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Abstract. We have identified an integral membrane 
protein of 145 kD (estimated by SDS-PAGE) of rat 
liver nuclear envelopes that binds to WGA. We ob- 
tained peptide sequence from purified p145 and cloned 
and sequenced several eDNA clones and one genomic 
clone. The relative molecular mass of p145 calculated 
from its complete, eDNA deduced primary structure is 
120.7 kD. Antibodies raised against a synthetic peptide 
represented in p145 reacted monospecifically with 
p145. In indirect immunofluorescence these antibodies 
gave punctate staining of the nuclear envelope. Im- 
munogold EM showed specific decoration of the nu- 
clear pores. Thus p145 is an integral membrane pro- 
tein located specifically in the "pore membrane" 
domain of the nuclear envelope. To indicate this 

specific location, and based on its calculated relative 
molecular mass, the protein is termed POM i21 (pore 
membrane protein of 12I kD). The 1,199-residue-long 
primary structure shows a hydrophobic region (resi- 
dues 29-72) that is likely to form one (or two adja- 
cent) transmembrane segment(s). The bulk of the pro- 
tein (residues 73-1199) is predicted to be exposed not 
on the cisternal side but on the pore side of the pore 
membrane. It contains 36 consensus sites for various 
kinases. However, its most striking feature is a repeti- 
tive pentapeptide motif XFXFG that has also been 
shown to occur in several nucleoporins. This nucleo- 
porin-like domain of POM 121 is proposed to func- 
tion in anchoring components of the nuclear pore 
complex to the pore membrane. 

T 
HE nuclear envelope (NE) ~ consists of three morpho- 
logically and biochemically distinct domains. The 
outer nuclear membrane with its attached ribosomes 

is continuous with the RER. One of the principal functions 
of this membrane system is to serve as the port of entry for 
all proteins, soluble and membrane integrated, destined for 
the membranes and compartments of the exocytotic and en- 
docytotic pathway. The inner nuclear membrane is attached 
to the nuclear lamina and/or chromatin components and has 
been proposed to serve in the three-dimensional organization 
of chromatin (1). At numerous circumscribed points, the 
outer and inner nuclear membranes are connected with each 
other forming circular nuclear pores of •100 nm diameter. 
These connecting bits of membrane appear to be biochemi- 
caUy and functionally distinct from both the outer and inner 
nuclear membrane and therefore can be regarded as a distinct 
third domain of the nuclear envelope referred to as the "pore 
membrane: The large nuclear pore complexes (NPCs) (esti- 
mated mass of 1.25 x 108 Daltons) (27) occupy the nuclear 
pores. There are as many pore membrane domains in a single 
nuclear envelope as there are NPCs. 

E. Hallberg's present address is Department of Biochemistry, Arrhenius- 
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1. Abbreviations used in this paper: BRL, Buffalo rat liver; GIcNAc, 
N-acetylglucosamine; NE, nuclear envelope; NPC, nuclear pore complex; 
nup, nucleoporin; POM, pore membrane protein; TEA, triethanolamine. 

As the pore membrane domain connects the outer and in- 
ner nuclear membrane it must allow lateral diffusion of inte- 
gral membrane proteins from their site of integration in the 
outer membrane/RER to reach their final destination in the 
inner membrane (30). At the same time the pore membrane 
is expected to contain resident integral membrane proteins 
that perform the specific functions of this membrane do- 
main. One of these functions is to anchor the NPC. Another 
one is likely to effect circumscribed fusion of the outer and 
inner nuclear membrane to generate new pores. Although it 
is not known what happens to the pore membrane during mi- 
totic disassembly of the nuclear envelope, circumscribed 
fission and fusion events may occur if the pore membrane 
were to be disassembled as distinct vesicles, separated from 
the other two NE domains. 

So far it has not been possible to isolate the pore mem- 
brane domain as a separate entity. It is therefore not known 
how many distinct resident integral membrane proteins it 
contains. Only one of these proteins, gp210, has so far been 
identified and molecularly characterized (11, 12, 43). This 
protein contains a single transmembrane segment. Most of 
its mass is exposed on the cisternal side of the pore mem- 
brane. Only 58 amino acid residues, including its COOH ter- 
minus, are exposed on the pore side of the pore membrane. 
The function of gp210 is unknown. Its small COOH-termi- 
nal domain would be topologically poised to interact with 
the NPC. 
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In this paper we report the identification and characteriza- 
tion of another resident integral membrane protein of the 
pore membrane. This protein binds WGA. From its mobility 
in SOS-PAGE, this protein was estimated to be 145 kD and 
is therefore referred to as p145. Through eDNA cloning and 
sequencing we were able to deduce its entire primary struc- 
ture. Its calculated relative molecular mass is 120.7 kD. 
Using monospecific antibodies against a synthetic peptide 
representing a portion of p145 we were able to localize this 
protein to the nuclear pores. Because of its calculated rela- 
tive molecular mass and its localization in the pore mem- 
brane we suggest the alternative term POM 121 (pore mem- 
brane protein of 121 kD). POM 121 is likely to contain one 
or two transmembrane segments. In contrast to gp210 most 
of its mass (1,127 out of 1,199 residues) is most likely ex- 
posed on the pore side of the pore membrane. This domain 
contains XFXFG repeats that were also found in several of 
the nucleoporins (a collective term for all NPC proteins) 
suggesting that POM 121 may function in anchoring these 
proteins to the pore membrane. 

Materials and Methods 

Preparation of Rat Liver Nuclear Envelopes 
and Microsomes 
Rat liver nuclei were isolated from 150-200 g Sprague Dawley rats after 
24 h of stataeation as described by Blobel and Potter (2). All solutions were 
buffered with 20 mM triethanolamine (TEA)-HC1, pH 7.5, and contained 
0.5 mM PMSF and 1 mM DTT. After homogenization and before ultra cen- 
trifugation DTT was added to the homogenate (final concentration, 5 raM). 

NEs were isolated as described by Dwyer and Blobel (6) with the follow- 
ing modifications. All solutions contained 0.1 mM PMSF and 1 mM DTT. 
The DNase concentration was increased to 2 #g/mi, and 250 ng/ml RNase 
was present at beth nuclease digestion steps, 

For the isolation of microsomes a rat liver homogenate was centrifuged 
for 10 rain at 800 g. The resulting postnuclear supernatant was then cen- 
trifuged for 15 min at 12,000 g and the resulting postmitochondrial superna- 
tant was centrifuged at 105,000 g for 60 rain yielding a pellet of "micro- 
somesY 

Isolation of p145 
In a first step, NEs were extracted by urea as follows: 2,500 U of NE 
(1 U of NE is the amount derived from 1 A2~0 U of isolated rat liver nuclei 
(,,03 x 106) and is equivalent to ,,o10 #g of protein) were suspended in 30 
ml of 7 M urea in 20 mM TEA, pH 7.5, 0.1 mM MgCI2 and 10% sucrose 
and incubated for 10 min at room temperature. The suspension was then 
underlaid with 5 ml of 15% sucrose in the extraction solution and cen- 
trifuged for 1 h at 100,000 g to yield a supernatant and a pellet fraction, 
representing urea extracted NEs. 

