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Maize pan-transcriptome provides 
novel insights into genome 
complexity and quantitative trait 
variation
Minliang Jin1,*, Haijun Liu1,*, Cheng He2,3,*, Junjie Fu3, Yingjie Xiao1, Yuebin Wang1, 
Weibo Xie1, Guoying Wang3 & Jianbing Yan1

Gene expression variation largely contributes to phenotypic diversity and constructing pan-
transcriptome is considered necessary for species with complex genomes. However, the regulation 
mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By 
analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear 
genes under expression presence and absence variation, which tend to play regulatory roles and are 
likely regulated by distant eQTLs. The ePAV was directly used as “genotype” to perform GWAS for 
15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between 
transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence 
novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly 
selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR 
candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that 
the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and 
through developing two test-cross populations and surveying several most important yield traits, the 
dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover 
maize quantitative trait variations were provided to better understand the kernel regulation networks 
and to enhance maize breeding.

Maize shows an amazing degree of phenotypic variation due to the outcrossing nature, and to natural and artificial 
selection during the rapid worldwide population expansion1. Phenotypic variation has been explored by QTL 
mapping and genome-wide association studies (GWAS)2. As it becomes clear that the differences in transcript 
abundance are a major contributor to phenotypic evolution3,4, allelic variation effects on the transcriptome, which 
reflect both genetic and epigenetic regulation, should be explored at a genome-wide level5.

Presence/absence genomic sequence variation (PAV) is important in reshaping individual performance6. PAV 
at the genomic level would be reflected in the transcriptome ePAV (expression Presence and Absence Variation). 
The ePAV not only reflect genomic structural variation, but also the variations in genetic and epigenetic regulatory 
elements. Thus it is essential to characterize the ePAV genes and their possible functions.

Most genome-wide genetic studies focus the genetic elements present in the reference genome. It is now rec-
ognized that a portion of the genomic content is only present in a subset of individuals within a species, (termed 
the dispensable genome) especially in diverse species, such as maize. The genome-wide comparison between 
B73 and Mo176 and within an expanded panel including teosinte (ancestral maize) lines7 demonstrated that a 
considerable portion of the genome (~50%) was not shared. The widespread dispensable genes, i.e those showing 
present/absent variation, have been proposed to be important for phenotypic diversity in inbred collections and 
for heterotic performance in hybrids8,9.
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The rapid development of next generation sequencing technology and the decrease in cost provide us an oppor-
tunity to sequence many individuals within a species to build up the pan genome, or the sequences which, taken as 
a whole from all individuals, define a species. RNA sequencing (RNA-seq) has been successfully used to define the 
transcriptome and to find novel transcripts absent from the reference genome10. Compared to genome sequencing, 
RNA-seq is more economical, especially in the exploration of the complex maize genome containing more than 
85% repetitive sequences11. The construction of the maize pan-transcriptome is especially useful for the discovery 
of functional dispensable genes. Recently, the maize pan-transcriptome and its diversity have been studied in 
diverse lines9,12, however, we still lack knowledge about many dispensable gene function at the genome-wide level.

Here, with the help of deep RNA-seq of kernels at 15 DAP in a diverse panel with 368 inbred lines5, we char-
acterized the extreme variation at the transcript level (ePAV), relative to the reference genome, and performed 
association studies between ePAVs and more than 600 quantitative traits. By de novo assembly, we also constructed 
the maize pan-transcriptome and explored its contribution to phenotypic and transcriptomic diversity.

Results
Expression presence/absence is prevalent and trans-regulated. Gene expression levels of the 
annotated genes in the B73 reference genome were quantified using RNA-seq of maize kernels in 368 inbred 
lines5. We define the expression level differences between subsets of individuals at the given tissue or devel-
opmental stage as a polymorphism at the transcription level: expression present/absent variation (ePAV). By 
filtering the genes showing expression in less than 19 inbred lines or more than 348 inbred lines (MAF ≤  5%) 
and applying an adapted distribution-based measure with no subjective set cutoff (see Methods), 13,382 nuclear 
genes among 38,032 total with ePAVs were obtained (5% ≤  MAF ≤  95%). Among them, 6,656 (49.9%) were not 
explored in a previous study5 since they were expressed in less than 50% but great than 5% of the inbred lines (see 
Supplementary Fig. S1 online).

Almost half (46%, 6,726) of the ePAV genes expressed in more than 50% of the inbred lines have been clearly 
identified as regulated by expression quantitative trait loci (eQTLs) in the previous study5. The ePAV genes were 
more likely to be regulated by distant eQTLs when compared with non-ePAV genes (also called core expression 
genes, expressed in more than 95% of the lines; P <  2.2E-6, χ 2 test; Fig. 1a). The effects of local eQTL were found 
to be greater than distant eQTL both for ePAV (P =  7.05E-22) and non-ePAV genes (P =  1.92E-135; Fig. 1b). The 
eQTL effects for ePAV genes were greater than those for non-ePAV genes in both local (P =  1.34E-18) and distant 
(P =  7.18E-56) types. The ePAV genes were enriched in regulation-related processes, while the non-ePAV genes 
tended to play roles as structural genes (Fig. 1c; Supplementary Table S1 online). The dominant regulation by 
distant eQTLs and defined as regulators indicate the ePAVs may act as intermediate regulators to downstream 
genes, which mostly consist of non-ePAV (or core) genes. This is supported by the observation that most (92%; 
P <  2.2E-16) of the potential regulation targets of ePAV genes were non-ePAV genes. Additionally, the non-ePAV 
genes tend to be regulated by distant eQTLs as well, with up to 81.2% of regulated non-ePAV genes located on 
different chromosomes than their ePAV regulators, and for those located on the same chromosome, 86% were 
separated by over 20 Mb (Fig. 1d). All the above suggest that the dispensable expression genes are functionally 
essential, and play key roles in the intermediate regulation layer.

