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ABSTRACT  Ageing-related processes are largely conserved, with simple or-
ganisms remaining the main platform to discover and dissect new ageing-
associated genes. Yeasts provide potent model systems to study cellular age-
ing owing their amenability to systematic functional assays under controlled 
conditions. Even with yeast cells, however, ageing assays can be laborious and 
resource-intensive. Here we present improved experimental and computa-
tional methods to study chronological lifespan in Schizosaccharomyces pom-
be. We decoded the barcodes for 3206 mutants of the latest gene-deletion 
library, enabling the parallel profiling of ~700 additional mutants compared to 
previous screens. We then applied a refined method of barcode sequencing 
(Bar-seq), addressing technical and statistical issues raised by persisting DNA 
in dead cells and sampling bottlenecks in aged cultures, to screen for mutants 
showing altered lifespan during stationary phase. This screen identified 341 
long-lived mutants and 1246 short-lived mutants which point to many previ-
ously unknown ageing-associated genes, including 46 conserved but entirely 
uncharacterized genes. The ageing-associated genes showed coherent en-
richments in processes also associated with human ageing, particularly with 
respect to ageing in non-proliferative brain cells. We also developed an auto-
mated colony-forming unit assay to facilitate medium- to high-throughput 
chronological-lifespan studies by saving time and resources compared to the 
traditional assay. Results from the Bar-seq screen showed good agreement 
with this new assay. This study provides an effective methodological platform 
and identifies many new ageing-associated genes as a framework for analys-
ing cellular ageing in yeast and beyond. 

 
Barcode sequencing and a high-throughput assay for 
chronological lifespan uncover ageing-associated genes in 
fission yeast 
 

Catalina A. Romila1,#, StJohn Townsend1,2,#, Michal Malecki1,3, Stephan Kamrad1,2,4, María Rodríguez-López1, 
Olivia Hillson1, Cristina Cotobal1, Markus Ralser2,5 and Jürg Bähler1,* 
1 Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, 
UK. 
2 The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK. 
3 Current address: Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland. 
4 Current address: Charité Universitätsmedizin Berlin, Department of Biochemistry, Germany. 
5 Charité Universitätsmedizin Berlin, Department of Biochemistry, Germany. 
# These authors contributed equally 
* Corresponding Author:  
Jürg Bähler, Tel: +44203-108-1602; E-mail: j.bahler@ucl.ac.uk 
 

 

 

 
 

 
 

 

INTRODUCTION 
Ageing is a multifactorial process leading to a gradual de-
cline in biological function over time [1–3]. Old age is the 
main risk factor for several complex diseases including dia-
betes, neurodegeneration, cardiovascular disease and can-
cer. The study of specific disease mechanisms has long 

been a focus of biomedical research, but it is also impera-
tive to consider fundamental aspects of ageing as a vital 
part of the problem and to explore ways to slow its effects. 
Ageing research has been galvanised by the discovery of 
lifespan-extending mutations in worms [4], with subse-
quent research identifying hundreds of ageing-related 
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genes in various model systems [1, 5–7]. Age-related de-
cline is plastic, with multiple genetic factors and biological 
processes contributing to lifespan and ageing. Owing to its 
complexity, genetic and genomic research on ageing in 
simple model organisms remains vital to discover all pro-
teins and processes affecting lifespan [8]. Ageing experi-
ments are often laborious and resource-consuming, espe-
cially in vertebrate models which can live for several years. 
Moreover, ageing experiments typically require large sam-
ple sizes owing to poor experimental reproducibility and 
substantial phenotypic variability in lifespan even amongst 
genetically identical individuals [9, 10]. This situation high-
lights the need for tractable experimental approaches 
which facilitate systematic and well-controlled lifespan 
assays.  

Yeast cells are well-established as a system to carry out 
systematic, genome-scale studies: they are relatively sim-
ple and can be cultured under tightly controlled conditions 
in parallelised experimental platforms [11]. The budding 
yeast, Saccharomyces cerevisiae, and the distantly related 
fission yeast, Schizosaccharomyces pombe, are also estab-
lished ageing models. The processes affecting longevity are 
remarkably well conserved from yeast to human, including 
both genetic factors, such as the TORC1 nutrient-sensing 
pathway, and environmental factors, such as dietary re-
striction [2, 12, 13]. Fission yeast has a well-annotated ge-
nome encoding 5064 proteins, about 70% of which have 
identifiable human orthologs [14]. It did not undergo any 
genome duplication and features lower gene redundancy, 
with mutants thus being more likely to show phenotypes. 
In addition, ~80% of all S. pombe genes are expressed un-
der standard growth conditions [15], which greatly facili-
tates functional studies.  

We and others have explored the effects of nutrient 
limitation, signalling pathways, and gene deletions on the 
chronological lifespan (CLS) of S. pombe cells, and several 
ageing-associated proteins have been identified [16–25]. 
CLS is defined as the time a cell remains viable in a non-
dividing state, which mirrors ageing of post-mitotic or qui-
escent cells in multi-cellular organisms [2, 13]. CLS is typi-
cally measured in stationary phase cultures following glu-
cose exhaustion, where S. pombe cells mostly arrest in the 
G2 phase of the cell cycle and die within a few days. 
Chronological ageing can be induced by depleting cells of 
other nutrients such as nitrogen, where S. pombe cells re-
versibly arrest in a G0-like state and survive for many 
weeks [19], or even by physically restricting cells such that 
they cannot divide [26]. 

CLS is traditionally measured by counting the number 
of colony-forming units (CFUs) grown from ageing cell cul-
tures after spreading culture aliquots on solid agar plates. 
The culture aliquots need to be serially diluted and plated 
at different concentrations to quantify the number of CFUs. 
Hence, measuring CLS via CFUs is error-prone, laborious 
and resource-intense, and it does not scale to larger stud-
ies. Several alternatives to the traditional CFU assay have 
been proposed: cells are cultured in a high-throughput 
format and CLS is determined via an alternative approach, 
such as measuring the proportion of cells stained with a 

viability dye using a flow cytometer [27] or fluorescent 
plate reader [28, 29], inoculating re-growth cultures and 
measuring optical density as a proxy for the number of 
viable cells in the inoculum [30], or competitively ageing 
fluorescently-tagged strains and measuring relative fluo-
rescence of re-growth cultures in a plate reader [31]. Al-
ternatively, genome-wide collections of non-essential dele-
tion mutants can be pooled and aged competitively, where 
mutants with altered CLS are detected by quantifying the 
abundance of specific DNA barcodes associated with each 
mutant. This can be done via DNA microarrays [32] or next-
generation sequencing, known as barcode sequencing, or 
Bar-seq [33, 34]. We have applied Bar-seq to screen an 
early version of the S. pombe deletion library for lifespan 
mutants during long-term quiescence [19]. Whilst large-
scale screens have identified many ageing-related genes, 
there is a remarkably poor overlap between screens [31]. 
This irreproducibility could partly reflect experimental and 
analytical differences, but may also have biological origins. 
The genetic factors which determine CLS can differ de-
pending on environmental conditions [27], with subtle 
changes in culture conditions altering the genetic basis of 
lifespan [35]. The gene-environment interactions uncov-
ered in yeast CLS screens indicate that the genetics of 
lifespan is context-dependent. Understanding the genetics 
of lifespan as a function of environmental, physiological or 
pharmacological perturbations will help to develop a com-
prehensive view of ageing in yeast and beyond. Hence, 
there is a need for tractable experimental and analytical 
approaches which facilitate high-throughput, systematic 
and robust identification of determinants of CLS. 