In a second step, the urea extracted NEs 05,000 U) were solub'fliz~ in 4 ml 
of 4% SOS, 15 mM Tris-Cl, pH 7.5, 0.15 M NaCI, 25 mM DVr, and 0.5 mM 
PMSF by heating at 55°C for 60 rain with occasional sonication in a batch 
sonicator. The solubilized material was diluted to 80 ml with the appropri- 
ate reagents to give a final concentration of 0.2% SOS, 1% Triton X-100, 
15 mM Tris-C1, pH 7.5. 0.15 M NaCI, 1.25 mM DTT, and 0.1 mM PMSF. 
This material was incubated with 2 rni of wheat germ lectin sepharose 6 
MB (Pharmacla, Uppsala, Sweden) for 4 h at 4°C and the slurry was then 
transferred to a column. The column was washed with 25 column volumes 
of wash buffer (0.2% SOS, 1% Triton X-100, 15 raM Tris-Cl, pH 7.5, 
0.15 M NaC1, 1.25 mM DTT, and 0.1 mM PMSF). The wash and flow 
through fractions were combined and stored for analysis. The WGA column 
was eluted with 5 ml of 0.5 M N-acetylglucosamine (GIcNAc) in wash buffer 
and thereafter with 5 ml of 1% SOS in H20. The 0.5 M GIcNAc eluate 
from the WGA-sepharose column was concentrated by precipitation with 
10% (wt/vol) ~ followed by two washes with 90% ethanol. The precipi- 
tate was solubilized in 100 #1 of sample buffer (475 mM Tris-C1, pH 8.8, 
4.0% SOS, 0.1 M DTT, and 15% glycerol) and the material was subjected 
to SOS-PAGE using an 8% acrylamide gel. After electrophoretic separa- 

tion, the proteins were transferred to nitrocellulose (40) and detected with 
Ponceau red. A strip of the nitrocellulose filter containing the 145-kD pro- 
tein was cut out and digested with endoproteinase Lys C (Sigma Im- 
munochemicals, St. Louis, MO) as described (8). The resulting peptide 
fragments were separated by reversed phase HPLC. Selected peptides were 
subjected to automated Edman degradation (see Fig. b). 

Isolation of mRNA, RNA Blot Analysis 
and Synthesis of eDNA 
Total cell RNA was isolated from rat hepatoma N1S1 ceils (American Type 
Culture Collection, RockviUe, MD) grown in suspension culture in DME 
supplemented with 10% FCS, 0.1 mM MEM-nonessential amino acids and 
5 mM L-glutamine (GIBCO-BRL, Gaithersburg, MD). RNA was prepared 
from 2 g of pelleted cells (,,0800 × 106 ceils) harvested in mid log phase 
by the procedure of Chirgwin and cov~orkers (3) with modifications (9). 
Poly A + containing RNA was isolated by oligo-dT cellulose (Boehringer 
Mannheim Biochemicals, Indianapolis, IN) chromatography (28). 

The poly A + RNA was electrophoresed in a denaturing agarose gel (20), 
transferred to nitrocellulose (38) and probed with a random primer labeled 
probe corresponding to nucleotides 723-2,186 (see Fig. 5 and below). 

eDNA was synthesized from 5 #g poly A + selected RNA using random 
hexamer primers and Moloney Murine Leukemia Virus reverse transcrip- 
tase (GIBCO BRL) (28). 

Isolation of cDNA and Genomic Clones 
On the basis of the amino acid sequence of one proteolytic fragment of p145 
(see Fig. 5), partially degenerate sense (amino acids 489-494) and antisense 
(amino acids 506-511) primers were synthesized. SalI and XbaI restriction 
sites plus two extra nueleotides were inserted at the 5'-ends of the sense and 
antisense oligonucleotides, respectively. The oligonucleotides were purified 
on 15% acrylamide gels and used as primers for PCR. 4 ng of cDNA and 
4/zg each of the sense and antiscnse primers were used in a 100 #1 PCR 
reaction containing 10 mM Tris-C1, pH 8.3, 50 mM KC1, 1.5 mM MgC12, 
0.001% gelatin, 0.2 mM each of dATP, dCTP, dGTP, and dTTP, and 2.5 U 
of Taq polymerase (Perkin-Elmer Corp., Norwalk, CT). Reaction condi- 
tions were 25 consecutive cycles of denaturation (95°C for 1.5 rain), anneal- 
ing (42°C for 2.5 rain) and polymerization (72°C for 3 rain). One major 
amplification product of 84 bp was formed. The amplification product was 
purified on a 4% low melting agarose gel (NuSieve GTG: FMC Bio- 
Products, Rockland, ME) and subcloned into pBluescript SK II (Stratagene, 
La Jolla, CA) and sequenced. The nucleotide sequence contained an open 
reading frame encoding an amino acid sequence matching the data derived 
from the proteolytic fragment of p145. 

On the basis of the DNA sequence of this amplification product, a 34-met 
antisense oligonucleotide was synthesized. The oligonucleotide was labeled 
at the 5'-end using 32P-y-ATP (Dupont Co., Boston, MA) and T4 poly- 
nucleotide kinase (New England Biolabs Inc., Beverly, MA) and used to 
screen a )~ZAP eDNA library derived from N1S1 ceil mRNA (43). Six posi- 
tive plaques were isolated and their inserts (<1.5 kb) sequenced. 

One of the clones isolated from the )~ZAP library, corresponding to 
nucleotides 723-2186 (see Fig. 5), was random primer labeled with S2p-c~- 
dCTP (7). This probe was used for screening of an ueamplified Xgtl0 eDNA 
library derived from Buffalo rat liver cell mRNA using an oligo dT-primer 
(35). 1,000,000 pfus were screened. Eight unique eDNA clones in the size 
range 4.8-5.5 kb were isolated, subcloned into pBluescript SK II and se- 
quenced. 

A )~ DASH II rat genomic library (Stratagene) was screened using a ran- 
dom primer labeled (7) 719-bp restriction fragment (nucleotides - 5  to 714) 
from the 5' end of the Xphege clone cl 1. Three clones were isolated and re- 
striction fragments hybridizing to the probe were identified by DNA blot- 
ting (32) and subcloned into pBluescript SK II. The genomic DNA frag- 
ment of the clone g301 contained sequence starting upstream of the 5' end 
of the eDNA clones and ending in the Not I site at nucleotide 161 (see 
Fig. 5). 

Hybridization Conditions 
Replica lifts from the plated libraries and treatment of the nitrocellulose 
filters were carried out according to standard methods (28). Nitrocellulose 
filters, as well as the Southern and Northern blots, were prehybridized at 
65°C for 4 h in hybridization solution (50% formamide, 5× Denhardt's so- 
lution, 0.2% SOS, 50 mM sodium phosphate, pH 7.7, 900 mM NaCI, 5 mM 
EDTA and 0.1 mg/mi denatured herring sperm DNA). Hybridization with 
random prime labeled probes was performed at 42°C for 24 h using ~1 x 
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106 @m/nil of hybridization solution. Filters were washed once at room 
temperature and then five times at 42"C in a solution of 0.2 x SSC and 
0.1% SDS. Hybridization with the end-labeled oligonucleotide probe was 
performed at 37°C for 24 h using ,,ol x 106 dpm/ml of hybridization solu- 
tion containing 35% formamide. Filters were washed five times at 42°C in 
a solution of 2 x SSC and 0.1% SDS and positive plaques detected by auto- 
radiography. 

DNA Sequencing, DNA, and Protein 
Sequence Analysis 

Sequencing of double stranded DNA was performed according to the 
dideoxy method (29) using 17-mer oligonucleotide primers (34, 37). Hy- 
dropathy analysis (17, 19), secondary structure predictions (10) were per- 
formed on a Macintosh personal computer using software obtained from 
DNASTAR, Inc. (Madison, WI). DNA and protein homology searches 
were performed in GenBank By FASTA (25). 

