,897
83.02%
2,729,742
48.36%
446,758
7.92%
16,657

15DAF_I

3,536,663
3,289,946
2,699,950
82.07%
1,606,108
48.82%
334,124
10.16%
15,201

21DAF_I

3,492,932
3,246,054
2,869,084
88.39%
1,737,915
53.54%
188,274
5.80%
14,484

27DAF_I

3,397,235
3,194,649
2,899,474
90.76%
1,745,807
54.65%
167,664
5.25%
13,111

to validate the sequencing data by using Q-PCR method. The Q-PCR results showed that there
were small differences between RNA-Seq data and Q-PCR, but the gene expression trends
were similar between the two methods (See S1 Fig).

GO and KEGG analysis of expressed genes

In total, 16,622 and 18,521 genes were detected during development of superior and inferior
grains, respectively. GO slim downloaded from Rice Genome Annotation Project (http://rice.
plantbiology.msu.edu/) was used for the functional classification of these genes by cellular
component, molecular function, and biological process categories. The inferior grains con-

tained more genes in most GO terms of cellular component, molecular function, and biological
process categories. Genes in superior and inferior grains were subjected to singular enrichment
analysis by agriGO software [27] using genes in superior grains as input list and genes in infe-
rior grains as background query list. The enrichment analysis showed that 18 GO terms were
enriched in superior grains (Fig 2). These enriched GO terms all belonged to cellular compo-
nent category, such as intracellular part, cytoplasm, intracellular, etc (52 Table).
All the expressed genes in each library were compared between superior and inferior grains
at the same period after flowering. As a result, 6,350, 6,704, 4,840 and 3,418 genes were defined
as significantly differentially expressed by our screening standards at I0DAF, 15DAF, 21DAF
and 27DAF, respectively. Pathway analysis were performed using the KEGG pathway database,
and 3,789 genes were mapped on 115 known rice pathways including starch and sucrose
metabolism (ko00500), fructose and mannose metabolism (ko00051), plant hormone signal
transduction (ko04075), zeatin biosynthesis (ko00908), etc (S3 Table).

Genes involved in starch and sucrose metabolism

Synthesis and accumulation of starch is the most important processes during rice grain filling,
so we checked the transcription of genes involved in starch and sucrose metabolism in particu-
lar. Of the differentially expressed genes (DEGs) between superior and inferior grains, 146
genes were mapped on KEGG starch and sucrose metabolism pathway map (ko00500, see S3

Table).

In rice grains, hydrolysis of sucrose into glucose and fructose is catalyzed by cell wall inver-
tase [1,28]. Eight members of cell wall invertase were found in the rice genome till now, but
only OsCIN1, OsCIN2, OsCIN4 and OsCIN7 were expressed in developing seeds [29]. In our
RNA-Seq data, only OsCIN2 (LOC_0Os04g33740) and OsCIN7 (LOC_Os09g08072) were
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Fig 2. Gene Ontology (GO) enrichment analysis. The genes expressed in superior grains were taken as input list, and genes expressed in inferior grains
were background list. All categories were classified according to their biological process, cellular component and molecular function. The blue bar indicates
percentage of genes obtained in this study in each GO category, and the green bar indicates percentage of all annotated rice genes in each GO category.

doi:10.1371/journal.pone.0137168.9002

detected. Of the two cell wall invertase genes, OsCIN2 was the mainly expressed one, which
was also designated as GIF1 gene [1]. In superior grains, the expression of OsCIN2 gene was
higher at I0DAF, and dropped afterwards till no signal at 27ZDAF. While, in inferior grains,
OsCIN2 gene was lower at I0DAF, but reached peak expression at 15DAF and dropped after-
wards. The expression of OsCIN2 gene in inferior grains was all higher than superior grains at
15,21, 27DAF (See Fig 3).