PAV contribute rarely to the causation of ePAV. Before using ePAV for further analysis, we confirmed 
that the undetectable gene expression in a given tissue was not due to sequencing bias or low sequencing cover-
age. PAV gene expression should always show ePAV patterns that provide excellent samples to test the reliability 
of ePAV detection. A ~2.4 Mb fragment on chromosome 6 is present in B73 but absent in the Mo17 genome where 
62 genes were annotated6. This region was also confirmed by PCR in our inbred lines, among which 209 lines had 
the same haplotype of B73 and another 15 lines were consistent with Mo17 (see Supplementary Table S2 online). 
Among the 62 genes within this region, 61 were detected by RNA-seq and 52 of them were considered as ePAV 
genes based on the standard (expressed more than 5% and less than 95% lines). The consistency between ePAV 
status of the 52 ePAV candidates and PCR validation at the genomic level was 74%. This suggests that the ePAV 
label is acceptable in that most (96.4%) of the inconsistencies were likely caused by non-expression in kernel 
tissue with presence in DNA sequence, and that the frequency of apparent expression without sequence evidence 
was rare, at 3.6%.

To determine how many of the ePAVs are caused by genomic PAVs, the reference genome B73 and deep 
sequenced genome Mo17 were compared. Only 54 (~1%) of the identified 5,838 ePAV genes were supported as 
sequence PAVs by the re-sequencing results of Mo17 (Supplementary Fig. S2 online)8. However, these two inbreds 
represent only a fraction of the total maize sequence diversity. Therefore, we used genotyping data generated from 
Illumina MaizeSNP50 array (50 K) for the whole panel13 and from the Affymetrix®  Axiom®  Maize Genotyping 
Array (600 K)14 for 38 lines; again, we found ~ 1% (102 and 122, or 0.76% and 0.91% for 50 K and 600 K datasets, 
respectively) of ePAVs were predicted as PAVs (see Methods). These results together imply that only a small pro-
portion (~1%) of ePAVs were due to PAV in the genomic sequence and therefore, most were likely to be the result 
of suppression at the expression level.

We further chose 10 putative PAV genes in ePAVs for experimental validation in a subset of 96 inbred lines 
by genomic PCR. All ten ePAV genes represent genomic PAV genes. The consistency of the ePAV and PAV labels 
detected by PCR in the 96 lines ranged from 70% to 89% (see Supplementary Fig. S3 and Supplementary Table S3 
online), which provided an estimate of the reliability of the predicted ePAV correspondence to sequenced PAVs.

Novel expressed sequence discovery from de novo assembly. RNA-seq reads from 
each inbred were de novo assembled to detect the novel expressed sequences and construct the 
maize-transcriptome (Supplementary Table S4 online). We applied Trinity15 to detect novel sequences 
by comparing the two strategies: “align-then-assemble” and “assemble-then-align”10 (detail in Methods). 
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Based on the ‘align-then-assemble’ strategy, 7,775 contigs with a total length of 3.46 Mb were obtained, 
of which N50 size was 445 bp, much shorter than the average length of reference transcripts (1826 bp). 
Most of these contigs had no hits to protein databases, so it seems that they do not correctly repre-
sent the transcripts. We suspect that there was a large proportion of incomplete fragments due to filter-
ing conserved reads and breaking long contigs into short ones. Based on the ‘assemble-then-align’ strategy, 
2,355 novel sequences with a total length of 1.9 Mb (N50 =  922 bp) were obtained (see Supplementary  
Fig. S4 online, Additional Information and methods), resulting in longer and more complete contigs compared 
to the results of ‘align-then-assemble’ (Supplementary Fig. S5). Further, comparison of the results of the two 
strategies indicated that some of the sequence reads of conserved functional domains might be filtered out when 
applying ‘align-then-assemble’ strategy. For example, Unigene_441 from the ‘assemble-then-align’ strategy was 
identical to Unigene_ref71 from the ‘align-then-assemble’ strategy but longer and containing the unknown 
protein domain of DUF789. The distribution of unique reads and further PCR re-sequencing both confirmed 
that the result from ‘assemble-then-align’ was correct (see Supplementary Fig. S6, Supplementary Table S3 and 
Supplementary Fig. S9 online). Thus, only the results from ‘assemble-then-align’ strategy were used for further 
analyses.

To evaluate the reliability of the assembled novel sequences, we first compared 2,355 novel sequences to the 
4,712 novel genomic contigs obtained in a study of deep sequencing six elite maize inbred lines8, showing that 
447 (19%) of our novel sequences align to those novel contigs (see Additional Information). Second, the novel 
sequences were compared with 8,681 novel representative transcripts from whole seedling RNA-seq on a panel 
of 503 diverse maize inbred lines12. Nearly 60% (1,380 among 2,355) of the novel sequences identified in the 
present study had above 85% identity in the alignment with novel transcripts detected from seedling tissue (see 
Additional Information). In total, about 62% of our novel sequences were found to have hits in at least one of the 
previous studies.