Production o f  Anti-Peptide Antibody 

A 13-mer synthetic peptide (residues 485-496, see Fig. 5) was synthesized 
with an additional cysteine at the NH2-terminus. The peptide was coupled 
to keyhole limpet hemocyanin (Calbiochem Corp., LaJolla, CA) using 
m-maleimidobenzoyl-N-hydroxysuccinimide ester (Pierce, Rockford, IL) 
and injected into rabbits as described (15). The antiserum was affinity 
purified on a column consisting of the synthetic peptide (2 mg) coupled to 
sulfolink (1 ml) according to the manufacturers manual (Pierce). Antiserum 
was diluted fourfold in PBS and cycled though the column overnight at 4"C. 
The column was then washed with 50 ml of PBS and eluted with 0.1 M 
glycine-HCL, pH 2.8. Fractions containing antibody were pooled and the 
pH adjusted to 7.4. 

Western Blot Analysis 

Proteins were separated on 8% SDS-PAGE and then electrotransferred to 
nitrocellulose (40). For probing with WGA the nitrocellulose sheets were 
blocked in TBS-T (20 mM Tris-Cl, pH 7.5, 150 mM NaC1, 0.1% Tween 20) 
supplemented with 0.1% gelatin and then incubated with biotinylated WGA 
(Vector Laboratories, Inc., Burlingame, CA) at a l:500-fold dilution in 
TBS-T for 3 h at room temperature. After washing four times in TBS-T the 
sheets were incubated with streptavidine coupled to HRP (Vector Laborato- 
ties) for 30 rain at room temperature. After three washes in TBS-T and two 
washes in TBS the filters were developed for 5-20 rain at room temperature 
in a mixture consisting of 40 ml TBS, 8 ml methanol containing 3 mg/ml 
4-chloro-l-napthol and 20/~1 H202. 

Blots to be probed with antibodies against a synthetic peptide ofp145 (see 
above) or SSRc~ (21) were blocked in TBS-T supplemented with 2% dry 
milk. The sheets were washed and incubated with affinity purified anti- 
peptide antibodies in blocking buffer for 1 h at room temperature. The filters 
were washed four times and incubated with HRP coupled to donkey 
anti-rabbit IgG (Amersham, UK) at a 1:5,000-fold dilution in blocking 
buffer for 30 rain. Detection of immunoreactivity was performed as de- 
scribed in "ECL" detection system manual (Amersham, UK). 

Preparation of  BRL Cell Lysates 
A 100 mm tissue culture dish containing a confluent monolayer of Buffalo 
rat liver (BRL) cells was washed three times with PBS. 1 mi of SDS-PAGE 
sample buffer was added and the plates were scraped to recover a whole 
cell lysate fraction. This material was then sonicated and heated at 95"C 
for 10 min in preparation for electrophoresis. 

Immunofluorescence 
Immunofluorescence was carried out on a subconfluent monolayer of BRL 
ceils grown on coverslips. The cells were washed twice in PBS (20 mM so- 
dium phosphate, 0.9% sodium chloride, pH Z5) at room temperature, fixed 
in 3.7% formaldehyde in PBS for 20 rain on ice and permeabilized with 
0.5% Triton X-100 in PBS for 2 min on ice. The fixed and permeabilized 
cells were blocked in wash buffer (PBS, 0.1% Tween 20, 2% dry milk) for 
20 min at room temperature. Cells were probed with affinity purified anti- 
peptide (p145) antibodies for 1 h at room temperature followed by 4 x 
2-rain washes in wash buffer. After a 40 rain incubation with FITC-labeled 
donkey anti-rabbit IgG (1:100 dilution in wash buffer) the coverslips were 
washed 4 x 2 min in PBS and then mounted in a solution of 1 mg/ml 

p-phenylene diamine in 90% glycerol, pH 8.0. The samples were examined 
by a Zeiss Axiophot microscope (Carl Zeiss, Inc., Thornwood, NY) and 
the images were recorded on Kodak T-MAX 400 ASA film (Eastman Kodak 
Co., Rochester, NY). 

lmmunoelectron Microscopy 

BRL cells were pelleted and fixed in PBS containing 2 % paraformaldehyde 
and 0.05% glntaraldehyde. The material was then infused with 2.3 M su- 
crose in PBS for 30 rain at room temperature and then frozen in liquid nitro- 
gen. Ultrathin frozen sections were prepared as described (39). The sections 
were incubated with affinity purified rabbit anti-peptide (p145) antibodies 
for 2 h at room temperature, followed by goat anti-rabbit IgG bound to 
10-nm gold particles. The grids were washed and stained as described (13). 

Resu l t s  

The Nuclear Envelope Contains an Integral Membrane 
Protein (p145) That Reacts with WGA 

The proteins o f  isolated N E s  and mic rosomes  (ER) f rom rat 
l iver  were  separated by SDS-PAGE,  transferred to ni t rocel-  
lulose and probed  with W G A  (Fig. 1 A) or  ant ibodies  against  
S S R a ,  a marker  for an integral  m e m b r a n e  prote in  o f  the E R  
(41) (Fig. 1 B) .  As expected,  SSRt~ was found both in the 
E R  and N E  fractions (Fig. 1 B)  and,  as it is an integral  m e m -  
brane protein,  it was not  extracted f rom N E s  by 7.0 M urea 
(Fig. 1 B, compare  lanes sup and pellet). Probing with W G A  
yie lded no react ive pept ides  in the E R  fract ion (Fig. 1 A) and 
showed several  WGA-react ive  polypept ides  in the N E  frac-  
tion (Fig. 1 A). Only  one  o f  these polypept ides  ( indicated by 
an ar row in Fig. 1 A) was not extracted by 7.0 M urea (com- 
pare  lanes sup and pellet), suggesting that it is an integral  
m e m b r a n e  protein.  Because  o f  its 145,000 Mr, es t imated 
f rom its mobi l i ty  on SDS-PAGE,  this integral  m e m b r a n e  
protein is referred to as p145. As p145 can be enzymat ica l ly  
labeled with UDP-ga lac tose  (data not  shown) the most  l ikely 
cause  for its strong interact ion with W G A  is that it is 

Figure 1. p145 is an integral 
membrane protein that binds 
to WGA and that is unique to 
the NE. A microsomal frac- 
tion (ER) (20 #g), a purified 
nuclear envelope fraction 
(NE) (20 #g), and equivalent 
amounts of a 7.0 M urea ex- 
tract of the NE (sup) and ex- 
tracted NE (pellet) were sub- 
jected to SDS-PAGE. The 
separated proteins were trans- 
ferred to nitrocellulose and ei- 
ther probed with WGA (A) or 
antibodies to the a subunit of 
the signal sequence receptor 
(B). Note that p145 is absent 
from the ER. Relative molec- 
ular mass standards are indi- 
cated on the left; arrow points 
to p145; single star indicates 
p180 (35) and double star in- 
dicates p62 (33); both are 
nucleoporins. 
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Figure 2. Purification of p145. 
NEs were extracted with 7.0 M 
urea. The extracted envelopes 
were solubilized with SDS-Triton 
X-100 and the proteins separated 
by WGA sepharose affinity chro- 
matography. Proteins of equiva- 
lent aliquots (40 U) of the load, of 
the flow through fraction, of the 
0.5 M GlcNAc eluate and of 
the SDS-wash were analyzed by 
SDS-PAGE and stained with Coo- 
massie blue (A), or, in the case of 
the eluate fraction, were trans- 
ferred to nitrocellulose and 
probed with WGA (B). Relative 
molecular mass standards are in- 
dicated on the left. Arrow indi- 
cates position of p145. 

modified by single GIcNAc residues. Since p145 is not de- 
tected in the ER fraction, it is likely that it is also absent from 
the outer nuclear membrane domain of the NE and is instead 
located either in the inner membrane or the pore membrane 
domain of the NE. 