Glucose is transformed into o-D-Glucose-6P by hexokinase, and f-D-Fructose is turned
intoB-D-Fructose-6P by hexokinase and then to o-D-Glucose-6P by Glucose-6-P isomerase.
We checked the expression of these two enzymes and found several hexokinase members were
expressed in developing grains, and the inferior grains showed higher expression in all the four
periods we sampled. As to the Glucose-6-P isomerase gene, expression was comparable at the
same level at I0DAF, and slightly higher in inferior grains afterwards.

o-D-Glucose-6-P is transformed into a-D-Glucose-1-P by phosphoglucomutase[30]. In our
RNA-Seq data, expressions of two phosphoglucomutase gene members were detected. Of
them, LOC_Os03g50480 was the mainly expressed. In superior grains, phosphoglucomutase
(LOC_0s03g50480) was expressed at higher level at 10DAF, but dropped afterwards till zero
expression at 27DAF. While, in inferior grains, phosphoglucomutase (LOC_Os03g50480) was
expressed at lower level at 10DAF and 15DAF. But at 21DAF and 27DAF, the expression
became higher (See Fig 3).
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The next step in starch synthesis is o-D-Glucose-1-P catalyzed by glucose-1-phosphate ade-
nylyltransferase and turned into ADP-glucose [31]. In RNA-Seq data, expression of three glu-
cose-1-phosphate adenylyltransferase subunit genes (AGPL3, AGPL4 and AGPLS2) was
analyzed. The expression pattern of the three genes all showed higher expression in superior
grains at early filling stage and higher in inferior grains at late filling stage (see Fig 3).

Starch in the rice endosperm generally consists of amylose and amylopectin. Biosynthesis of
starch is catalyzed by starch synthase and 1,4-alpha-glucan-branching enzyme, which are in
charge of amylose and amylopectin synthesis, respectively. In our data, expression of six starch
synthase genes were detected by RNA-Seq, but only soluble starch SSITa (LOC_Os06g12450)
and SSI (LOC_0Os06g06560) were highly expressed (>100TPM). At 10DAF in superior grains,
expression of SSIIa (LOC_Os06g12450) and SSI (LOC_Os06g06560) were 602.16 and 282.02
TPM, respectively. The expression of these two genes dropped down along with the process of
grain filling, and reached the lowest at late filling stage. While, in inferior grains, these two
genes were 21.97 and 75.65 TPM at 10DAF, respectively. Although expression of other starch
synthases was detected, and these starch synthases expressed higher in the inferior grains, but
due to their lower amount compared to that of starch SSITa (LOC_Os06g12450) and SSI
(LOC_0Os06g06560), the expression of starch synthases in superior grains was much higher in
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early filling stage. At late filling stage, expression of starch synthases was higher in inferior
grains (see Fig 3).

As to the amylopectin synthesis, branching enzyme (BE) catalyzes the formation of branch
points by cleaving the a-1,4 linkage in polyglucans and reattaching the chain via ana-1,6-glucan
linkage[11]. Expression of three 1,4-alpha-glucan-branching enzyme genes were found during
grain filling, and SBEIII (LOC_0Os02g32660) was expressed far more higher than the other
two members, SBEIIa and SBEIIb (LOC_0Os04g33460 and LOC_Os06g26234). The SBEIII
(LOC_0s02g32660) expression level was much higher in superior grains at 10DAF and
15DAF than inferior grains. But at late filling stage, its expression was higher in inferior grains
and reached comparative level as that of superior grains (see Fig 3).

Starch is synthesized in amyloplast, and several translocater gene plays important roles dur-
ing the starch accumulation process [13]. The BTI gene was suggested to transport ADP-glu-
cose from cytosol to plastid [32]. Of the three BT genes in rice, BT'I-2 (LOC_0Os02g10800)
was the mainly expressed in grains (data from RiceXPro, http://ricexpro.dna.aftrc.go.jp/) [33].
In superior grains, BT1-2 was expressed at 84.36TPM at 10DAF and dropped afterward to
16.58TPM at 27DAF, while, in inferior grains, its expression was 7.8TPM at 10DAF and
reached to 129.49TPM at 15DAF and then dropped down to 11.27TPM at 27DAF. Another
transporter, GPT3 (Glucose-6-P translocator) gene (LOC_Os05g07670) was also detected in
the sequencing data, which transports Glucose-6-P through the plastid membrane [13]. The
expression pattern showed that inferior grains expressed higher level of GPT3 in all the four
periods we sampled.

