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Abstract

The term process model is widely used, but rarely agreed upon. This paper proposes a framework for characterizing and building
cognitive process models. Process models model not only inputs and outputs but also model the ongoing information transfor-
mations at a given level of abstraction. We argue that the following dimensions characterize process models: They have a scope
that includes different levels of abstraction. They specify a hypothesized mental information transformation. They make predic-
tions not only for the behavior of interest but also for processes. The models’ predictions for the processes can be derived from the
input, without reverse inference from the output data. Moreover, the presumed information transformation steps are not contra-
dicting current knowledge of human cognitive capacities. Lastly, process models require a conceptual scope specifying levels of
abstraction for the information entering the mind, the proposed mental events, and the behavior of interest. This framework can
be used for refining models before testing them or after testing them empirically, and it does not rely on specific modeling
paradigms. It can be a guideline for developing cognitive process models. Moreover, the framework can advance currently

unresolved debates about which models belong to the category of process models.

Keywords Cognitive process model - Cognitive model - Computational model - Definitions - Marr’s levels

Cognitive processes—how the mind transforms information to
arrive at behavior—have been a focal topic in psychology for a
century (Wundt, 1911), and have gained momentum during
the cognitive revolution. Gregg and Simon (1967) advocated
for “process models” as models with precise assumptions
about how mental processing of information leads to behavior.
In the past years, citations of database-indexed publications
using the term have increased steeply, even when controlling
for a positive citation trend: Fig. 1 shows that in 2018, citations
of articles mentioning process models outnumbered citations
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of articles mentioning “formal” or “computational” models.
Process model citations increased by a factor of almost 5, with
a mean annual growth rate in absolute citations of 31% com-
pared with 20% for all citations. Simultaneously, there has
been a growing interest in process measures (Schulte-
Mecklenbeck, Kiihberger, & Ranyard, 201 1a).

This trend shows that investigating mental processes is
considered relevant and useful to understand human cognition
by many psychologists. By “process,” we refer to the change
of the state of (cognitive) systems over time (Hartmann,
1996). To date, not much advice exists on the general devel-
opment of cognitive process models (see Griine-Yanoff,
2014), besides very broad overviews (e.g., Sun, 2008), and
very model-specific implementation tutorials (e.g., Griffiths &
Yuille, 2008; Pothos & Busemeyer, 2013). Simultaneously,
psychologists debate which cognitive models constitute pro-
cess models (Brandstitter, Gigerenzer, & Hertwig, 2006). For
example, do connectionist networks describe processes
(McClelland et al., 2010) or functions (Griffiths, Chater,
Kemp, Perfors, & Tenenbaum, 2010)? Is the recognition heu-
ristic (Goldstein & Gigerenzer, 2002) a process model (Pohl,
2011)? Our aim in the present article is to provide a frame-
work to clarify the requirements of cognitive process models
in general. From that framework, we derive a checklist that
enables researchers interested in cognitive processes to
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Fig. 1 Increasing citation frequency of publications using the term
“process model”. Source: Web of Knowledge, accessed May 2019. The
solid line shows the proportion of citations of articles that include the
terms “process model” AND “cognitive science” AND “judgment and
decision making” relative to citations including the latter terms but
excluding “process model.” The dotted lines depict the respective

identify exactly what parts of a model need to be specified in
order to arrive at predictions that are testable on a process
level.

Conceptions of process models

Experts disagree on process model properties, and the litera-
ture uses the term with different connotations.

Disagreements between experts

We asked psychologists and cognitive modelers if 116 cogni-
tive models constituted process models (models were selected
based on a systematic review; see the Supplemental Material).
Respondents were recruited through mailing lists and emails;
65 respondents completed the survey, three were excluded,’
leaving N = 62 researchers with 35 professors, 16 postdoctoral
researchers, and 11 doctoral students. Most had taught
methods courses (n = 46) and were familiar with many
models; the professors, post-doctoral researchers, and students
knew and classified on average 50, 49, and 40 models, respec-
tively. Although almost all (51 of 62) agreed that process
models are important, they disagreed about which models
constituted process models with an inter-rater agreement of
Fleiss—Cuzick’s k = .27, far below the .60 benchmark for good

1 o .
One for insincere responses, two for a lack of expertise.