Purification of p145 
To purify p145 for partial protein sequencing, NEs were first 
extracted with 7.0 M urea and then solubilized by SDS. After 
the addition of Triton X-100, the solubilized proteins were 
subjected to affinity chromatography on WGA sepharose. 
The proteins of the various column fractions (as well as the 
load) were analyzed by SDS-PAGE and stained with Coo- 
massie blue (Fig. 2 A). Most of the integral membrane pro- 
teins of the NE did not bind to WGA sepharose and were 
found in the flow through fraction (Fig. 2 A). Only two pro- 
teins, one 145 kD and the other 210 kD were found in the 
fraction eluted with 0.5 M GlcNAc (Fig. 2 A). When the 
SDS-PAGE separated polypeptides of the eluate fraction 
were transferred to nitrocellulose and probed with WGA, 
only the 145-kD protein reacted (Fig. 2 B). This protein was 
then subjected to sequence analysis. We found that the 
NH~-terminus of p145 was blocked, but we obtained se- 
quences from several proteolytic fragments of p145 (see 
Fig. 5). 

A 210-kD protein, which by immunoblotting was iden- 
tiffed as gp210 (data not shown), unexpectedly coeluted with 
p145 (Fig. 2 A). The nature of this interaction is unclear since 
gp210 is present in the flow through fraction, the eluate, and 
an SDS wash of resin after elution (Fig. 2). 

Molecular Cloning and Nucleotide Sequence 
On the basis of peptide sequence derived from the endo- 
proteolytic fragment of p145 (amino acids 489-511, see Fig. 
5) a corresponding PCR product was synthesized and its 
DNA sequence was used to construct a p145 specific oligo- 

g 301 (- 480 - 184) I ' 1  

011 (,S -4~1)  I I 
©1-C4 (10 - 4at4) I I 
as, e7  0 6 -  5S~) I I 

06 (16 • ~ .~a)  I I 

Figure 3. Schematic representation of clones of eDNA and genomic 
DNA. Eight individual eDNA clones (el-e7 and ell) and one 
denomic clone (g301) forms a 5983 nueleotides long overlapping 
sequence. The 3,597-nucleotide-long open reading frame starting 
at position +1 is illustrated by a hatched box and the position and 
the length (in nucleotides) of each of the clones is indicated. The 
positions of the Nod (+161) and XhoI (+714) restriction sites are 
indicated on the scale bar. 

nucleotide probe. Screening of a eDNA library constructed 
from oligo-dT and randomly primed mRNA from the rat 
hepatoma cell line N1S1 (43) yielded only partial clones 
(<1.5 kb). We therefore screened an unamplified oligo-dT 
primed kgtl0 cDNA library derived from Buffalo rat liver 
cells (35). We isolated and sequenced eight individual 
cDNA clones from this library in the range of 4.8-5.5 kb 
(Fig. 3). 

The overlapping cDNA clones establish a 5,508-bp contig- 
uous sequence (Fig. 3, and see Fig. 5). This is consistent 
with the size of the p145 mRNA (5.5 kb) determined by 
Northern blots of poly A + RNA from N1S1 cells (Fig. 4). 
The cDNA clone extending furthest in the 5' direction, c11, 
contains an initiation ATG and five upstream nucleotides, 
CCGCG, that conform with the proposed consensus se- 
quence for a translation initiation site (18). However, we 
could not be sure that this site is the actual translation initia- 
tion site. If translation were to begin at this site, the open 
reading frame would extend for 3,597 nucleotides and en- 
code a protein of only 120,711 Daltons, i.e., significantly be- 
low the 145 kD estimated from its mobility on SDS-poly- 
acrylamide gels. Our attempts to isolate other eDNA clones 
that would extend further 5' of eDNA clone el 1 failed. We 

Figure 4. Northern blot analy- 
sis. 5 #g poly A+ RNA of rat 
hepatoma N1S1 cells was sep- 
arated on an agarose gel, trans- 
ferred to nitrocellulose and 
probed with a cDNA fragment 
comprising nucleotides 723- 
2,186 (see Materials and 
Methods). The size of the 
RNA markers are indicated 
on the left. The size of the 
mRNA hybridizing to the I)145 
specific eDNA probe was esti- 
mated to be 5.5 kb, as indi- 
cated. 
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GATCCTCCTGCCTTCACCTTCCAAATGCCG -~ 5i 
GGATTACATTAATGTGCCACCAATCT "f GGCTCTGTGCCTTGATTTC TACCACCAC TC TTCCGCAGTCCGGGAGCGTCAGGGAAACCTCAA -361 
GCGTCCAAACCGGC TGTCAGACGGGCTATATTTTT yT  TTCTTTCTTATTTTT  TAG TT TTTGCTG TT TTGAGACAGGATT TA TG T C TCTA?  -271 
GCCG~TCTGTAATT~T~TTTGTGAACCAGGCTGGGCTCAAACTCA~AGAAATC~T~CTGCCTCTGCCCCCTG~GTTCTGAGAGTAAAAGC -181 
CTGCACCAATACGCCTATCCAAACTGTATTTTT~AAAATACG~TCTCGCGCCTCG~TCCGCACGCTGCGGCA~TTCCCCTTTTCACCcGG -91 
CGCGCCGCGTCGAGGACgG TGACGTAGGCGGCGGCGCGCGGCGCGG TGTATC CTGGGATA T T TAAGTCCGC TCC GCGGCGCGGAGC CG ~ G -2 

ATGTCTCCGC, CGGCTGCGGCGGCTGACGGAGGCGAGCGGCGGCGGCC TCCGT TGGGCGTACGGGAAGGCC GGGGCCGGACCCGCGGCTG C 90 
M S P A A A A A D G G g R R R P P L G V R E G R G R ? R I G C 30 
GGAGGACCAGCGGGTGCCGCGGCACTGGGCCTAGCGC TGCTCGGCC ?CGCGC ?C TACCTAGTGCCCGCGGCGGCCGCGCTGOCC YGGCTG IB0 