Expression pattern of genes controlling grain development

Till now, a number of genes controlling rice grain development had been cloned. Of those
cloned genes, GIF1, GW5, GWS, GS3, GS5, FLO2, OsTGW6, CYP78A13, GL3.1were found to
be involved in grain size development [1,34-41]. In our RNA-Seq data, six of those genes were
present in the samples (See Fig 4A). GIF1 (LOC_Os04g33740) was a gene controlling rice
grain filling, and overexpression of GIF1 increase grain production [1]. GIF1 was also desig-
nated as cell wall invertase or OsCIN2 (See Fig 4A). GW8 (LOC_0Os02g14720) was synony-
mous with OsSPL16, and loss-of-function mutation in GW8 resulted in slender grain. In
superior grains, expression of GW8 was not detected. While in inferior grains, it was expressed
at low level at 10DAF and 15DAF. FLO2 played important role in controlling rice grain size
and quality, and loss-of-function in FLO2 caused down-regulation of genes involved in starch
and storage production in endosperm[35]. FLO2 (LOC_Os04g55230) was expressed at higher
level in superior grains at I0DAF and dropped afterwards, whereas, inferior grains showed
lower expression at 10DAF and relatively higher expression at 15DAF and 27DAF compared
with superior grains. CYP78A13 was a cytochrome P450 gene which could promote cell
proliferation, and over-expression of CYP78A13 or its paralogue (GL3.2) could increase grain
size [37]. Expression of these two genes was checked in our RNA-Seq data and we found
CYP78A13 (LOC_0Os07g41240) in superior grains was expressed higher than inferior grains at
10DAF, but lower at afterward periods. While, GL3.2 (LOC_Os03g30420) was expressed at
very low level in inferior grains, but undetected in superior grains. GL3.1 was another gene con-
trolling rice grain length [38]. The mutant allele had weaker dephosphorylation activity than
wild type, thus accelerated cell division and resulted in longer grains. Expression of GL3.1 was
higher in inferior grains in all the four periods we sampled, which indicated a stronger dephos-
phorylation activity in inferior grains and would result in shorter grains.

To investigate the genes involving grain size development, we further checked the expres-
sion of eight genes involved in cell cycle or cyclin related proteins. The expression of these cell
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Fig 4. Heat map representation of grain size controlling and cell cycle related genes. “A” indicates grain size controlling genes expression. “B” indicates
cell cycle related genes expression. “DAF” indicates day after flowering. “S” indicates superior grains, and “I” indicates inferior grains. Expression of genes (in
TPM) was subjected to log2 conversion. With those zero expression genes, zero was converted with 0.01(in TPM).

doi:10.1371/journal.pone.0137168.g004

cycle related genes were higher in inferior grains, especially at middle and late period of grain
filling (see Fig 4B). The results indicated that at 10DAF, inferior grains were still in active cell
division stage and superior grains had completed cell division process and mainly involved in
starch synthesis.

Dynamic expression of prolamins, glutelins and albumins storage
protein genes

Seed storage proteins are the main source of nitrogen accumulation during seed maturation,
which include glutelins, prolamins, albumins, and globulins. In rice, glutelin is the major stor-
age protein, accounting for 60-80% of total seed protein. While, prolamin makes up about 20—
30% of total seed protein [42]. In total, nine glutelins genes and twelve prolamin genes were
detected in our RNA-Seq data. Of the nine glutelin genes, LOC_Os10g26060 was the most
highly expressed one, which reached peak value of 61854.53TPM at 21DAF in superior grains.
However, in inferior grains, expression of LOC_Os10g26060 was negligible (<10TPM) at
10DAF and 15DAF, and gradually increased and reached peak value (42758.06TPM) at
27DAF (see Fig 5A). In superior grains, the prolamin genes were highly expressed during the
filling stage, but in inferior grains, the expression level of prolamin genes was extremely low at
early filling stage and increased until late filling stage. Moreover, even at late filling stage, the
highest expression level was relatively low compared with the peak value of superior grains (see
Fig 5B). The same trend was observed in albumin genes expression. The only difference was
that at 27DAF, expression level of albumin genes in inferior grains reached peak value which
was higher than that of superior grains (see Fig 5C).