Figure 1. ePAV candidates played key roles in distant-regulation. (a) The ratio of local- (green) and distant- 
(orange) eQTLs among ePAV, non-ePAV and ePAV +  non-ePAV together, expressed as percentages. (b) The 
effects of local eQTL were larger than those of distant eQTL both for ePAV (P =  7.05E-22; student test) and 
non-ePAV genes (P =  1.92E-135). The eQTL effects for ePAV genes were greater than those for non-ePAV genes 
in both local (P =  1.34E-18) and distant (P =  7.18E-56) types. (c) Top 10 GO enrichment terms in biological 
processes of ePAV (red) and non-ePAV (blue) are displayed. The left y-axis represents the percentage of genes 
belonging to each GO term. The colored circles and right y-axis represent the significance level (FDR). Red, 
blue and black colors means ePAV, non-ePAV and reference levels, respectively. The corresponding GO term 
description for each GO number could be available in Supplementary Table S1 online. (d) ePAV candidates 
as distant-eQTL affecting expression of Non-ePAV genes. “Diff ” means the eQTL is located on a different 
chromosome with its regulating gene and “Same” represents both are located on the same chromosome 
(expressed as %). And even for the “Same” cases, the eQTLs tend to be located far away with their regulated 
targets (the colored rectangles represent the different distance windows, and the width represents the 
corresponding ratio.
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We validated the present/absent variation of 10 randomly selected novel sequences in a set of 96 inbred lines 
including B73 and Mo17 using genomic PCR (see Supplementary Fig. S7 online and Additional Information). 
Two of these novel sequences were present in all 96 inbred lines (Unigene_31, Unigene_361), possibly due to the 
presence in the genome but absence at the expression level. The other eight were determined to be PAVs, and the 
consistency of present/absent status between the transcriptome assembly and PAV detected by genomic PCR 
ranged from 31% to 99%, with an average of 72% (Supplementary Fig. S7). Most (89.2%) of the inconsistency was 
also due to the presence at the genomic level without expression in kernel (Supplementary Fig. S7). We further 
re-sequenced the amplified products from genomic DNA of the 10 randomly selected novel genes in 5 diverse 
genotypes and all were consistent with assembly sequences (Supplementary Fig. S8 and Supplementary Fig. S9 
online). Cross-comparison with other studies and experimental results not only validates the assembled novel 
sequences, but also indicates that the predicted present/absent variants are reliable.

Annotation and mapping of novel expressed sequences. To annotate novel sequences identified in 
this study, we first compared the sequences with the non-redundant (nr) protein database16 using NCBI BLAST, 
which showed that 1,359 of them had significant matches (E-value <  1e-6) and most (93.57%) of the best matches 
were within Poaceae. The majority of the significant hits (1,318 of 1,359, 97%) were functionally classified into six 
types of known enzymes (Supplementary Fig. S10) and conserved domains or annotated motifs (Supplementary 
Fig. S11; Additional Information). In the GO enrichment analysis, the overrepresented processes included several 
metabolic processes and biotic stimuli (Supplementary Fig. S12 and Supplementary Table S5). In addition, 145 
of the 1,037 unannotated novel sequences were considered to have coding potential, having at least 120 amino 
acid-long predicted open reading frames (ORFs) and a homolog in the non-redundant protein database at a lax 
standard (E-value <  1e-3). Furthermore, 248 of remaining novel sequences were annotated as smRNA precursors 
against small RNA database17 (E-value <  1e-10), and the remaining 644 were predicted to be high confidence 
novel lncRNAs in maize (see Supplementary Fig. S11 and Additional Information).

To locate possible physical chromosomal positions of the novel sequences, the linkage disequilibrium (LD) map-
ping strategy was used between novel SNPs within new sequences and high density SNPs in the whole inbred line 
collection (Supplementary Fig. S13). After multiple sequences alignment, 27,466 SNPs from 664 novel sequences 
were provisionally identified (See Methods). Based on the LD between SNPs located in novel sequences and high 
density SNPs with known positions in the whole panel, 625 novel sequences (94.4%) were mapped onto the ref-
erence genome (see Supplementary Fig. S14 and Supplementary Table S6 online). The locations of the common 
expressed genes and the SNPs show the similar trends with enrichment at the ends of the chromosomes, while 
the distribution pattern of the novel sequences demonstrates fluctuation, and in some cases concentrates near the 
centromeres on some chromosomes, thus physically complementing the reference genome-containing variations 
(Supplementary Fig. S14).

Maize pan-transcriptome plays an important role in regulating phenotypic variation. To sys-
tematically explore the genetic consequences of the above described expression variation, and considering that 
the metabolic phenotype provides a link between gene sequence and visible phenotype, genome wide association 
study (GWAS) was performed to study the potential effects of ePAV genes on 616 metabolites detected in mature 
kernels18 and 17 agronomic traits19 measured in the same panel. Among the ePAV genes, 56 (0.42%) were signif-
icantly (P <  7.49E-5, 1/n) associated with 15 agronomic traits and 1,967 (14.74%) associated with 526 metabolic 
traits including content of 18 amino acids4 (see Additional Information).