GC~GTGGGGGC~AGCGCGGCCTGGTGGGGCCTGAGCCGAGAA~CCCGCGGC~GAGGGGC~TGTCGTCGTTCGTGCGCGAGTCGCG~CGT 270 
~ V ~ N X ~ U E ] R £ p R G P ~ G L S S F V R Z S R R  90 
CACCCGCGGCCCG~TCACCGCTTCACCGCTTCCA~CCAAGTCGCCAGTCAACGGTAGCCTCTGCC~%ACCCCGCAGCC~GCTTGGAGGC 360 
H P R P A L T A S P L p A K S F V N G S L C E P R S p L G G  120  
CCCGACCCC•C•GAACTCTTACT•AT••GCAGCTACCYGGG••A•CCA•GCCCG•CGGAGCC•GCCCTCC•GCA••A•CCTAGAG•CA•• 450 
P D p A E L L L M G S y L G M P G p F E P A L P Q D P R D R  150 
CCAG~CGCCGCCCACCCTCACGGTCCCCG~CGT~GTCTT~GA~GGCCCA~GAGT~CACCACGTCTACCC~GCGCTCCC~ACCCCAC~T 54O 
P G R R p p S R S P p S S S T A Q R V H H V Y p A L p T P L  180 
TTG~GACCTTCTCGGAGG~GCCCCACCGAGA~TGrGGGCCT~TATCCAGTCGG~TTGTTAT~ACCCCG~GACGA~ATCCCATT~AG 63O 
L R p S R R P P H R D C G P L S S R F V I ~ P R R R Y p I Q  210  
CAAGCCCAGTATT~C~TGC~GG~GCACT~CCAAC~GTAqG~GGAATGGTGGCCAT~AAAGCCGT~TA~CTG~ACGG~CTCGAGG 720  
Q A Q Y S L L G A L p T V C W N G G H K ~ A V L S A R N S R  240 
ATGGTGTGCAGc~CAGTGACAGTGA~GATTG~CC7~AGACAGCAAGCTATTTCGATCA~C~TGC~GGAGCAGATA~T~AG~ACCAcA 810 
M V C S P V T V R I A P P D S K L F R S P M P E Q I L S T T  270 
CTGTCT~CACCATc~GTAATG~CC~AGACCCT~GTGC~AGGAGACGGTG~TGAATGCCCT~AA~GAAAAGAAGA~AGGACAGTGGCA 90O 
L S S P S S N A p D P C A K E T V L N A L K E K K K R T V A  300 
GAGG~GACCAGC~.GCATCTTGAT~GCCAGGAA~CAAGAGAAGA~GCCACGATAGCAGTGGGAGTGGACATTCGG~ATTC~GCCCCT~ 99O 
E E D Q L H L D G Q E N K R R ~ H D S S G S G H S A F E P L  330 
GTGGCCAACGGAGTCCCTGCYGCA~TTGTGC~T~G~CTGGCTCCCTGAAGAGAAGTcTGGCTTCCCAGAG~TCGGATGA~CACTT~AC 1080 
V A M G V p A A F V P K P G S L K R S L A S Q S S D D H L N  36D 
~AC~TCTCG~AC~TCCTCTG~GAGCT~cCTGAcTA~cA~ATGCACAGGAGG~A~CC~AGCTC~AG~CG~AACG~AT~ACCAG~TCC 1170 
K R S R T S S V S S L T S T C T G G I P S S S R N A Z T S S  390 
TAcAGCTCcA~C~GAGGTGTCTCACAGCTGTGG~GAG~GTGGTCc~AC~T~TTCTCCcTTCTc~AGCCCA~TT~CTCCCGCTCC~AG 1260 
Y S S T R G V S Q L ~ K R S G F I S S P F S S P A S S B S Q  420  
ACACCAGAGAGGCCAG~CAA~AAGACAA~AGAGGAGGAACCATGTCACCA~TCCAGTTCTTCAGCTCCCTTGGTGACAGAC~GGAGTCC 1350 
T P E R p A K K T ~ E E Z P C H Q S S S S A P L V T D K E 5  45D 
CCAGGAGAA~GGT~ACAGATCCAGCCACGGGG~GCAGCAGAGCCTGTGGACTTCCCCACCCACACCTGGCAGCTCCGGGCAACGCAAA 144D 
P G E K V F D p A T G K ~ Q S L W T S P P T P G S S G ~ K  480 
CG•AAGATTCAGCTG•TGCCCTCCCG••GAGGGGACCAG•TCAC•TTGC•TCCAC•CC•TG•GCT•GGCTATTCCATCACTGCTGAAGA• 1530 
R K I Q L L P S R B G D q L T L P P P P E L G Y S I T A E D  510 
CTGGACATGGAGAGGAGAGCCTCACTGCAGTGGTTTAACAAGGTCTTGGAGGATAAGACGGATGATGCCT~TACCCCAGC~ACTGACACC 1620 
L O M £ R R A S L ~ W r ~ ~ v L E 0 x ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ 5~0 
~CCCAGCCACCAGCCCTCC~T~ACACTCA~GCC~A~G~GGGGCCTG~GCC~CACCA~CCTCC~T~CCAGC~CCCAG~CTAAC i~Io 
S P A T S p p F ? I .  T L p T V G P A A S P A S L p A P S S N  57O 
CCAC?G??GGAGAG?TtGAA~AAGA~GCAGGAG?C~cCAGCCCCA~CC~C~?CAGAA~C?C~GAGGcAGC~AG?~GCGG~CCC~?CA 1800 
P L L E S L K K M Q E S I ' A P S S S E P p E A A T V A A P S  600 
CCTCCGAAGA~ACCTAGCC~CCTGGcCC~C?TGT~CACCA~TGACAGGGCC~TAGCCAG~A~TCCTCAGACTC~AAACC~AC~CC 1890 
P P K T P S L L A I ' L V S P L T G p L A S T S S D S K p ~  630 
ACCTTCCTGGGGCTGGCTTCTGCTTCATC~GCCA~ACCACTCACTGACACCAA~GCCCCTGGA~TCTCTCAGGCCCAGCTG~TGTCAGC 1980 
T F L G L A S A S S A T p L T D T K A P G V S ~ A Q L C V S  660 
ACCCCAGCCGC•A•AGCTCCCTCCCCAACTCCAGCCAGcACGCTGTTTGGGATGCTGAGTCCACCTGCCAGCTCCTCTTCCCTTGCCA•T 2070 
T P A A T A P S P ~ P A S T L F G M L S P P A S S S S L A T  690 
CCTGGCCCAGC~TGCGCT~CTCCCATGTTTAAGCCcATTTTCCcGGCCACACCTAAGAGTGAGAGTGATAA~CCCTTGcCAACTAG~TCC 2160 
p C p A C A S P M F K P I F P A T P K S Z S D N p L P T S S  720 
TCACCC~CCACGAC~C~CCAG~CA~CA~CGCCCTCCCCACAACAGC~CCG~A~A~CT~ACACTT%~AAGCCCA~TTTTGAGAGCG~G 2250  
S A A T T T F A S C A L p T T A T A Y A H T F K p I F E S V  750 
GAG•CATTTGCAGCCATG••CCTGTCACCTCCCTT•••CCTGAAGCAGACAACTGCTCCAG•CACCACTGCAGCCACATCAGCTC••CTC Z340 
E p F A A M F L S p P F S L K Q T T A P A T T A A T S A P L  780 
~ T ~ A ~ T ~ G ~ T G ~ G ~ A ~ T G C ~ A C T ~ A ~ A G T G ~ A ~ T G G C A ~ A ~ A G ~ T T ~ T G ~ T ~ A A G ~ T G T G T T T G G ~ T T T G G A G T G A C ~ A ~  2~30  
L T G L G T A ~ S T V A T G T T A S A S K P V F G F G V T Y  810 
GCAGCGAGCACTGCCAGTAC~ATAGC~TCCACCTCCCAGTCAATTCTG~TT~GGGGAGCCCCGCCTGTTACTGC~TCCAG~TCCGCC~CA 2520 
A A S T A S ~ I A S T S Q S I I ,  F G G A p p V T A S S S A P  8~0 