In this work, we present two approaches to study CLS 
for medium- to high-throughput applications. We apply a 
refined method for Bar-seq, along with a tailored analysis 
pipeline, to identify mutants showing altered CLS under 
glucose exhaustion during stationary phase. We also pre-
sent a novel medium-throughput CFU assay that can be 
largely automated by robotics, which we use to validate 
the lifespan of mutants from the Bar-seq screen. This work 
provides a toolbox for systematic ageing studies at various 
experimental scales and serves as a basis to better under-
stand the genetic basis and cellular mechanisms of ageing. 

 

RESULTS AND DISCUSSION 
Bar-seq of latest S. pombe deletion-mutant library 
The S. pombe deletion-mutant library is commercially 
available from Bioneer, but the company does not provide 
any sequence data on the two unique barcodes (UpTag and 
DnTag) associated with each mutant. Therefore, we first 
needed to decode these barcodes as these sequences were 
only available for earlier versions of the deletion library [19, 
33]. We used a PCR-based genome walking approach to 
sequence the barcodes and adjacent genomic regions, al-
lowing each barcode to be associated with a deleted gene. 
We could decode barcodes for 3206 gene-deletion mu-
tants (94% of all mutants in this library), including 3011 
mutants decoded for both UpTag and DnTag as well as 96 
and 99 mutants decoded for UpTag or DnTag, respectively 
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(Table S1; Materials and Methods). For each mutant, we 
defined the deleted region as the region between the ge-
nomic fragments associated with the corresponding UpTag 
and DnTag (Table S2). Reassuringly, the sequence counts 
for the UpTag and DnTag barcodes strongly correlated with 
each other (Figure S1A). As expected, most of the se-
quenced barcodes were 20 nucleotides long, with a range 
of 14-22 nucleotides (Figure S1B), as reported [33]. As part 
of the decoding process, we visually confirmed the bar-
codes using an in-house genome browser (Figure S1C). This 
effort captured proportionately more barcode sequences 
than for previous library versions, which include 2560 de-
coded mutants (90% of library; [33]) and 2473 decoded 
mutants (82% of library; [19]). The effective decoding, 
along with the increased size of the latest deletion library, 
allowed us to interrogate a substantially higher number of 
deletion mutants by Bar-seq than in previous screens. 

 
Bar-seq screen for CLS of stationary-phase mutants 
We developed a CLS screen to identify long- and short-
lived deletion mutants by letting a mutant pool compete 
for survival in stationary phase followed by Bar-seq to de-
termine the relative barcode abundance for each mutant 
as a function of age (Figure 1A). We carried out analyses to 
test the experimental design of the screen. Since Bar-seq 
relies on barcode sequences, any persisting DNA from dead 
cells may produce misleading results. We tested for this 
potential bias by chronologically ageing stationary-phase 
mutant pools for six days, with daily measurements of 
CFUs and DNA levels. The results indicated that DNA can 
indeed remain intact for several days following cell death 
(or loss of proliferative potential) (Figure 1B). This finding 
confirmed the DNA bias presumed in previous competi-
tion-based screens [19, 32, 36]. To account for this bias, 
besides directly sampling non-dividing cells of the mutant 
pools, we also put aliquots of these pools in fresh medium 
and re-grew them to stationary phase (Figure 1A). This 
approach is similar to re-growth applied for another com-
petition-based CLS screen [32]. We carried out three bio-
logical repeats of the chronological ageing and re-growth 
experiment using independently generated deletion-
mutant pools and collected samples at seven timepoints 
over eleven days (Figure 1A). The CLS of the mutant pools 
were similar or slightly shorter than for two repeats of a 
wild-type control strain (Figure 1C). 

The ageing, non-dividing mutant cells that were directly 
sequenced (rather than re-grown before sequencing) could 
not be differentiated with Bar-seq because their barcode 
abundances remained highly correlated across all 
timepoints (Figure 1D). This result indicates that these 
samples do hardly capture differences in viability between 
mutants, consistent with DNA persisting in dead cells (Fig-
ure 1B). When re-growing the ageing mutant before se-
quencing, however, we did observe substantial ageing-
related changes in relative abundance between mutants, 
reflecting different lifespans in different mutants (Figure 
1E). Specifically, mutant abundances were highly correlat-
ed between Days 0 to 2, suggesting that most mutants 
remain viable at these timepoints, while these correlations 

were substantially lower from Day 3, suggesting that these 
samples become enriched for long-lived mutants. This re-
sult is consistent with a strong drop in viability of the sta-
tionary-phase pool around Day 3 (Figure 1C). These anal-
yses show that mutants need to be re-grown before sam-
pling by Bar-seq to restrict contribution from dead or non-
proliferative cells.  

 
Late re-growth timepoints feature sampling bottleneck 
The mutant abundances in re-growth samples showed low 
correlations after Day 5, even between replicate pools of 
the same timepoint (Figure 1E). This poor correlation could 
reflect that mutant composition at these late timepoints is 
determined by stochastic sampling of a few remaining mu-
tants. To test this possibility, we used the CFU measure-
ments of the stationary-phase cultures to estimate how 
many live cells were inoculated into the re-growth cultures 
at each timepoint (Figure 1F). This analysis showed that 
from Day 5 onwards only ~100 or fewer live cells were in-
oculated into the re-growth cultures. Such low live-cell 
numbers at late timepoints indicate a substantial sampling 
bottleneck, which must be accounted for to accurately 
determine mutant abundance. In particular, when a re-
growth culture is inoculated with a small number of live 
cells, the clonal descendants from the same cell may be 
sequenced multiple times. This situation leads to an over-
estimation of the statistical power and is analogous to the 
problem of PCR duplicates in RNA-seq experiments [37]. 
Therefore, where the library size for a sample was greater 
than the number of live cells inoculated for re-growth at 
that timepoint (Day 3 or later, Figure 1F), we scaled the 
read counts such that the library size equals the size of the 
bottleneck to ensure that each read represents on average 
one cell in the stationary-phase culture. Analogous conclu-
sions have emerged from a recent study showing that bar-
code counts do not follow a negative binomial distribution 
in populations after strong selection bottlenecks, thus vio-
lating the statistical assumptions of RNA-seq algorithms 
typically employed for the analysis of count data [38]. We 
conclude that samples from late timepoints feature a tech-
nical bias, reflecting a sampling bottleneck, which requires 
a special scaling procedure. 