A major secondary metabolite group in plants, the flavonoids, is widely distributed and has variety of func-
tions20. The pericarp color1 (p1) gene encoding an R2R3 Myb-like transcription factor21 regulates flavonoid bio-
synthesis by promoting a suite of structural genes, and conditions pigment in several floral organs including the 
seed coat, cob glumes, tassel glumes, and silk under both genetic and epigenetic regulation mechanisms20–22. In this 
study, the quantification of 39 flavonoid metabolites together with cob color were used for GWAS, and results indi-
cated the ePAV pattern of the p1 gene was highly associated with cob color (P =  1.33E-19), and was correlated with 
six different flavonoid metabolites (P <  2.34E-05; Fig. 2a). We also identified a structural gene (GRMZM2G162755; 
anthocyanidin 3-O-glucosyltransferase) significantly associated with cob color (P =  7.05E-20) and the same six fla-
vonoid metabolites (P <  6.23E-05; Fig. 2a). This gene was shown to be regulated by p1 in a previous eQTL mapping 
study5 and ChIP-Seq analysis23. Another copy of the R2R3 Myb-like transcription factor (p2, GRMZM2G057027) 
could regulate the other two flavonoid metabolites (P <  3.41E-06; Fig. 2a). Notably, we found these three ePAV 
candidates, as regulators, could also control expression of other genes that are related to flavonoids such as c2, chi1, 
a1, pr1 and whp121,23 (Fig. 2b; P ≤  9.65E-10), providing further support for the hypothesis that these ePAV genes 
are involved in the flavonoid pathway and functioning through the PAV differences in expression level.

The novel expressed sequences play critical roles in regulation of the transcriptome and metabolome. For 
the novel sequences, a re-mapping strategy was applied to correct the PAV distribution for each novel gene, 
to be used in GWAS (see Methods). We found that 26 (1.1%) of the novel genes were associated (P <  4.25E-4) 
with 13 agronomic traits (see Additional Information). Eleven were associated with flowering time (i.e. Days to 
Tasseling, Days to Pollen Shed and Days to Silking). We also identified a novel gene (Unigene_55) that encodes a 
late embryogenesis abundant (LEA) protein that is associated with kernel width (P =  2.14E-5). LEA proteins have 
been described as accumulating late in embryogenesis and could protect other proteins from aggregation under 
various environmental stresses24. Here we provided a clue that LEA may also affect kernel size.

Moreover, 788 novel genes (33.46%) were associated (P <  4.25E-4, 1/n) with 487 metabolic traits measured in 
maize kernels18 (see Additional Information), which implied that those novel genes could play more complex roles 
within cellular metabolism processes; thus, this study provides fresh resources for the genetic study of maize kernel 
quality and production. Metabolic processes are commonly controlled by transcription regulation. Therefore, it 
is valuable to examine whether the identified novel genes were widely involved at multiple regulatory levels. We 
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found the novel sequences were significantly responsible for expression levels of annotated genes or their expres-
sion presence/absence states at a strict cutoff (P ≤  1E-4), including the novels annotated as non-coding RNAs (see 
Additional Information). By combing the metabolome and transcriptome findings, 23 novel genes were found 
playing roles in both metabolic processes and expression regulation.

Plant NBS-LRR proteins can directly or indirectly recognize pathogen-deployed proteins and triggers plant 
defense responses25,26, and exhibit high levels of PAV polymorphism in various plants27–29. Here, we identified two 
novel NBS-LRR genes (Fig. 3a,b) that have high homology to rice NBS-LRR genes Os11gRGA4 and Os11gRGA5, 
which were shown to interact functionally and physically to mediate resistance to the fungal pathogen Magnaporthe 
oryzae30,31. Recent studies have verified that inducing plant immunity impacts flavonoid biosynthesis32,33, and 
that flavonoid compounds significantly contribute to plant resistance34. Os11gRGA4 was found to be associ-
ated with the flavonoid Naringenin O-malonylhexoside35. Interestingly, we found that these two novel NBS-LRR 
like sequences were both associated with Apigenin C-pentosyl-O-coumaroylhexoside and C-pentosyl-apigenin 
O-caffeoylhexoside contents, two flavonoid metabolites (Fig. 3c). In addition, these two novel sequences were also 
associated with several gene expression presence/absence states (Fig. 3d), including transcription factors with DNA 
binding activity (TGA6 or GRMZM2G000842; GRMZM2G405170), spliceosomal complex (GRMZM2G011034), 
nucleic acid binding genes (GRMZM2G088348), translation release factor (GRMZM5G864412), actin cytoskeleton 
(GRMZM2G552644) and other enzymes functioning in metabolic processes. These observed associated targets 
were consistent with previous observations that alternative splicing is important in the regulation of NBS-LRR 
proteins and plant immunity36, and that TGA6 and other bZIP transcription factors are significant in plant defense 
against pathogens37,38. Actin cytoskeleton dynamics also play an important role in mediating resistance39, and trans-
lation release factors are critically involved in the elimination of aberrant mRNA. The regulatory targets in pathogen 
defense response are indeed R-genes, especially for the abundant and alternatively spliced NBS-LRR R-genes40.