~CCC~GGCC~CCATCT~C~TGGCAAGCC~C~GCCC~AGCAGCGTCTG~G~CGGGCACCTCCTTTAGCCAG~CCCTTGCCAGCTC~ 2610 
A L A S I F Q F G K P L A P A A S V A G T S F S Q S L A S S  870 
GCCCAGAC•GCTGCCAGCAATAGTAGTGGGGGCTTCAGTGG•T•T•GTGGGACCCTCACCACCTCCAC•TCTG•CCCTGCCA•CACCAGC 2700 
A Q T A A S N S S G G F S G F G G T L T T S T S A P A T T $  900 
CAGCCCACTCTGACCTTCAGCAACACTGTCACCCCCACCTTCAA~ATTCC~TTTAGC~CAGTGCC~GCCTG~GC~CCCAACCTACCCC 2790 
Q P T L T F S N T V T p T F N ~ P F S A S A K P A L P T Y P  930 
GGAG~AACT6ACA~CCACATTT~GAGC~ACTGATGG~CAC~A~GCCGGCA~TTGCC~C~TTTTGGC~GCTCTTTCA~TTTTG~C 2880 
G A N S g p T F G A T D G A T K P A L A P S F G S S F T F G  960 
~CTCTGT~CCTC~GCCCCGTCG~CAG~C~AGCACCAGCCGCCTTTGGTGGTGCTGCACAGC~AGC~TTCGGAGGGTTGAA~GCCTCA 2930 
N S V A S A P S A A P A p A A F G G A A Q p A F G G L K A S  990 
GCCT~cACCTTCGGCA~C~T~C~AGCACTCAG~G~TTTCG~TAGCACCACCTCCGT~TTCT~CTTTGGTT~AG~ACCACATCTGG~ 3O6O 
A S T F G T P A S T Q p A F G S T T S V F S F G S A T T S G  1020 
TTTGGTGCTGCTGC~GCCACCACACAGACcACC~ACA~TGGGAGCAGCAGCTCTCTGTTTGGCAG~TCTACTCCATCCccATTCACATTC 3150 
F G A A A A T T Q T T H S G S S S S L F G S S T p S P F T F  1050 
GGTGGCTCAGCAGCTcCTGcTGGTGGTGGAGG•TTTGGG•TTAGTGCTAcAcCAGGTA••GGCT•CA•CTCTGGAACTTTTAGCTTTGGA 3240 
G G S A A P A G G G G F G L S A T P G T G S T S G T F S F G  i080 
TCTGGACAGAGCGGGACCACGGGCACCACCACCTCCTTTGGGG~AGTCTGAGTCAG~CACCCTGGGCGCACC~AGCCAGAGCTCACCG 9330 
S G Q S G T T G T T T S F G G S L S ~ N T L G A P S Q S S P  Iii0 
TTCGCCTTcAGTGTGGGCAGTACACCTG~AGC~GCCTGTGTTTGGAG~cAcATCCACACCTACTTTTGG~AGAGTGCCCCTG~CCCA 9420 
F A F S V G S T P E S K F V F G G T S T P T F G Q S A p A P  II~0 
GGAGTCGGCACCACAGGCAGCAGCCTCTCATTTGGGGCCCCTTCAACA~CTGCCCAAGGCTTTGTTGGAGTTGGAC~TTTCGGATCAGGA 3510 
G V G T T G S S L S V G A P S T P A Q G F V G V G P F G S G I I T 0  
Gc~CCTTCCTTTTCCATTGG~GCGGGATCCAAGA~c~CAGGGGCTCGA~AGCGACTTcAGGCCCGAAGGCAGCACA~CcGC~GAAGTAG 3600 
A P S F S I G A G S K T P G A R Q R L Q A R R Q H T R K K  1199 

~TGC~TGC~TGCCTGCCTGCCTG~ACC~C~A~CCCTGC~TGGACCTG~ACCT~AG~A~CTGCTAGG~GA~T~TGA~CTGCA~TC 3690 
CCATAGCAAACCCAGCCGTCACCAGGGTGG~GTCTGGCCCTTT~GTTCTA~GGAAGCGAGTGCCCCGGGGAGCGAGGTTTACTTGAA 3780 
C~GT~A~ACTGGTTAGGCTGGAG~C~G~AAA~ACATCTGTACATATTGTC~TCTTG~TG~cCAGCGCTTGTT~AGTGTAT~CCTA 3870 
GGCAGCC~C~T~T~CTTGGGCACCATTCTGCT~C~cC~ACTTGGATCCCT~TACATGAGGTGGGATTGGGGGA~CGG~TGTCC~T 3960 
AGCTTT~CTGCTTGG~TTGGCCATGAGTGGTTCTCT~CCTCTGATCCCCTCAGGG~T~TCCCTATTTCTTGCTGCTTTGTCCTTCACC 4050 
GGTCCTCTGTGAGATTCATTCCTTTTAAATGGCGGTGAATCTTGCTTTGCCTTGGAGACCCCAGTGGCG~TGTTTT~C~CTTCTGTCAA 4140 
GTCTGTTTAGTCTC~AGCCCTCTGCTAACCCAGCCTCTCAAAAGGTTGGTGGCTCAA~CTGTTAGC~TGGCAGAGCCAGG~GAAGTCT 4230 
GCTCCAGGAGGTCCTGGGGCAGGCAGACCAGACCGCC~CCCACTGCTTCTAGCTGCCTCTTCACCTGCCCGCCACCCCACG~CC~CTT d320 
GCCTCTTTGGGATTGTATTTTCC~GCCTTGTACTGT~TTTGTCTGATGTTAATGTGTGTTGCTCCTTGAATCGAGTTTGGAGGAAGAAT 4~i0 
TGAATTG~ATGTGTGGCGGCATGTTGGT~TGCCGGACTTAATGT~A~CTGGGCCTCCTGGGCCTAGCTAATTG~TGCTG~GTG~AC 4500 
~GCCACAGTGACAGCCACAGT~TGA~T~TGAATCTC~TAGTGTTTGA~T~G~GcTGGCAGCCCAGGG~TGGATGGA~CGGCTGG 45~0  
GAGCAGA~TT~C~CTCTGTTGGT~CCCCATACAGCCCAC~C~AGG~AGGG~s~CT~C~GCCTGTG~TTG~A~TGTA~TAACCAA 4680 
CTACA~TTTGAGTTCTTAGT~G~ATTT~CAAAAGGGTCC~ACC~AGCC~GTcT~T~TTCCA~GCCA~ACCACACC~TA~CCC~GC ~770 
CTGGCTGCCATGTCCGCCCTCTTTGGGAGAAGTATGAATGCGTGTGTCTA AATTA~AGAA~AATATTTAAACATTTTTTAACA~4860 
~`[~AATTTATTTTTGTATTTAA~CTA~T~GCCTTTTAAATTC~TTCAAGCTTGGTTCACTGAGGTGGTT~G~A~AAATGCTATGGAATA 4950 
GTAGGAATTAGCTGTATAGT~AT~CT~TGTGAAGGAAGGG~T~ATA~TGTCCCCA~AGCTCT~CTGAG~GGCAGAGCTC~TT~TAG 5040 
ACATGTCG~GT~TGTAACTCTTATTTTATAAACAGTGTGATGTAGCTGTAACTGGTCC~CTTTC~TTGT~GTGGGATT~ATGTTTT 5130 
ATGGCAGGGGTTA~GCTGGGTTGTA~GG~C~GGAGAA~GCTGGAC~TCAAG~C~C~ATGCCTGT~GGAT~GGGATGGGTGGGGGTC 522D 
TGAACACGAACCCTCTACCTGT~CCTCAGGTAAGG~GGGCCTCCCTCCAATTCAGTCTGAGCTAATTACCTCAGCTCCACAGCAG~CT ~310 
GTATCCAGGGTGCCGGAAGAGGTGTCCTG~AATAGCCTCGGTGTGTGAG~A~ATCTGTCCGTCGTCACGCTGGACAG~ACAG~A~CT 5400 
GGGGCT~CCACCACAGACTGCGTTTC~G~GAGTGTAGCTGAGATTTTTAGTATGAATG~GAGATTGTTCTTGCTTATGTCATTAAA~`T~  5490 
~ACTGTGATCTG ~583  