 
Late stationary phase pools are biased by factors other 
than longevity 
We considered which timepoints will maximise our ability 
to detect long- and short-lived mutants. The pools at the 
two last timepoints, Days 9 and 11, contained 29 mutants 
with an abundance of at least 1% of the read counts in one 
or more libraries. The results were stochastic, however, 
with the dominant mutants showing poor reproducibility 
between replicate pools at Days 9 and 11 (Figure 1E; Figure 
S2A). Notably, these 29 mutants typically decreased in 
abundance in early timepoints but then increased in abun-
dance following the death of most other mutants (Figure 
S2B). This early decrease in abundance was statistically 
significant  for  21  of  these  mutants (Figure S2C). Further- 
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more, the fold-change (FC) from Day 0 to Day 3 for these 
29 mutants was significantly lower than for all other mu-
tants, revealing that pools at late timepoints were enriched 
for mutants classified as short-lived according to the earlier 
timepoints (Figure S2D). These results suggest that the 
persistence of these mutants at late timepoints reflects 
factors unrelated to longevity. For example, the nutrients 
released from dying mutants might be scavenged and pro-
vide a survival advantage to certain other mutants in a 
heterogeneous cell culture, a phenomenon that has been 
described in bacteria [39, 40], and recently in S. pombe 
cells during quiescence [41]. We conclude that samples 
from very late timepoints are also biased by biological 
phenomena that do not reflect longevity.  

 
Deletion mutants with altered CLS during stationary 
phase   
Collectively, our analyses showed that mutants need to be 
re-grown before sampling by Bar-seq and that samples 
from the last timepoints can be biased through technical 
and biological effects which compromise the reliable de-
tection of long-lived mutants. Hence, we limited our prima-
ry analysis to Day 0 (when 100% of cells were viable) and 
Day 3 (when ~2% of cells were viable; Figure 1C). Our Bar-
seq screen could detect 3061 mutants out of the 3206 de-
coded mutants (Table S3). For identifying long- and short-
lived mutants, we analysed the normalised re-growth sam-
ples from Days 0 and 3 to estimate a FC for each mutant. 
We used the following FC and false discovery rate (FDR) 
cut-offs for both long- and short-lived mutants: |log2(FC)| 
> log2(1.5) and FDR < 0.05 (Figure 2A). This analysis identi-
fied 341 long-lived and 1246 short-lived mutants (Table S4). 
The higher number of short-lived mutants may reflect that 
gene deletions can be harmful for non-dividing cells by 
interfering with many different processes, including those 
not directly related to ageing [19]. 

We looked for functional enrichments among the genes 
which affect CLS. The short-lived mutants (reflecting genes 
that prolong lifespan) were enriched for several broad 
terms such as metabolic pathways, catalytic complex, 
chromatin organisation, intracellular protein transport and 

protein-containing complex subunit organisation (Figure 
2B; Table S5). Such enrichments are consistent with several 
different cellular processes being required for the survival 
of non-dividing cells, including those not directly related to 
ageing. We also found enrichments for functions previous-
ly associated with stationary-phase survival, including cel-
lular response to starvation, response to stress and regula-
tion of cellular metabolic process (Figure 2B; Table S5). 
These enrichments may reflect the need for cells to re-
spond to environmental changes and re-program their 
metabolism to maintain viability under nutrient-depleted 
conditions [42]. Another process critical for stationary-
phase survival is autophagy, which allows recycling of 
damaged or surplus biomolecules and plays key roles in 
ageing and disease [43, 44]. In yeast, the vacuole is the site 
of autophagy and serves as a nutrient reservoir and signal-
ling hub which integrates information from nutrient sen-
sors [45, 46]. Accordingly, short-lived mutants were en-
riched for different terms related to autophagy, including 
autophagosome formation and late endosome-to-vacuole 
transport (Figure 2B; Table S5). Selective forms of autoph-
agy were also enriched, such as late nucleophagy and mi-
tophagy, suggesting that recycling of nuclear and mito-
chondrial components is particularly important for station-
ary-phase survival. Indeed, late nucleophagy is a vital star-
vation response and associated with degenerative diseases 
[43, 44]; defective mitochondria can shorten the CLS [47], 
and inherited human diseases with mitophagy defects fea-
ture ageing pathologies such as neurodegeneration [48]. 
Short-lived mutants were also enriched for other mito-
chondrial terms (Figure 2B; Table S5), such as inner mito-
chondrial membrane, consistent with respiration being 
required for stationary-phase survival [49]. In humans, a 
decline in mitochondrial function is associated with ageing 
and degenerative diseases [50], with non-dividing brain 
cells being particularly sensitive to age-related mitochon-
drial impairments [51]. 

The long-lived mutants (reflecting genes that shorten 
lifespan) were also enriched in processes associated with 
respiration, such as glutathione metabolism (Figure 2B; 
Table S5). Glutathione is an antioxidant which detoxifies 

FIGURE 1: Bar-seq screen for CLS mutants. (A) Scheme of Bar-seq CLS screen design. 1. Three independent pools of all prototroph deletion 
mutants were generated by re-suspending nine 384-colony plates in a pre-culture of rich liquid medium. These pools were used for the 
three independent biological repeats of the Bar-seq screen. 2. Pre-cultured cells were grown in fresh rich medium at 32°C for ~two days 
until saturation (100% cell viability), followed by sampling at indicated days to (i) measure colony forming units (CFUs), (ii) determine mu-
tant abundance in aged cultures, and (iii) inoculate fresh medium to determine mutant abundance after re-growth. 3. Selected samples 
were analysed by Bar-seq to identify long- and short-lived mutants from the relative changes in barcode abundance during chronological 
ageing. For the Bar-seq analyses, timepoint samples were collected on Days 0, 2, 3, 5, 7, 9, and 11. (B) Graph comparing cell viability (regular 
lines) and DNA content (dashed lines) during chronological ageing. Pools of deletion mutants (three biological repeats using independently 
generated deletion-mutant pools) and wild-type control cells (two biological repeats) were grown in rich medium to stationary phase (Day 
0), followed by measurements of cell viability (CFU assay) and DNA content (Qubit) as indicated. The cell viability and DNA concentration 
(ng/µl) at Day 0 are set to 100%, with the percentages at subsequent timepoints being relative to Day 0 using a log scale. (C) Graph compar-
ing cell viability during chronological ageing of the three independent pools of deletion mutants used for the Bar-seq screens (A) and two 
independent cultures of wild-type control cells. The cell viability (CFU method) is indicated as in (B). (D) Heatmap showing correlations (r) in 
barcode abundance across all timepoints and independent repeats of the Bar-seq screen for samples that were directly sequenced. Sample 
correlations between barcode counts from each pool and timepoint were calculated and plotted with the pheatmap package in R. (E) 
Heatmap as in (D) for samples that were re-grown before sequencing. (F) Graph showing numbers of live cells (CFUs) inoculated at each 
timepoint of the re-growth cultures used for the Bar-seq screens (data for three independent repeats) as well as sequence-library sizes ob-
tained from these three independent re-growth cultures.  