Year

proportions for articles that include the term “agent-based model,”
“formal model,” or “computational model” instead of “process model.”
Cognitive science and judgment and decision making were
operationalized as “cognitive,” “psychology,” AND “judgment and
decision making” OR “decision making”

agreement (Fleiss & Cuzick, 1979, p. 539). A split by senior-
ity yielded similarly low k values of .33, .17, and .14 for
professors, researchers, and students, respectively.

This disagreement also suggests that the meta-theories re-
lated to process models like Marr’s (1982) three levels of
analysis—computation, algorithm, and implementation—
have not characterized the properties of process models pre-
cisely enough. Though Marr’s levels have been widely
adopted (e.g., Chater, 2009; Griffiths, Lieder, & Goodman,
2015; Huang, Sen, & Szidarovszky, 2012; Jones & Love,
2011; Sanborn, Griffiths, & Navarro, 2010), their application
poses difficulties (summarized in Griffiths et al., 2015).
Researchers tend to locate process models at the algorithmic
level, explaining “the algorithm for the transformation” (Marr,
1982, p. 25), but this fails to define process models: Asked if
Marr’s algorithm level clarifies what process models are, the
38 respondents being familiar with Marr’s levels were divided
between does not clarify at all (» = 16) and clarifies complete-
ly (n = 20) around a neutral midpoint (» = 2) on a 7-point
scale.

Disagreements in the literature

Why is there such disagreement? We think that the disagree-
ment is because the literature lacks a clear definition of pro-
cess models. Instead of referring to process models by a set of
characteristics, process models are discussed with various im-
plicit connotations.
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Connotation 1: Process models versus rational models Some
work mentions process models in opposition to rational
models (e.g., Bergert & Nosofsky, 2007; Chater, 2009;
Jekel, Glockner, Fiedler, & Broder, 2012; Lee & Cummins,
2004). Such rational models provide optimal solutions to a
problem (Tanner & Swets, 1954) or constrained optimal solu-
tions (rational analysis by Anderson, 1991) to formal statisti-
cal problems faced by decision makers (Griffiths et al., 2010;
Lewis, Howes, & Singh, 2014). Cognitive processes can then
be singled out by the “ways in which human behavior deviates
from ideal solutions” (Griffiths, Vul, & Sanborn, 2012, p.
263). From this, it is implied that process models—contrary
to rational models—are models that yield solutions that are
not optimal or only approximately optimal within a margin of
error (rational process models; see Griffiths et al., 2015;
Griffiths et al., 2012; Sanborn et al., 2010).

Connotation 2: Process models versus “as-if” models Other
work contrasts process models with as-if models® (Berg &
Gigerenzer, 2010; Glockner & Betsch, 2011; Johnson,
Schulte-Mecklenbeck, & Willemsen, 2008; Katsikopoulos &
Lan, 2011). Berg and Gigerenzer (2010) define as-if models
as models without psychological realism (for a similar
argument, see Friedman, 1953). As-if models typically em-
ploy mathematical representations chosen for elegance or fea-
sibility, are deliberately free from psychological interpretation
(Brandstitter et al., 2006), and their input—output transforma-
tions need not correspond to actual cognitive processes
(Glockner & Betsch, 2011; Glockner & Witteman, 2010).
Some argue that whereas as-if models ignore cognitive capac-
ity constraints and may include computationally complex op-
erations, process models assume simple(r) capacity-
constrained operations (V. M. Chase, Hertwig, &
Gigerenzer, 1998; Gigerenzer, Todd, & the ABC Research
Group, 1999). The implication is that process models need
to be simple and respect capacity limits or link the proposed
operations directly to psychological constructs (e.g., Myung,
Pitt, & Kim, 2003).