Figure ~ Complete nucleotide sequence and deduced amino acid 
sequence of cDNA and genomic DNA clones encoding p145. 
Nucleotides are numbered on the right margin with the +1 coor- 
dinate assigned to the first nucleotide of the open reading ~ame. 
The deduced amino acid sequence of p145 is printed in single letter 
code under the first base of the nuclootide triplets. Amino acid se- 
quences obtained by automated Edman degradation oflys C proteo- 
lytic ~agments of p145 are underlined with arrows. The synthetic 
peptide (residues 485-496) used for antibody production is under- 
lined in bold. The predicted hydmphobic segment containing a 
potential ~ansmembrane domain is boxed. Three polyadenylation 
signals (positions 4821, 485Z 5487) in the 3' untranslated region 
are underlined. An in ~ame stop codon (position - 6 6 )  in the 5' 
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Figure 6. Distribution of hydrophobic and charged amino acids in 
p145. (A) Hydropathic values of individual amino acids residues 
were averaged within a 19-amino acid sliding window as described 
(19). Mean values were assigned to the middle amino acid residue 
and plotted against its position. (B) Positions of the acidic (top) and 
basic (bottom) residues are indicated, respectively, as aspartic acid 
(intermediate bar), plus glutamic acid (full bar) and histidine 
(small bar), plus lysine (intermediate bar), plus arginine (full bar). 

therefore screened a rat genomic library and isolated a clone, 
g301, that contained an insert beginning 475 nucleotides up- 
stream of the 5' end of cl 1 and extending downstream to a 
Nod site within the cDNA clones (Fig. 3). The DNA se- 
quence of g301 reveals an in frame TAG stop codon 66 
nucleotides upstream of the first ATG of cll  strongly im- 
plicating this ATG as the initiation codon (see Fig. 5). 
Moreover, there were no consensus sequences for splice 
junction boundaries (23) between the TAG (-66)  and the 
ATG (+1). Thus, it appears unlikely that there is an intron 
between these two codons that could potentially extend the 
open reading frame of p145 beyond the sequence contained 
in g301. However, there is a putative splice junction acceptor 
consensus sequence at position -306,  suggesting that g301's 
nucleotide sequence 5' to this site may be that of an intron. 

cDNA Deduced Primary Structure 

The 3,597-nucleotide-long open reading frame of the cloned 
cDNA encodes for a protein of 1,199 residues with a calcu- 
lated relative molecular mass of 120,711 Daltons. The amino 
acid sequence of the five proteolytic fragments of p145 that 
were determined by Edman degradation matched the cDNA 
deduced amino acid sequence (Fig. 5). 

The deduced primary structure of p145 is unusually rich 
in serines (16%), threonlnes (11%), and prolines (13%), 
which together make up 40 % of the total amino acids. Ser- 
ines and threonlnes located less than three residues from a 
proline have been proposed to be potential sites for GlcNAc 
addition (14). Most of the sednes and threonlnes, including 
serine 653, are located within such a consensus motif. Pep- 
tide sequencing of one of the proteolytic fragments revealed 
a dehydroserine at position 653 (Fig. 5), suggesting that this 
amino acid was modified in the purified protein. 

untranslated region and the termination codon of the open reading 
frame are underlined in bold. These sequence data are available 
from EMBL/GenBank/DDBJ databases under accession numbers 
z21513 and z21514. 
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803 VFGFG VTTAASTASTIASTSQ 
824 SILFG GAPPVTASSSAPALAS 
845 IFQFG KPLAPAASVAGTSFSQSLA$SAQTAASN88GG 
882 FSGFG GTLTTSTSAPATTSQPTLTFSNTVTPTFNIPFSA~hKKPALPTYPGANS 
935 QPTFG ATDGATKPAL 
950 APSFG $ 
956 SFTFG NSVASAPSAAPA 
973 PAAFG GAA 
980 QPAFG GLKAS 
991 ASTFG TPAST 
I001 QPAFG STTS 
i010 VFSFG SAT 
1018 TSGFG AAATTQTTHSGSS 
1037 SSLFG $$TPS 
1047 PFTFG GSAAPAG 
1059 GGGFG LSATPGTGSTSG 
1076 TFSFG SGQSGTTGT 
1090 TTSFG GSLSQNTLGAPSQSS 
iii0 PFAFS VGSTPES 
1122 KPVFG GTS 
1130 TPTFG QSAPAPGVGTTGS 
1148 SLSFG APSTPAQGFVG 
1164 VGPFG $GAPSFSIGAGSKTPGARQRLQARRQHTRKK. 

Figure 7. The COOH-terminal third of p145 contains 23 repeated 
pentapeptide motifs. The position of the first amino acid of the 
XFXFG pentapeptide rel~ats are indicated on the left. The serines 
and threonines in the intervening sequences are marked in bold. 

Figure 8. Characterization of 
antibodies against a synthetic 
peptide of p145. (A) Proteins 
of microsomes (ER), nuclear 
envelopes (NE), a urea extract 
of nuclear envelopes (sup) 
and the urea extracted nuclear 
envelopes (pelleO were sub- 
jected to SDS-PAGE, trans- 
ferred to nitrocellulose (see 
also Fig. 1) and probed with 
affinity purified antibodies 
against a synthetic peptide 
(residues 485-496) of p145. 
(B) The total proteins of a 
Buffalo rat liver cell lysate 
(200 #g of protein) were ana- 
lyzed as in A. 

The deduced amino acid sequence contains 36 consensus 
sequences for various protein kinases (19 for protein kinase 
C, 12 for casein kinase II, two for cAMP dependent pro- 
tein kinase and three for the cell cycle dependent cdc2 ki- 
nase) (22). 

A hydropathy plot of the deduced amino acid sequence re- 
veals one single region (amino acids 29-72), which is hydro- 
phobic enough to contain a transmembrane segment (Fig. 6 
A). The~hydrophobic segment, which is flanked by charged 
residt~es, is 44 amino acids long. Part of this sequence could 
form a single transmembrane a-helix. Alternatively, it may 
form two transmembrane a-helices adjacent to each other 
(see.below, Fig. 11). Except for the hydrophobic segment, 
the NH2-terminal half of the deduced amino acid sequence 
is much richer in charged residues as compared to the 
COOH-terminal half (Fig. 6 B). 

The COOH-terminal third of the deduced amino acid se- 
quence of p145 contains a repetitive pentapeptide motif of 
XFXFG separated by sequences rich in serines and threo- 
nines (Fig. 7). Similar repeats and serine and threonine-rich 
spacers occur in mammalian nucleoporins p62 (33) and 
NUP153 (35). XFXFG is also part of a repeated nonapeptide 
in the middle domains of the yeast nucleoporins NSP1 (16) 
and NUP1 (5). Because of this repeat the COOH-terminal 
third of p145 shows similarity (20% to NUP153 in an 508 
residue long overlap; 31% to p62 in an 140 residue long over- 
lap; 20% to NSP1 in an 230 residue long overlap; 18% to 
NUP1 in an 397 residue long overlap) to the corresponding 
regions of these proteins (see Fig. 5 in ref. 35). These data 
suggest that the COOH-terminal third of p145 has character- 
istics in common with nucleoporins. 