C.A. Romila et al. (2021)  Bar-seq screen for chronological lifespan 

 
 

OPEN ACCESS | www.microbialcell.com 151 Microbial Cell | JULY 2021 | Vol. 8 No. 7 

reactive oxygen species (a by-product of respiration) and a 
key determinant of redox signalling [52]. How impairment 
of glutathione metabolism could increase CLS is unclear, 
but reactive oxygen species, antioxidants and redox signal-
ling play complex and nuanced roles in ageing [53]. Indeed, 
impairment of glutathione synthesis in budding yeast has 
different effects on CLS depending on nutritional status 
[54]. Furthermore, long-lived mutants were enriched for 
alpha-1,2-galactosyltransferase activity, raising the possi-
bility that changes in the glycosylation status play a role in 
ageing. In humans, the protein glycosylation status changes 
with age, which is especially relevant in non-proliferative 
tissues such as the nervous system [55, 56]. For example, 
alterations in protein glycosylation profiles, most notably 
β-amyloid, is an early indicator of Alzheimer’s disease [57]. 
The long-lived mutants were also enriched for sterol trans-
porter activity. Whilst it is unclear how impairment of ster-
ol transport could increase CLS, sterols play important roles 
in metabolism and homeostasis [58] and have recently 
been shown to mediate the beneficial effects of dietary 
restriction in flies [59]. Moreover, the long-lived mutants 
were enriched in regulatory functions, such as ATP-
dependent chromatin remodelling, a process carried out by 
evolutionarily conserved nucleosome remodelling factors 
which affect genome function, ageing and disease [60–62]. 
In particular, the Swr1 complex, or SRCAP in human, was 
highly enriched (Figure 2B; Table S5). SRCAP is a histone-
exchange complex that deposits the histone variant H2A.Z 
at promoter regions, with broad roles for gene regulation 

[63, 64]. The enrichment of specific chromatin-related 
functions among the long-lived mutants suggests that 
chromatin regulators, such as the Swr1 complex, are in-
volved in cellular ageing, possibly by modulating gene ex-
pression. Notably, Swr1 complex mutants are also long-
lived in budding yeast, with the Swr1 complex being re-
quired for lifespan extension by dietary restriction [65]. 
These findings suggest that some chromatin regulators 
may participate in a conserved regulatory network that 
promotes ageing. 

 
Development of a robotics-based CFU assay 
CLS is traditionally measured by plating of non-dividing 
cells at different dilutions and determining the proportion 
of cells that can re-enter the cell cycle by counting CFUs on 
solid plates [21, 66]. However, measuring CLS using the 
traditional CFU method is both time- and resource-
consuming, and can lead to variable results. To circumvent 
these issues, we developed a quantitative, automated CFU 
assay to facilitate medium- to high-throughput ageing 
studies. This assay involves serial dilution of ageing, non-
dividing cells using a liquid-handling robot, followed by 
spotting droplets of the diluted cell cultures in quadrupli-
cate on solid plates of rich medium using a pinning robot 
(Figure 3A). This procedure results in colony-spotting pat-
terns reflecting the number of viable cells in the corre-
sponding cultures (Figure 3B). The assay is in essence a 
serial dilution spotting assay, similar in concept to other 
assays that qualitatively capture differences in CFUs be-

FIGURE 2: Long- and short-lived mutants and their functional enrichments. (A) Volcano plot of differences in mutant abundance on Day 3 
relative to Day 0 (log2 fold-change), based on Bar-seq of re-growth experiment, using edgeR analysis of three independent repeats [86]. Sig-
nificance was determined using a fold-change (FC) cut-off of |log2(FC)| >log2(1.5) and a false discovery rate (FDR) cut-off of <0.05. (B) Select-
ed functional enrichments from Metascape [87] are shown for long- and short-lived mutants, including chromatin-related terms (green), 
autophagy-related terms (red), mitochondrial-related terms (blue) and other terms (black). The colour scale indicates significance expressed 
as -log10 p-values, and the size of the dots reflects the percentage of the input genes among all genes associated with the respective GO term.  
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tween cultures [67, 68]. Our assay has the advantage that 
all dilution factors are spotted on a single agar plate, and 
multiple samples can be parallelised and analysed on the 
same plate. Hence, this new assay is much less resource- 
and time-demanding than the traditional CFU assay. For 
example, to measure the lifespan of 24 ageing cultures at 
ten timepoints, the traditional assay would require ~2200 
round agar plates (plating three dilutions with technical 
triplicates of each dilution), whilst the robotics-based assay 
only requires 30 rectangular agar plates. Furthermore, the 
traditional CFU method becomes experimentally unman-
ageable and intractable for studies containing more than 
~ten ageing samples in parallel. We find that the ease at 
which the new assay can be implemented means that larg-
er scale ageing studies can now be readily and reliably 
conducted.  

It is challenging to analyse images of spot dilutions and 
quantitatively infer the number of CFUs in an ageing cul-
ture, because CFUs cannot readily be determined from the 
colony-spotting patterns. We did not attempt to provide 
quantitative estimates of CFUs by solving this problem. 
Instead, our robotics-based colony-spotting assay 
measures the probability of observing a colony spot at 

each dilution factor, which is facilitated by each dilution 
factor being pinned in quadruplicate. To this end, we used 
a tailored image analysis pipeline, based on the gitter 
package in R [69], to score each position on the agar plate 
(in 384-well format) for the presence or absence of a colo-
ny spot. Thus, rather than counting the number of CFUs 
directly, we determined the number of colony spots at 
each dilution (Figure 3B). In order to convert the observed 
colony-spotting patterns into a quantitative estimate of 
CFUs, we developed a statistical model of the serial dilu-
tion and pinning process to establish a mathematical rela-
tionship between the observed pattern of colony spots and 
the number of CFUs per pinned culture droplet. Specifically, 
given that cultures were serially diluted prior to pinning 
using a fixed dilution factor, we modelled the mean num-
ber of CFUs per droplet as exponentially decreasing across 
the dilutions and the number of CFUs pinned at each dilu-
tion as Poisson distributed. Hence, the probability that a 
colony spot is present at each dilution is the sum of all 
probabilities for which at least one CFU has been pinned 
(reflecting that we are not interested in how many CFUs 
give rise to a colony spot but in the presence or absence of 
a colony spot), and the probability that a colony spot is not 