Figure 2. ePAV candidates contributed to both maize cob color and various kinds of flavonoids. (a) 
Manhattan plot of the association of three ePAV candidates, maize cob color and several flavonoids. Different 
shapes represent different traits, and points with different color represent different kinds of ePAV candidates: 
Blue: pericarp color1 (p1, GRMZM2G084799); Red: p2, another copy of R2R3 Myb-like transcription factor 
(GRMZM2G057027); Green: anthocyanidin 3-O-glucosyltransferase (GRMZM2G162755); Grey: other ePAVs. 
Black dashed horizontal line was the cut-off (P =  7.47E-5) of significant level. (b) The three ePAV candidates 
were also significantly associated with expression of related genes within maize flavonoid pathway. Nodes in 
red are the three ePAV candidates above, green nodes represent several identified genes located in the maize 
flavonoid pathway, purple nodes are other genes encode enzymes, light blue were other genes encoding non-
enzyme proteins (such as transporters), and grey nodes had no annotation. The blue arrow edges link the ePAV 
candidates and its associated targets and the a3g links to itself meaning self-regulation in expression level, while 
thicker lines represented more significant associations.
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The two novel sequences were confirmed by PCR sequencing (Supplementary Fig. S9 and Supplementary Table 
S3). Moreover, the consistency of presence/absence variation in the association panel used in our study between 
observed and predicted variants was greater than 98% (Unigene_678) and 96% (Unigene_705), respectively. The 
PAV states of these two genes on the genome level also showed a significant relationship with the metabolic traits 
mentioned above. These results show that the dispensable novel expressed sequences were important both in mor-
phological adaptation processes as previously reported12, and in cellular metabolome and transcriptome regulation.

Present and absent genes may contribute to trait heterosis. Complementation of gene content 
variation is assumed to be important in heterosis6,8,41. Since our identified expressed novel genes have been shown 
to be functionally important, their combination of inbred-specific sequences in hybrids could provide novel 
trans-interactions potentially resulting in non-additive expression. This provides an opportunity to test the link 
between gene content PAV and heterosis. We crossed the association panel with the Mo17 inbred line to develop 
a suitable population to test this. Six yield-related traits were measured for each hybrid in different environments 
over two years (see Methods). The degree of heterosis increased with more complementary (present in one and 
absent in the other inbred parent) novel genes in the hybrids among five of the six measured traits (Fig. 4A). This 
trend is more significant for those traits with relatively stronger heterotic effect, and novel sequences identified in 
this study have a greater effect than ePAVs (Fig. 4B). However, only a small portion ( <  10%) of observed hetero-
sis was explained by novel sequences and/or ePAVs, which implies that heterosis is complexly affected by many 
different factors6,8,9,42.

Discussion
Expression PAV is a kind of variation at transcript level, mostly due to genetic or epigenetic regulation. With the 
conservative distribution-based approach (see Methods), we identified more than 13,000 genes as ePAVs, about 
one third of the maize annotated genes. These are genes that are only expressed in a subset of the association panel. 
This finding was based on one tissue (kernel of 15DAP) and limited inbred lines (n =  368), therefore, more ePAVs 

Figure 3. Two novel NBS-LRR genes showed significant association with flavonoid metabolites and with 
expressed genes involved in flavonoid pathway. Read distribution and predicted conserved domains of novel 
reference gene Unigene_678 (a) and Unigene_705 (b) and sequence alignments for all presence genotypes. 
(c) Q-Q plot of association mapping for different flavonoids. (d) The two novel NBS-LRR genes were also 
significantly associated with other genes with expression presence-absence variation. (e) Validation of the PAV 
of the two novel genes. Green represents consistency between experiment and prediction. Yellow means the 
gene was absent in our prediction but exists in the genome.
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will be identified when more tissues and materials are studied. The number of ePAV should vary under different 
sequencing coverage and even different cutoffs; however, this study demonstrates that ePAV is a common phe-
nomenon and that the underlying mechanisms and ramifications need to be explored. Among our findings, the 
ePAV genes were enriched in regulation-related processes and were usually regulated by distant eQTLs while core 
expression genes were commonly regulated by local eQTLs (Fig. 1a). The different regulatory patterns imply that 
the two kinds of genes may affect phenotypic variation by different mechanisms.

Transcript variation as an independent variable can be regarded as a molecular marker to perform GWAS (i.e. 
ePAV-GWAS), corrected for population structure and relatedness, and this should provide additional insights into 
the architecture and regulation of quantitative traits and help understand certain important biological questions 
such as adaptation12,43. Interestingly, about 15% of the identified ePAVs were found to associate with agronomic 
and metabolic traits, which confirms the expectation that gene expression presence and absence can affect the 
phenotypic variation directly. Combining the ePAV-GWAS results with SNP-GWAS and eQTL mapping infor-
mation aid not only in the identification of gene candidates, but also to better understand molecular mechanisms. 
Here, we use cob color and several related flavonoid metabolites as an example for further exploration. After strict 
filtering of our genotypic data, there were no SNPs left within the p1 locus (see Supplementary Fig. S15b), known 
to control cob color, but an associated region was found upstream of the the p1 locus (~200 K, Supplementary 
Fig. S15a,b). This makes it difficult to unambiguously identify a single causal gene for cob color. Using ePAVs as 
markers (ePAV-GWAS), the p1 locus was exactly identified and the p2 was promoted as another candidate (Fig. 2a, 
Supplementary Fig. S15b, panel4). Another significant locus (GRMZM2G162775, a3g) on chromosome 6 was 
detected by ePAV-GWAS (Supplementary Fig. S15a, panel4), and may have been detected as regulated by p1 by the 
previous eQTL mapping5 (Supplementary Fig. S15a, panel 3) and ChIP-Seq studies23. This trans-regulation pattern 
could not be discovered by applying SNP-GWAS, even when the SNP density was doubled to 1.25 million (data 
not shown). Thus, the ePAV will provide a unique complementarity to SNP marker for the genetic exploitation.