Subcellular Distribution and Immunolocalization 

Antibodies were raised against a synthetic peptide within a 
region of the predicted amino acid sequence of p145 that did 
not show homology to nucleoporins. After affinity purifica- 
tion these antibodies recognized a single protein of 145 kD 
on a nitrocellulose blot of SDS-PAGE separated proteins of 
a buffalo rat liver cell lysate (Fig. 8 B). When rat liver sub- 
cellular fractions were analyzed the antigen was exclusively 
found in the nuclear envelope fraction, and not in the ER 
fraction, and remained in the membrane pellet after extrac- 
tion of rat liver nuclear envelopes with 7 M urea (Fig. 8 A). 
These data are in good agreement with those of Fig. 1. 

The affinity purified anti-peptide antibodies were used in 
indirect immunofluorescence microscopy of fixed and per- 
meabilized Buffalo rat liver cells. As shown in Fig. 9 A, the 
antibodies gave rise to a punctate staining in a focal plane 
tangential to the upper surface of the cell nucleus. When a 
focal plane through the equator of the nucleus was chosen 
a punctate nuclear rim staining pattern was seen (Fig. 9 B). 
Double immunofluorescence with mAb 414, which recog- 
nizes proteins of the NPC (4), yielded exactly superimpos- 
able staining (not shown) suggesting that p145 is located at 
or close to the NPC. 

The affinity purified anti-peptide antibodies were also used 
to localize p145 in cryosections of BRL cells. Fig. 10 A 
shows immunogold labeling of the nuclear pores. At a 
slightly higher magnification immunogold decorates a single 
nuclear pore (Fig. 10 B). The immunolocalization data dem- 
onstrate that p145 is located at or close to the nuclear pore. 
As p145 is an integral membrane protein of the pore mem- 
brane domain of the NE and has a calculated relative molec- 
ular mass of 120.7 kD, it is termed POM 121. 

The precise topology of POM 121 in the pore membrane 

Figure 9. Localization of p145 by indirect immunofluorescence. 
Coverslips containing fixed and permeabilized Buffalo rat liver tis- 
sue culture cells were probed with affinity purified anti-peptide an- 
tibodies (see Fig. 8). FITC-labeled donkey anti-rabbit IgG was 
used as secondary antibody. A tangential view shows punctate 
staining of the nuclear surface (A). An equatorial view shows punt- 
tare rim staining (B). Bar, 10 ~m. 
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Figure 10. Localization of p145 by immunoelectron microscopy. Buffalo rat liver cells were cryosectioned as described in Materials and 
Methods. The ultra-thin sections were first incubated with affinity purified anti-peptide antibodies (see Fig. 8) and then with anti-rabbit 
IgG conjugated to 10-nm gold particles. In A four nuclear pores are labeled with one or two gold particles each (arrows). In B the outer 
and inner membrane and the connecting pore membrane are well preserved and three gold particles decorate a single nuclear pore (arrows). 
Bars, 100 rim. 

domain remains to be determined. Fig. 11 shows two 
models, one with a single transmembrane segment and the 
NH2 terminus exposed on the cisternai side, and the other 
one with two transmembrane segments and the NH2 termi- 
nus exposed on the pore side of  the pore membrane domain. 

In both models the bulk of  POM 121 (1127 of  1199 amino 
acids) including the COOH terminus, the putative consensus 
sites for various kinases (see above) and GIcNAc addition, 
and the XFXFG repeats (see above) are exposed on the pore 
side of  the pore membrane domain. 
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Figure 11. Proposed models 
for the topology of p145 in the 

c pore membrane domain of the 
N nuclear envelope. A short 

NH2-terminal region (N) lo- 
cated on the cisternal side of 

the pore membrane, is followed by a single transmembrane segment 
and the bulk COOH-terminal regional. (C) exposed on the pore 
side of the pore membrane (upper model). The lower model shows 
two transmembrane segments with the NH2-terminal exposed on 
the pore side of the pore membrane (for details see Fig. 5 and Dis- 
cussion). 

Discuss ion  

Our data here shows that POM 121 is a novel integral mem- 
brane protein that resides in the pore membrane domain of 
the rat liver nuclear envelope. The most interesting feature 
of the eDNA deduced primary structure of POM 121 is the 
presence of a repetitive pcntapeptide motif XFXFG that is 
also present in several mammalian (33, 35) and yeast (5, 24) 
nucleoporins (nups). Thus, POM 121 possesses a nup-like 
domain but unlike nups, it contains in addition one (or per- 
haps two) transmembrane segment(s). This suggests that 
POM 12rs nup-like domain is part of the NPC and that POM 
121 therefore may function as a membrane anchor for com- 
ponents of the NPC. Another feature that POM 121 shares 
with those nups that have so far been molecularly character- 
ized is an abundance of various consensus sites for phos- 
phorylation (26, 35). In mitosis the NPC is reversibly disas- 
sembled and detached from the pore membrane (4). It is 
likely that numerous phosphorylation/dephosphorylation 
events coordinate disassembly/reassembly and detachment/ 
reattachment. Moreover, like several nups, POM 121 is most 
likely modified by single GlcNAc residues at serine/threo- 
nine and therefore strongly interacts with WGA. 

We have not yet obtained data on the topology of POM 121 
in the pore membrane. However the presence of a hydropho- 
bic region between residues 29 and 72 of the 1,199-residue- 
long protein indicate that the membrane anchor (with one or 
two adjacent transmembrane segments, see Fig. 11) is at the 
NH2-terminal region. The bulk of POM 121 (residues 73- 
1199) containing the repetitive XFXFG motifs as well as all 
consensus sequences for phosphorylation is likely to face the 
pore side rather than the cisternal side of the pore mem- 
brane. This suggests a highly asymmetric distribution of the 
mass of POM 121 on the two sides of the pore membrane. 
The other pore membrane protein that has so far been mo- 
lecularly characterized, gp210, also exhibits a highly asym- 
metric distribution of its mass. In this case, however, most 
of the mass is located on the cisternal side of the pore mem- 
brane domain. Targeting studies with gp210 showed that 
its transmembrane segment (but not its pore side-exposed 
COOH-terminal tail) is the dominant topogenic signal for 
sorting gp210 to the pore membrane domain (42). Specific 
interactions with the transmembrane segment of another 
pore membrane protein has been suggested (42). Perhaps 
POM 121's transmembrane segment interacts with that of 
gp210 and the dimer would then be retained in the pore 
membrane domain via interaction of POM 12rs large nup- 
like domain with the NPC. 

It is likely that POM 121 is identical to an integral mem- 
brane protein of 145,000 Mr (estimated from its mobility on 

SDS-PAGE) that was identified by Snow et al. (31). They 
demonstrated that on immunoblots this and other proteins 
are recognized by polyspecific monoclonal antibodies. By 
immunoelectron microscopy these polyspecific antibodies 
labeled nuclear pores. However, it remains unclear whether 
one, several, or all of these cross-reactive proteins con- 
tributed to this decoration of the NPCs. Therefore it was not 
possible to conclude that the p145 protein identified by Snow 
and collaborators is a pore membrane protein. Our im- 
munolocalization data here with monospecific antibodies al- 
lowed unequivocal localization of POM121 to the pore mem- 
brane domain of the nuclear envelope. The deduced amino 
acid sequence shows that POM 121 shares repetitive 
XFXFG pentapeptide motifs with several nups (see above) 
and thus might be part of the epitope recognized by the poly- 
specific mAbs of Snow et al. (31). While this suggests that 
POM 121 is identical to the p145 identified by Snow et al., 
this remains to be experimentally established. 
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