FIGURE 3: Development of robotics-based CFU assay. (A) Scheme of high-throughput CFU protocol. Aliquots of ageing cultures are loaded 
into the first column of a 96-well plate (8 in parallel) and serially diluted 3-fold across the plate using a liquid-handling robot or multichannel 
pipette. Droplets of diluted cultures are spotted onto solid agar in quadruplicate using a pinning robot (384-well format). (B) Agar plates are 
scanned after two to four days of growth, and images analysed using our R package, DeadOrAlive. Colony-spotting patterns for three strains 
(wild-type, short- and long-lived mutants predicted from Bar-seq screen) are shown for Days 0 to 12. Each position on the plate is scored for 
the presence or absence of colonies to quantify the colony-spotting patterns. The quantified pattern is shown at the centre of each quadru-
plicate, reflecting the number of colony spots observed at each dilution. Note that this method does not require the number of CFUs which 
give rise to each colony spot, because the colony-spotting pattern is used to determine the number of CFUs via maximum likelihood estima-
tion (C). (C) Maximum likelihood estimates for the number of CFUs per droplet plotted against time for the three samples in B. Blue lines 
show constrained smoothing spline fitted to each CLS curve. Red horizontal dashed lines represent numbers of CFUs per droplet at Day 0 
(100% viability) and at 5% viability. Red vertical dashed line represents time at which 5% viability is reached according to the fitted values. 
The square root of this number was used as lifespan proxy for each sample. (D) Maximum likelihood estimates of CFUs plotted against time 
for all 47 mutants validated from the Bar-seq screen, plus wild-type control. A CLS proxy was calculated for each sample (C), with each curve 
being coloured according to the proxy. 
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present is the probability that no CFU has been pinned 
(Figure S3A). Given that dilutions were pinned in quadru-
plicate, we modelled the number of colony spots present 
at each dilution factor as binomially distributed (Figure 
S3B). Using this model, it is possible to perform a maximum 
likelihood estimation to determine the number of CFUs per 
droplet of undiluted culture that is most likely to give rise 
to the observed patterns (Figure 3C). This model is not 
robust to the presence of outliers, as is the case with many 
maximum likelihood estimators [70]. Hence, we developed 
an algorithm that can identify and remove anomalous data 
points arising from errors such as plate contaminations or 
misclassifications by the image analysis, greatly increasing 
the robustness of this assay. To estimate the CLS based on 
these CFUs and to facilitate comparison with other studies, 
we applied a proxy which describes the lifespan of a strain 
as a single value. To this end, we fitted a constrained 
smoothing spline to the CFU data using the cobs package in 
R [71] (Figure 3C). Using this fit, we calculated the time 
taken for cell viability to decrease to 5%. We used the 
square root of this number as the proxy value, which effec-
tively captured differences in viability between long- and 
short-lived mutants (Figure 3D). All code to perform image 
analysis, maximum likelihood estimation and downstream 
analyses is available in our open-source R package, 
DeadOrAlive 
(https://github.com/JohnTownsend92/DeadOrAlive). 

 
Validation of robotics-based CFU assay against the tradi-
tional assay 
In order to validate our new method, we measured CFUs 
for six strains with known differences in lifespan using both 
the traditional and robotics-based CFU method. Both 
methods recorded similar lifespan curves for each strain 
(Figure 4A), and the CFUs determined by the traditional 
method strongly correlated with the CFUs determined by 
the robotics-based assay across all timepoints (Figure 4B). 
Note, however, that the limit of detection was reached at 
earlier timepoints for the robotics-based method than the 
traditional method, meaning that the high-throughput 
method cannot capture differences in CFUs for strains 
showing very low cell viabilities (Figure 4A). We conclude 
that the robotics-based method can reliably estimate CFUs 
and, therefore, facilitate the measurement of CLS for large 
numbers of samples. 

 
Validation of selected mutants from Bar-seq screen using 
robotics-based CFU assay 
We used our new robotics-based CFU assay to validate the 
CLS data from the Bar-seq screen. Figure 3B shows the 
colony-spotting patterns obtained with two strains exhibit-
ing strong CLS phenotypes based on the Bar-seq data: a 
new short-lived mutant (alg14) and a new long-lived mu-
tant (pac3), along with wild-type control cells. Figure 3C 
shows maximum likelihood estimates for the number of 
CFUs for these three strains based on the observed colony 
patterns and the fitted constrained smoothing spline to 
calculate the time taken for cell viability to decrease to 5%. 

This analysis confirmed that the two mutants showed the 
CLS effects expected based on the Bar-seq data (Figure 3C). 

We then applied the robotics-based CFU assay to vali-
date the CLS of 47 mutants that showed a range of 
lifespans in the Bar-seq screen, including two known short-
lived mutants (sdh1 and coq5) and three known long-lived 
mutants (tco89, pyp1 and git3), along with wild-type con-
trol cells (Table S6). To facilitate comparison between the 
two datasets, we applied our proxy to reduce the dimen-
sionality and summarise the lifespan based on the shape of 
the survival curve (Figure 3C and D). Using this proxy, we 
compared the results of the validation to the original Bar-
seq screen, revealing substantial overall agreement be-
tween the two methods (Figure 4C). This finding is reassur-
ing given that the two methods employ distinct experi-
mental and analytical approaches. We conclude that the 
Bar-seq screen was successful in uncovering mutants with 
altered CLS. 

 
New ageing-associated genes identified in Bar-seq screen 
We compared the ageing-associated genes identified in the 
Bar-seq screen (Table S4) with known ageing-related genes. 
Overall, 166 of our 1587 hits have previously been associ-
ated with fission yeast phenotype ontologies indicating 
altered CLS, including ‘increased viability in stationary 
phase/upon nitrogen starvation’ and ‘loss of viability in 
stationary phase/G0/upon nitrogen starvation/nutrient 
depletion/glucose starvation’ [14, 72]. For example, 55 and 
21 hits have been identified as ageing mutants in screens 
for altered CLS during quiescence [19] or for mutants that 
are resistant to TORC1 inhibitors [20], respectively. Moreo-
ver, 266 hits are listed in the GenAge database as ageing-
related genes in different organisms [73]. Although these 
overlaps are substantial, our screen also uncovered an 
excess of genes not previously implicated in ageing. Nota-
bly, 46 hits included ‘priority unstudied genes’, a set of 
~140 genes that are conserved from fission yeast to human 
but have not been directly studied in any organism [74]. 
This result raises the intriguing possibility that many of 
these unstudied genes actually play roles in ageing-related 
processes, as has been speculated [74]. Characterization of 
these genes might enlighten unknown yet conserved pro-
cesses of cellular ageing. Interestingly, among the novel 
‘pro-ageing’ proteins, which were independently validated 
using the robotics-based CFU assay (Table S6), Jac1, 
SPCC1494.08c and Cyp4 have human orthologs implicated 
in disease [14]. These orthologs include HSCB, a co-
chaperone involved in iron-sulphur cluster formation, 
which is associated with increased susceptibility to ataxia 
[75]; FAM102A, which has a putative role in estrogen ac-
tion [76] and is implicated in a type of glaucoma [77]; and 
PPIB, an endoplasmic-reticulum isomerase involved in col-
lagen biosynthesis and linked to osteogenesis imperfecta 
[78]. 
 