Although more than 13,000 ePAVs were identified, only small proportion (~1%) included genomic PAVs which 
are sometimes called dispensable genes. Previous studies revealed that the B73 reference genome included only 
70% of the total low-copy sequences available in the maize species44, which implied that many dispensable genes 
are present beyond the reference genome. It is necessary to explore these novel genes that may be phenotypically 
important in certain genotypes. We applied de novo assembly to detect such novel sequences. Of the two combined 

Figure 4. PAV status of novel genes and ePAV both correlated with heterosis of most yield-related traits. 
(a) Correlation between mid-parent heterosis and the number of complementary novel genes exhibiting PAV 
between the parents of the F1 population. Six panels represent different yield-related traits. KWd: Kernel 
Width; KT: Kernel Thick; RPE: Rows Per Ear; EL: Ear length; CW: Cob Weight; KPE Kernels Per each row of 
Ear. (b) Boxplot in different colors represents different traits ordered by mid-parent heterosis (the left y axis). 
The points in red and black represent Pearson’s r2 of correlation between mid-parent heterosis and the number 
of complementary novel genes and ePAVs showing presence-absence variation between parents of the F1 
population.
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strategies were available, ‘assemble-then-align’ resulted in longer and more complete contigs. Although in theory, 
‘align-then-assemble’ should be more sensitive and de novo assembly was likely to work only for the most abundant 
transcripts45, in practice, the align-first strategy probably enrich some low abundance (and possibly extraneous) 
reads and assemble them into contigs. Only a small portion (4%, identity ≥  85%, coverage ≥  85%) of the contigs 
from the align-first strategy could identify high confidence matches in assemble-first contigs. After stringent 
filtering, 2,355 high confidence novel sequences with a total length of 1.9 Mb were obtained.

The enrichment analysis of these novel sequences suggested their roles in metabolic processes responsive to stim-
uli. Almost 34% of them were found to be associated with metabolic traits. The differences in metabolism-related 
genes may be associated with differential environmental effects4. The novel sequences involved in development, 
such as beta-tubulin, also likely contribute to adaptation. In hybrids, the number of novel genes in heterozygous 
(present in one parent, absent in the other) state was correlated with heterosis of yield-related traits, which supports 
the complementation hypothesis of this phenomenon. We showed that the “dispensable” genes, whether they were 
present on reference genome or not, indeed play an indispensable roles at the population level.

The construction of the maize pan-transcriptome is more effective than a maize pan-genome because the high 
proportion of repetitive sequences present in the genome complicates assembly. However, limitations in tissue 
and availability of diverse genotypes could result in underestimating the size of maize pan-transcriptome (see 
Supplementary Fig. S16a). We compared tissue-specific and genotype-specific efficiency in discovering novel 
transcripts. We selected five diverse tissues (16DAP Whole Seed, V3_Stem and SAM, V9_Immature Leaves, 
R2_Thirteenth Leaf, 6DAS_GH_Primary Root) from a previous study46 and repeated the de novo assembly pro-
cess as described. We found more novel transcripts when adding new tissues than by adding new individuals 
(Supplementary Fig. S16b). This indicated that the expression divergence is significantly larger between tissues 
than individuals (P =  1.07E-58).

We estimated the size of maize pan-transcriptome based on our RNA-seq data from one tissue but multiple 
genotypes (see Supplementary Fig. S16c and Methods). As expected, when adding more genotypes to the analysis 
the number of additional novel sequences detected eventually leveled off and the total is expected to reach an 
asymptotic maximum of ca. 28,000. Using the reference genome and a similar procedure, we found that number 
of core expression genes decreased and became nearly invariable when more than 200 lines were included. The 
minimum number of core expressed genes and maximum for dispensable ones were 22,043 and 13,382, respectively 
(Supplementary Fig. S16d). Combining the reference based genes and newly identified genes from the current 
study, we estimated the size of the pan-transcriptome of the maize whole kernel is about 63,000. Under the simple 
assumption that maize kernels only express 70% ~ 80% of the total genes5, the whole pan-genome of maize is close 
to 78,000 ~ 84,000. Thus, the present reference genome may only capture half of the predicated maize pan-gene, 
which is similar to previous prediction12. To identify the pan-gene and study the functions will help to understand 
the genome better thus enhancing crop improvement.

Materials and Methods
Detection of ePAV. In the previous study5, authors quantify the expression of 38,032 reference genes, read 
counts for each expressed gene and individual transcripts of that gene were calculated and scaled according to the 
definition of RPKM (reads per kilobase of exon model per million mapped reads). The genes showing expression 
(RPKM >  0) in less than 19 (5%) inbred lines were excluded in the following analysis. In this study, we further 
filtered the genes which expressed (RPKM >  0) in more than 348 (95%) inbred lines. The remaining genes were 
considered to have presence/absence variation in expression, and several further distribution-based steps were 
used to acquire an ePAV pattern: (1) extract non-zero expression data of a ePAV gene in 368 inbred lines; (2) sort 
it from smallest to largest and make the frequency distribution (10 groups); (3) turn the abnormal low (data in 
1st group) and high (data in groups that frequency <  3) expression values according to the frequency distribution 
as “NA” (4) convert the rest of no-zero expression data to ‘1’ and no expression data to ‘0’ to get the ePAV pattern 
of each gene.

Prediction of PAV through genotyping from 50 K and 600 K SNP arrays. The ePAV genes (includ-
ing 1Kb upstream and downstream regions) containing at least two SNPs in the array genotyping dataset were 
used to analyze their PAVs. A gene was regarded as potential PAV if all its SNPs were genotyped as missing in a 
particular line. Further, for each ePAV, if the potential PAV occurred at more than a certain ratio (5%, or 19 for 
50 K and 2 for 600 K datasets, respectively), it was considered as non-random, thus to be candidate PAV.