PLOS ONE | DOI:10.1371/journal.pone.0137168 September 10,2015 8/13



D)
@ ) PLOS | ONE Grain Filling Lag Shift of Inferior Rice Grains

0.0 6.0 12.0
= = = = 2 = = =
g g 5 5 g g 5 5 LOC_0s10g26060

LOC_0s03g31360
LOC_0s02g14600
LOC_0s02g15090
LOC_0s08g03410
LOC_0s02g15070
LOC_0s02g16820
LOC_0s02g25860
LOC_0s02g15150

LOC_0s07g10580

| """"""""""""""""""""‘““““““““““““
LOC_0s06g31070
LOC_0s07g11920
LOC_0s07g10570

B LOC_0s12g16890
LOC_0s05g26750
LOC_0s05g26720
LOC_0s05g26770
LOC_0s05g26240
LOC_0s12g17030

| I||||||I|||I||||I|||I|||I||||I|||I||||I|||I||||I|||I|||I||||I|||I||||

LOC_0s12g17010
LOC_0s12g16880

LOC_0s11g33000
LOC_0s05g41970
LOC_0s03g55734
LOC_0s03g55740
LOC_0s03g55730
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doi:10.1371/journal.pone.0137168.9005

Discussion

Rice grain filling is a highly complicated process, and the accumulation of starch and storage
proteins is regulated starting at the mRNA level [8]. The RNA-Seq technique provided a pow-
erful tool on transcriptome level for studying and understanding genes involved in grain devel-
opment and grain filling. Starch accounts for 80-90% of the final weight of rice grains, thus
starch synthesis plays a central role during grain filling [16]. In total, expression of 147 genes
involved in starch synthesis was detected in our RNA-Seq data. It was reported that sucrose
synthase was the key limiting factor affecting poor filling of inferior grains [15]. But in our
data, the expression level of sucrose synthase (LOC_0s02g58480) was higher in inferior grains
in all the four grain filling periods we sampled. One possible reason might be the timing of
sampling. Ishimaru et al. (2005) reported that in rice grains, the expression of sucrose synthase
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reached peak at about five days after fertilization, and then dropped afterward. While in infe-
rior grains, the peak appeared at nine or fifteen days after fertilization according different gene
members. As our sampling time started from ten days after fertilization, so the relative expres-
sion level was higher in inferior grain because it might be dropped already in superior grains at
that time.

Sucrose is the most important form in carbohydrate transportation from source to sink organ
[9]. Eight enzymes catalyze the key reactions in the process of sucrose to starch transformation
(Fig 3). At ten days after fertilization, seven of the eight key enzyme genes in inferior grains were
expressed at comparable level as those of superior grains, except for phosphoglucomutase. Phos-
phoglucomutase catalyzes the transformation of o-D-Glucose-6P to o-D-Glucose-1P, which is a
key step in providing the raw material ADP-Glucose used in starch synthesis. Glucose-1-phos-
phate adenylyltransferase and starch synthase are the last two key enzymes in sucrose to starch
transformation. It has been reported that the low activities of starch synthesis-related enzymes
might be the key limiting factor leading to the poor filling of inferior grains [15,16]. But in this
study, the expression of genes in inferior grains involved in sucrose to starch synthesis pathway
was not much lower than superior grains at early filling stage except phosphoglucomutase coding
gene. Expression of phosphoglucomutase gene reached peak at 27 days after fertilization in infe-
rior grains, and before this stage the gene expression was relatively low compared with superior
grains. Therefore, low expression of phosphoglucomutase gene might be a key limiting factor
affecting inferior grain filling at early filling stage.

On the other hand, the inferior spikelets flowered five to seven days later than superior
spikelets [5]. This would cause a lag shift of grain filling process in inferior spikelets, and it was
verified by shift of storage proteins accumulation and grain filling rate peak. Genes involved in
cell cycle or cyclin related genes were all found higher in inferior grains in each of the filling
stages we sampled, which indicated that the inferior grains were still in active process of cell
division. This result was supported by previous report that the cell division rate was higher in
superior grains at early filling stage, and the inferior grain cell division rate reached peak 16-20
days after fertilization according to different varieties [3]. As to the genes that controlling
grains size, CYP78A13 and GL3.1 were two genes which could promote or repress cell prolifer-
ation. At early filling stage, expression patterns of the two genes were both disadvantageous to
cell proliferation in inferior grains. So, at early filling stage, sink organ capacity might be
another limiting factor of inferior grain filling. At late filling stage, when the cell number and
gene expression reached relatively higher level in inferior grains, the photosynthetic rate of
leaves and sucrose content in grains dropped sharply [43,44]. At this filling stage, the superior
grain filling almost finished, but in inferior grains, due to the reduction of raw material in
starch synthesis, accumulation of starch was inevitably affected.
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