Conclusion 
We sequenced barcodes for 3206 mutants of the latest  
S. pombe deletion library (ver 5.0), most of which for both 
barcodes, enabling Bar-seq screening of a substantially 

https://github.com/JohnTownsend92/DeadOrAlive
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increased number of genes. We established an improved 
experimental and analytical pipeline to facilitate Bar-seq 
assays in general, and CLS screens in particular, addressing 
technical and statistical issues raised by sampling at late 
timepoints and by the re-growth protocol needed because 
DNA persists in dead cells. We identified 341 long-lived and 
1246 short-lived deletion mutants that point to a large 
number of new ageing-associated genes, including 46 con-
served but entirely uncharacterized genes. We also devel-
oped a robotics-based CFU assay and analysis pipeline, 
facilitating larger scale CLS studies of batch cultures. We 
used this assay to validate the lifespan of 47 mutants iden-
tified in the Bar-seq screen, revealing good agreement 
despite substantial differences in biological context (ageing 

in pool vs batch cultures) and experimental approaches 
(relative barcode abundance vs CFUs). This study provides 
potent systematic approaches and new genes to study 
cellular ageing. 
 
MATERIALS AND METHODS 
Pooling and growth of deletion strains 
Prototroph and auxotroph strain pools of the latest S. pombe 
gene-deletion library (ver. 5.0; Bioneer, South Korea) were 
generated as described [19]. The prototroph library was com-
bined in a single pool for CLS screening. The auxotroph library, 
used only for the barcode decoding, was divided into nine 
separate pools for each plate (in 384-well format) in order to 
maximise the PCR amplification and sequencing of barcodes. 

FIGURE 4: Comparison of traditional and high-throughput lifespan assays. (A) Comparison of traditional and robotics-based assays to de-
termine CFUs. Lifespan curves for six mutants with different lifespans were measured in parallel using both the traditional (left) and robot-
ics-based (right) assays. Both methods capture differences in lifespan between short-lived mutants (atf1Δ, gsk3Δ, php2Δ) and long-lived 
mutants (pka1Δ, reb1Δ). (B) CFUs determined for various cultures (different mutants grown under different conditions) at different 
timepoints, using both the traditional and robotics-based method. Scatter plot shows the agreement between the two methods. Green: 
linear regression of log-transformed CFU values (traditional vs robotics-based), along with Pearson correlation coefficient. (C) Scatter plot 
showing the agreement of CLS estimates between Bar-seq and the robotics-based lifespan assay for the 47 validated mutants. The log2 fold 
change (FC) of barcode abundance (Day 3 relative to Day 0) is plotted against the lifespan proxy based on maximum-likelihood estimates 
from the robotics-based method. Blue: linear regression between log2 FC and lifespan proxy, along with Pearson correlation coefficient. 
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For all mutant pools, sample collection and storage were pro-
cessed in the same manner. Pool aliquots of 500 µL, stored at  
-80°C at a final concentration of 20% (v/v) glycerol, were 
thawed on ice, cells were re-suspended in 250 mL YES medium 
[80] at a density of ~1.0 OD600nm in 500 mL conical flasks, with 
pre-cultures grown at 25°C for ~14-16 hours without shaking. 
Cells were washed and re-suspended to 0.2 OD600nm in the 
required volume of YES. Cultures were grown to stationary 
phase at 32°C and 170 rpm for two days, unless stated other-
wise, at which point cultures were considered to be 100% 
viable. Once stationary phase was reached, culture viability 
was determined as described [21]. In parallel, re-growth cul-
tures were inoculated and grown until stationary phase. Ali-
quots of 2 mL were washed as before and the pellets stored at 
-80°C until required for DNA extraction for both ageing cul-
tures and re-growth cultures. 

 
Library preparation and sequencing 
Genomic DNA was extracted using the MasterPure Yeast DNA 
Purification Kit (Epicentre, UK). During the extraction protocol, 
a lysis step was introduced as follows: cells were lysed twice 
with mechanical beating using glass beads (0.5 mm diameter, 
Stratech Scientific, UK) in a FastPrep-24 Instrument (MP Bio-
medicals, UK) and incubated for one hour at 65°C. DNA was 
purified and quantified using the QIAquick PCR purification kit 
(Qiagen, UK) and Qubit (ThermoFisher Scientific, Rochford, 
UK), respectively, following the manufacturer’s instructions. 

For barcode decoding, DNA from two independent ali-
quots of the auxotroph deletion-strain pool were used. Puri-
fied DNA (25 ng/µL) in 100 µL of nuclease-free water (Qiagen, 
UK) was broken down to ~400 bp with seven cycles of 30 sec-
onds shearing and 30 seconds rest using the Diagenode Bio-
ruptor® instrument (ATG Scientific, UK). Barcodes were treat-
ed separately by end-repair using the NEBNext® End Repair 
Module (NEB, UK), linker ligation using the NEBNext® Quick 
Ligation Module (NEB, UK) and amplified with Phusion® High-
Fidelity DNA polymerase (NEB, UK) using its dedicated master 
mix (NEB, UK) and custom-designed primers. These primers 
consisted of linkers required for extracting genomic sequences 
and barcode-specific sequences. Linker oligo sequences were: 
5’-TTCAGACGTGTGCTCTTCCGATCTNNNNNNN- 
NNNCAGGCTACTCCGCTTAAGGGAC-3’ (linker 1, Invitrogen, UK) 
and 5’-GTCCCTTAAGCGGAGTAGCCTG/3AmMO/-3’ (linker 2, 
DNA IDT, UK). Both UpTag and DnTag forward primer se-
quences were complementary to linker 1. Reverse UpTag pri-
mer 5’-CACGACGCTCTTCCGATCTAGTANNNNGGGGACGAGGC- 
AAGCTAAGATATC-3’ (Invitrogen, UK) and reverse DnTag  
5’-CACGACGCTCTTCCGATCTAGTANNNNCGCCATCCAGTGTCG- 
AAAAGTATC-3’ (Invitrogen, UK) primer sequences comprised 
part of the Illumina adaptor sequence (underlined), four con-
stant bases (‘AGTA’), four random bases (‘Ns’) acting as unique 
molecular identifiers (UMIs), and the U2/D2 UpTag- and 
DnTag-specific sequences. DNA was amplified with 15 cycles 
of 10 seconds at 98°C, 45 seconds at 65°C and 30 seconds at 
72°C. DNA was diluted ten-fold and used as template for the 
second round of PCR where Illumina adaptors for sequencing 
were added using the NEBNext® Multiplex Oligos Illumina dual 
index kit (NEB, UK) with ten cycles of 10 seconds at 98°C, 45 
seconds at 65°C and 30 seconds at 72°C. Size selection for 
fragments of approximately 450-550 bp was performed using 
AMPure® XP beads (NEB, UK). Briefly, AMPure beads were 
incubated at room temperature for 30 mins. Size selection 