De novo  transcript assembly. The poly(A) +  transcriptomes of immature kernels (15 DAP) were 
sequenced using 90-bp paired-end Illumina sequencing with libraries of 200-bp insert sizes. The sequencing 
data for this project can be downloaded in the NCBI Sequence Read Archive under accession code SRP026161. 
Average 73.9 million reads were obtained in each sample and 367 inbred lines were used in assembly process5 
(Supplementary Table S4). The adaptors and low quality reads were filtered using Trimmomatic software47, result-
ing in a total 24.7 billion high-quality reads, used for the assembly (Supplementary Table S4 and Supplementary 
Fig. S17).

While applying the “align-then-assemble” strategy, the mapping process was first performed by Bowtie248 
(version 2.0.2) and TopHat249 (version 2.0.6) with the parameters − i 5, − I 60000, − r 20, —mate-std-dev 75 and 
gene annotation was provided. The unmapped reads from each individual were assembled by Trinity15, which is 
based on the de Bruijn graphs algorithm. Min count for K-mers to be assembled by Inchworm most influenced 
the result. We found that there was a large increase in the numbers of transcripts that align to the B73 reference 
transcripts when applying min K-mers between 2 and 3 and we chose the parameters: -seqType fq,-min_kmer_cov 
2, -min_contig_length 200. In the “assemble-then-align” strategy, the whole cleaned RNA-seq reads from 367 
inbred lines were de novo assembled with the same parameters.
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Identification of novel sequences. To detect truly novel sequences and remove the ones that were alleles 
or paralogs of sequences present in the B73 reference genome, the assembled transcripts from each line were 
aligned to B73 5b pseudomolecules using GMAP50, a genome alignment program for mRNA sequences. We 
randomly chose 200 assembled transcripts from each inbred line to determine GMAP parameters and the iden-
tity cutoffs were then set to 0.85. The representative transcripts that did not align to the reference sequence were 
clustered by the TGI Clustering tool (TGICL)51. Transcripts present in at least 19 inbred lines (5% of 367) with 
non-homology (identity <  95%; coverage <  90%) to B73 cDNA 5b pseudomolecules (FGS) were retained as can-
didate novel sequences. DeconSeq52 was further used to remove sequence contamination to improve the relia-
bility of novel sequence identification. Reference genomes of human, human microbiome, and virus were used 
as the “contamination-datasets”, and plant datasets including Zea mays, Oryza sativa, Sorghum bicolor, Setaria 
italica, and Brachypodium distachyon were used as “retain-datasets” under the parameters of identity ≥  98% and 
coverage ≥  90%. Finally, RNA-seq reads were aligned back to novel sequences for quality assessment by running 
alignReads.pl in Trinity software15 with the —bowtie and —phred64-quals options. The 12 sequences which had 
breakpoints in distribution of reads were excluded. This indicates there may be minor errors in the transcripts 
assembly process. All the procedures and related results were shown in Supplementary Fig. S17 online. On aver-
age, 57,628 assembled transcripts with N50 size 1,078 bp were obtained for each inbred line (Supplementary 
Table S4). After excluding the transcripts present in the B73 reference and other contaminations, an average of 
1,388 unmapped transcripts were retained in each inbred line. We clustered these remaining transcripts from all 
inbred lines, and the longest one was selected as a representative sequence in each unigene cluster. Each unigene 
cluster would then be retained if it was present in at least 19 inbred lines (5% of the panel). Finally, 2,355 novel 
representative sequences with a total length of 1.9 Mb and N50 size 922 bp were obtained (Supplementary Fig. S4 
and Supplementary Table S4).

An improved re-mapping strategy to correct the distribution of novel sequences. After the 
clustering step, we obtained the PAV patterns for each novel gene among all genotypes. When considering those 
present in genomic sequence but non-expressed as “inconsistent”, the consistent ratio reached to average 67%, 
using a simple clustering step. However, we found that some novel genes appear to be also expressed in predicted 
“Absence” lines

This may be caused by incorrect assignment to the genomic location of short or well-conserved expressed 
sequences. In these cases we applied a second re-mapping step to recover correct genomic matches, by using 
BLASTx with “identity ≥  0.96, query-coverage ≥  0.5, subject-coverage ≥  0.96”, which improved the consistency 
ratio to an average of 72%.

Annotation of novel sequences. Blast2go53 is an all in one tool for functional annotation of novel 
sequences and the analysis of annotation data. For BLASTx to nr database16, a minimum E-value of 1e-6 was 
used and only best hits were considered. BLAST XML result file was imported in Blast2go. GO mapping and 
InterProScan54 were also performed to complete the annotation. A total of 1,359 novel sequences had matches in 
the nr protein database using BLASTx (E-value ≤  1e-6). Nearly all of them (1,318 of 1,359, 97%) can be function-
ally classified into families and contained conserved domains and functional sites. The remaining 1,037 unanno-
tated sequences were left. Among annotated ones, 166 could encode enzymes (see Supplementary Fig. S10 and 
Additional Information). 640 can be grouped into at least one GO term and used in the next GO enrichment 
analysis.