was performed at 1.2x (beads volume/sample volume) in a 
total volume of 100 µL, followed by incubation at room tem-
perature for 5 mins before placing on a magnetic stand to 
separate the beads and discard the supernatant. The beads 
with the DNA were then washed twice with 200 µL freshly 
prepared 80% EtOH, air dried for approximately 5 mins, and 
DNA eluted in 25 µL nuclease-free H2O (Qiagen). When re-
quired, a further 1x (beads volume/sample volume) was per-
formed to remove any leftover primer dimers. Libraries were 
quantified with Qubit and run on the BioAnalyzer (Agilent, UK). 
Sequencing was performed on an Illumina MiSeq Instrument 
(Illumina, US) with 168 cycles using paired-end reads of 75 bp 
each generating approximately 30 million reads. 

For CLS screening, DNA was extracted (using MasterPure 
Yeast DNA Purification Kit; Epicentre, UK) from stationary 
phase and re-growth cultures for selected timepoints (Days 0, 
2, 3, 5, 7, 9 and 11). Starting with 250 ng of total DNA, UpTag 
and DnTag barcodes were separately amplified with Phusion® 
High-Fidelity DNA polymerase (NEB, UK) using custom-
designed primers at a concentration of 100 nM each in a total 
volume of 50 µL, with 6 cycles of 10 seconds at 98°C, 30 sec-
onds at 60°C and 30 seconds at 72°C. Oligo sequences of Up-
Tag and DnTag (Invitrogen, UK) were: 5’-
TTCAGACGTGTGCTCTTCCGATCTGTCANNNNCGCTCCCGCCTTA- 
CTTCGCATTTAAA-3’ and 5’-CACGACGCTCTTCCGATCTAGTA- 
NNNNGGGGACGAGGCAAGCTAAGATATC-3’, and 5’-CACGACG- 
CTCTTCCGATCTAGTANNNNCGCCATCCAGTGTCGAAAAGTATC-
3’ and 5’-TTCAGACGTGTGCTCTTCCGATCTGTCANNNNTT- 
GCGTTGCGTAGGGGGGATTTAAA-3’, respectively. These se-
quences were custom-designed and differed from previously 
described barcode sequencing methods [19, 33] by containing 
part of the Illumina adaptor sequence (underlined), four con-
stant bases (‘GTCA’ or ‘AGTA’) introduced to easily identify the 
start of the reads, four random bases ‘Ns’ added to act as 
Unique Molecular Identifiers (UMIs), U1/U2 and D2/D1 Up-
Tag- and DnTag-specific sequences. Products were purified 
using the MinElute® PCR Purification Kit (Qiagen, Germany) 
and eluted in 10 µL dH2O. All 10 µL of the purified product was 
used as template for the second PCR in a total volume of 25 µL 
with 17 cycles of 10 seconds at 98°C, 30 seconds at 65°C and 
30 seconds at 72°C using the NEBNext® Multiplex Oligos kit 
(NEB, UK). The expected library size was ~200-250bp. To select 
for this range, we removed fragments <150 bp using 1x AM-
Pure® XP beads (NEB, UK). DNA quantification and quality 
control was performed using a BioAnalyser Instrument (Ag-
ilent Technologies, US). Libraries were pooled at a total con-
centration of 4 nM, and PhiX sequencing control v3 (Illumina, 
US) to increase the library complexity was added at a concen-
tration of 5%. Libraries were sequenced on an Illumina MiSeq 
Instrument with 168 cycles using paired-end reads of 75 bp 
each and generating approximately 30 million reads. 

 
Decoding of deletion library barcodes 
Figure S4A provides a scheme of the steps taken to decode the 
barcodes of the ver. 5.0 deletion library (Bioneer). Reads from 
each of the nine pool plates were combined and analysed 
collectively. The paired-end reads (R1 and R2) were analysed 
separately. UpTag and DnTag R1 reads were mapped to the 
respective UpTag or DnTag barcode flank sequences, U1/U2 
(5’-CAAGCTAAGATATC-3’ and 5’-TTTAAATGCGAAGTAA-3’) and 
D2/D1 (5’-AGTGTCGAAAAGTATC-3’ and 5’-TTTAAAAT- 
CCCCCCTA-3’). The barcode sequence was extracted from 
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between these flanks. UpTag and DnTag reads containing 
some primer sequence as part of the genomic DNA were re-
moved by mapping the R2 reads to the primer sequences, and 
the genomic DNA was extracted as the R2 sequence minus the 
primer sequence. Mapping to flanking/primer sequences and 
identification of barcodes/genomic DNA was performed using 
an in-house Python script, Barcount (https://github.com/ 
Bahler-Lab/barcount). To ensure that genomic DNA fragments 
were genuine, we used the FASTQX-Toolkit [81] to filter se-
quences against the UpTag/DnTag (U1/D2) primer sequences, 
thus removing possible primer contaminated genomic se-
quences. Genomic DNA reads were mapped to the S. pombe 
reference genome using Bowtie2 [82]. Next, we used BEDtools 
[83] to identify the nearest upstream/downstream gene to the 
mapped region for the UpTag/DnTag respectively, taking into 
account the directionality of genes. We discarded reads where 
a barcode could not be extracted from the R1 read or the R2 
read could not be uniquely mapped to a gene. Figure S4B 
shows the read loss following the different steps of these 
analyses. 

In order to match barcodes to genes with high confidence, 
we identified barcode-gene pairs which appeared in reads 
with high frequency. This was performed separately for UpTag 
and DnTag barcodes (Figure S5). In order to account for possi-
ble indels or base mutations known to arise within synthetic 
barcodes sequences [33], pairwise Levenshtein distance was 
calculated between all barcodes, and barcodes were assem-
bled into clusters where they differed by no more than 3 mu-
tations. A consensus barcode was defined for each cluster as 
the average barcode sequence of that cluster. A consensus 
barcode was automatically assigned to a gene if the following 
3 criteria were met: 1) there were at least 10 reads where a 
consensus barcode mapped to a gene; 2) at least 80% of all 
reads containing a consensus barcode mapped to a gene; and 
3) at least 80% of all reads mapped to a gene associated with a 
consensus barcode. A subset of the automatically assigned 
barcode-gene pairs were manually inspected using an in-
house genome browser, where the number of reads for Up-
Tags and DnTags was plotted with respect to genome position. 
This browser was also used to inspect and manually assign 
cases where automatic assignment was not possible, such as 
overlapping genes. Code for the creation of consensus bar-
codes, the assignment of barcode-gene pairs, and the in-
house genome browser are available in the BarSeqTools R 
package 
(https://github.com/Catalina37/Barcount_BarSeqTools_Pipeli
nes/tree/master/BarSeqTools). 

 
Application of Bar-seq to identify long- and short-lived mu-
tants 
Paired-end reads were assembled using PEAR [84] and filtered 
for PCR duplicates using BEDTools [85]. Barcodes for UpTags 
and DnTags were extracted by mapping reads to the respec-
tive UpTag/DnTag flanking sequences using Barcount. A code-
example of how Barcount for UpTags was run is as follows: 
barcount --fastq UpTag.fastq --rmdup --flanking_left CAA-
GCTAAGATATC --flanking_right TTTAAATGCGAAGTAA --
max_distance_flanks 1 --max_distance_barcode 3 --
barcode_table UpTagReference.csv --debug --verbose --
save_extracted_barcodes --out UpTag.filter.fastq. A code-
example of running Barcount for the DnTags is as follows: 
barcount --fastq DnTag.fastq --rmdup --flanking_left AG-

TGTCGAAAAGTATC --flanking_right TTTAAAATCCCCCCTA --
max_distance_flanks 1 --max_distance_barcode 3 --
barcode_table DnTagReference.csv --debug --verbose --
save_extracted_barcodes --out DnTag.filter.fastq. 

Barcodes were matched to genes according to the lookup 
table compiled, and a total read count for each gene was cre-
ated by adding up counts for UpTag and DnTag. The number 
of CFUs present in the ageing cultures at each timepoint was 
used to estimate the size of the bottleneck introduced by in-
oculating re-growth cultures (i.e. how many live cells were 
used to inoculate the re-growth culture). If the library size was 
greater than the bottleneck size, read counts were scaled prior 
to differential fitness analysis to ensure that the library size 
equalled the bottleneck size, ensuring that the scaled read 
counts represented the number of live cells present in the 
stationary phase culture at each timepoint. Differential fitness 
analysis based on barcode frequency in the re-growth cultures 
was performed using edgeR (version 3.24.3) [86]. Time was 
considered as a categorical variable, and the pool was includ-
ed as a term in the model in order to account for differences 
in barcode abundance between pools. Read counts were 
modelled using a negative binomial generalised linear model 
with likelihood ratio testing being used to determine p-values 
for differences in barcode abundances between timepoints. 
For determination of long- and short-lived mutants, 
timepoints 0 and 3 were analysed using a FC cut-off of 
|log2(FC)| > log2(1.5) and FDR cut-off of FDR < 0.05. Enrich-
ment analyses of long- and short-lived gene deletion lists were 
performed with Metascape [87] and AnGeLi [88]. In both cases, 
the 3061 genes whose effect on lifespan we could measure in 
the Bar-seq screen were used as the background for enrich-
ment tests. 

 
Development of a robotics-based CFU assay 
As described in Results, we developed a novel assay to meas-
ure CFUs from batch cell cultures which can be largely auto-
mated by robotics. We loaded 150 µL aliquots of ageing cul-
ture into the first column of a 96-well plate (eight cultures in 
parallel per plate). The rest of the plate was loaded with  
100 µL of YES. By taking 50 µL of the ageing culture from the 
first column, cultures were serially diluted 3-fold across the 
plate, ensuring each dilution factor was well mixed before 
proceeding to the next. This was performed using an Integra 
Assist automated multichannel pipette (Integra Biosciences 
Ltd). Droplets of serially diluted ageing cultures were immedi-
ately dispensed onto YES agar in quadruplicate (384-well for-
mat) using a Singer RoToR HDA pinning robot (Singer Instru-
ments). For this, long-pin 96-density pads were used, making 
sure that the source plate was revisited before each pin onto 
agar. Plates were incubated for 2-4 days at 32°C until patterns 
of colony spots appeared. Images of agar plates were acquired 
with pyphe-scan [89] using an Epson V700 scanner in trans-
mission mode. We provide an R package, DeadOrAlive, to 
analyse images of plates and quantify the number of CFUs in 
the ageing culture based on the colony-spotting patterns ob-
served. 

 
Validation of robotics-based CFU assay against the tradition-
al assay 
In order to validate the robotics-based CFU assay, we meas-
ured the lifespan of 6 different strains grown in YES using both 
the traditional and robotics-based methods in parallel. Cul-

https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BarSeqTools
https://github.com/Catalina37/Barcount_BarSeqTools_Pipelines/tree/master/BarSeqTools
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tures were grown to stationary phase at 32°C and 170 rpm for 
two days, at which point cultures were considered to be 100% 
viable. Once stationary phase was reached, culture viability 
was determined both using the standard CFU assay [21] and 
our robotics-based CFU assay described above. For wild-type, 
the 972 h- strain was used, gsk3::natMX6 h- was generated in 
a previous study [90], whilst reb1::natMX6 h-, php2::natMX6 
h-, atf1::natMX6 h- and pka1::kanMX4 h- were generated as 
described [91]. 

 
Validation of selected mutants from Bar-seq screen using 
robotics-based CFU assay 
Excluding the wild-type control (972 h-), we selected 47 mu-
tants in total with varying lifespans from the Bar-seq screen to 
independently validate the lifespans using the robotics-based 
CFU assay. Apart from the wild-type cells, which were inde-
pendently grown, all mutant strains were manually selected 
from fresh prototrophic cell colonies, grown on YES plates, re-
streaked onto new YES plates, and grown at 32°C for two days. 
Colonies were used to set individual pre-cultures grown in 
parallel in 20 mL YES overnight at 32°C and 170 rpm. Cultures 
of 20 mL YES at 0.002 OD600nm were prepared from the corre-
sponding pre-cultures and grown to saturation at 32°C with 
170 rpm shaking. Once cultures reached saturation, the first 
timepoint (Day 0, 100% cell viability) was collected and pro-
cessed using the robotics-based CFU assay as described earlier. 
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