The remaining unannotated novel sequences were used to predict the protein coding potential. Three impor-
tant criteria were used: transcript length, open reading frame (ORF) size, and presence of homology with known 
proteins. Transcript length was set to 200 bp. Only three ORFs longer than 120 amino acid were identified in 14 
known long non-coding RNAs (lncRNAs)55, ORFs longer than 120 amino acid considered potential coding can-
didates. Coding regions and the corresponding amino acid sequences were extracted from novel sequences using 
TransDecoder in the Trinity software15. In addition, transcripts were aligned to UniProtKB/Swiss-Prot database56 
identify transcripts with potential protein-coding ability (E-value ≤  1e-3). The unaligned transcripts were con-
sidered non-coding RNAs (ncRNAs). Using BLASTN (E-value ≤  1e-10) and Infernal software57 (“INFERence of 
RNA ALignment”; score ≥  40), 248 sequences were matched to NONCODE database58, smRNA transcriptome 
databases including predicted microRNAs (miRNAs), other predicted short hairpin forming RNAs (shRNAs) 
and predicted small interfering RNAs (siRNAs) or Rfam database17,58. These sequences were all considered the 
precursors of small RNAs. The remained 644 novel sequences were predicted to be high confidence maize lncRNAs 
(see Supplementary Fig. S11 and Additional Information).

SNP analysis and LD mapping of novel sequences. MAFFT59 was used to align novel sequences 
from all inbreds to their corresponding representative ones (the longest one in each unigene cluster; see above). 
SNP_SITES software (https://github.com/sanger-pathogens/snp_sites) was used to identify SNPs in the multiple 
alignment. Biallelic SNPs with minor allele frequencies (MAFs) larger than 0.05 were retained for analysis. A 
total of 27,466 SNPs were identified in 664 novel sequences. Pairwise LD between SNPs within novel sequences 
and between SNPs in B73 reference genome was computed by a script on the assumption of equal probability 
for either phase relationship of the alleles. B73 reference gene with the highest LD (and at least r2 >  0.1) to SNPs 
within the novel gene was considered the likely location of the novel gene. Using this approach, of the 664 novel 
sequences with SNPs, 627 were mapped to the B73 reference.

Validation of PAVs within ePAV and novel ones. Genomic PAV for 10 ePAV genes, and the 10 novel 
expressed genes across a set of 96 diverse inbred lines were evaluated using touchdown PCR. Inbred lines infor-
mation, primer sequences and experiment results are available in Supplementary Fig. S3, Supplementary Fig. S7 

https://github.com/sanger-pathogens/snp_sites
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and Supplementary Table S3 online. The thermo cycler program for touchdown PCR were included: 1 =  94 °C 
5 min; 2 =  94 °C 30 s; 3 =  64 °C 30 s − 0.5 °C/cycle; 4 =  72 °C 50 s; 5 =  GOTO 2 12repeats; 6 =  94 °C 30 s;7 =  58 °C 
30 s; 8 =  72 °C 50 s; 9 =  GOTO 6 23repeats; 10 =  72 °C 5 min; 11 =  25 °C 2 min; 12 =  END. The PCR products of 
10 novel genes in 5 lines were then re-sequenced and subjected to multiple alignment to evaluate the correctness 
of de novo assembly.

Novel sequences and ePAVs both contributed to heterosis. To test whether the PAV pattern of the 
novel genes contributes maize heterosis, all population inbred lines were planted with randomized complete 
experimental design by single replication in 2011 (Chongqing city; Hebi city, Henan province; Honghe autono-
mous prefecture, Yunnan province and Sanya city, Hainan province) and 2012 (Chongqing city; Hebi city, Henan 
province; Honghe autonomous prefecture, Yunnan province and Wuhan city, Hubei province) and 6 yield-related 
traits including Kernel Width (KWd), Kernel Thickness (KT), Rows Per Ear (RPE), Ear Length (EL), Cob Weight 
(CW), Kernels Per Ear (KPE) were measured. Generally, the average values from five individuals were calculated 
to represent each line in each experiment and the BLUP values from different environments and years were used 
for next analysis. The number of PAVs in heterozygous state (present in one parent, absent in the other) were then 
used to evaluate their correlation (R-square was measured; Fig. 5) with observed mid-parent heterosis for each 
trait.

The estimation of the maize pan-transcriptome size. Five diverse tissues (16DAP Whole Seed, V3_
Stem and SAM, V9_Immature Leaves, R2_Thirteenth Leaf, 6DAS_GH_Primary Root) from a previous study46 
were chosen to repeat de novo assembly process. We then compared each pair of tissues and individuals, by 
measuring the ratio of shared genes to total genes. To eliminate the effect of biased sample size (5 tissues vs 367 
individuals), we randomly selected five pairwise comparisons and repeated this process 1000 times, then com-
pared resulting distribution.

To determine whether the maize pan-transcriptome is open (the size of pan genome grows continuously with 
the number of sequenced individuals increases) or closed (the size of pan genome reached a constant value with 
the number of sequenced individuals increases) and to estimate the size of it, a simulation process on real data 
was used. There were three parts to form the maize pan-transcriptome: reference based core genes, reference 
based dispensable genes (ePAV) and novel sequences. We randomly chose 20 samples in 367 maize inbred lines 
in a clustering run to estimate the number of novel sequences among them and then add another 20 lines to do 
the same cluster recursively until a total of 360 inbred lines were in the set. Ten independent simulations were run 
and the mean of each run from n =  20 to 360 inbred lines was used to estimate the maximum number of novel 
sequences. The same simulation process was also performed to estimate the maximum value of core genes and 
dispensable genes on references genome.
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