Connotation 3: Formal features as a common denominator of
process models Discussions of process models have also in-
voked formal aspects. Early process models were linked to
symbolic languages (Einhorn, Kleinmuntz, & Kleinmuntz,
1979; Gregg & Simon 1967; Newell, 1963; Simon &
Kotovsky, 1963); others based on elementary information-
processing principles (e.g., Bettman, Johnson, & Payne,
1990; W. G. Chase, 1978). Recently, many models have in-
cluded mathematical tools that capture temporal unfolding
such as random walks in sequential sampling models
(Brown & Heathcote, 2008; Busemeyer & Townsend, 1993;

2 As-if models are also called paramorphic, phenomenological, or input—
output models (Hoffman, 1960; Luce, 1995).

@ Springer

Pike, 1973; Ratcliff, 1978), which are often called process
models (e.g., Busemeyer & Johnson, 2008; McMillen &
Holmes, 2006). From this, it might be implied that process
models require specific formal frameworks.

Interim Summary The term process model is widely used, but
rarely agreed upon. Our brief literature review found different
connotations of process models, ranging from suboptimality,
and cognitive feasibility, to formal properties.

The framework: Characterizing process
models

The cognitive process model framework is a conceptual
framework meant for descriptive models of cognitive process-
es; it is applicable to models before and after model testing.
Figure 2 illustrates the process model framework and the five
interrelations of the characteristics, which we will explain be-
low. The framework proposes that process models need a
clear conceptual scope, intermediate stages, compatibility,
testability, and separability.

By cognitive model, we mean a graphical, mathematical,
computer-programmed, or verbal stylized representation of
part of the real world (e.g., Achinstein, 1965), which concerns
cognitive systems in interaction with their external and inter-
nal environments. A model states assumptions about these
cognitive systems, to which it is an analogy. It describes cog-
nitive systems by the attribution of their inner structures or
mechanisms from which properties of the systems can be de-
rived. It has a particular purpose or scope (a level of
abstraction; Floridi, 2008), for which it approximates cogni-
tive systems and ignores purpose-irrelevant details (following
the theoretical model in Achinstein, 1965). Models may be
theory driven or used in theory development (Hartmann,
1995; Zimmermann, 1980). In general, models have an infor-
mation input that is defined as observable, an information
processor that transforms information, and an observable out-
put. Process models state assumptions about processes in cog-
nitive systems within the information processor by coherent
statements, and some of these statements are defined as ob-
servable and interpreted in direct relation to cognitive systems
(Carnap, 1956; for an overview of the philosophical debate,
see Lutz, 2017).

The process model characteristics

Process models’ conceptual scope: Nested levels of abstrac-
tion The conceptual scope of a model describes the purpose of
the model and guides interpreting model variables (Hodges,
2013). The scope defines which model variables represent
which properties of the cognitive system and sets the level
of abstraction. Process models have nested levels of
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Conceptual scope

Distinguishes the information, mental events, and behavior
that the model refers to.

Information

1

Mental events

Behavior

Input

Intermediate
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What does the model
respond to?

How does the model
transform inputs?

What is the model’s
reaction?

] =]
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Is the intermediate stage
supported by theory or

Fig. 2 The framework for cognitive process models. The schema shows
the requirements for process models: conceptual scope defining a
hierarchy between the intermediate stage and the input—output level
(see text), intermediate stage, compatibility, separability, and testability.

abstraction. A level of abstraction consists of some model
variables, together with the properties they represent (Floridi
& Sanders, 2004); where variables are model statements, not
limited to mathematical placeholders. Nested levels of ab-
straction imply a hierarchy among the levels in a model (see
Floridi & Sanders, 2004, for a formal treatment of nested
levels; Simon, 2012) such that some levels are defined to
materially, temporally, or conceptually contain other levels.
Concerning the framework in Fig. 2, we will refer to the var-
iables at the more concrete nested level as intermediate level
variables and the higher-level variables as input-level vari-
ables and output level variables.

To give an example for nesting, in a model of consumer
choice, Gluth, Rieskamp, and Biichel (2012) define an evidence
variable e as model input (representing values of goods), and a
choice probability P(choice | t) as model output (representing
purchase behavior at time #). Further, P(choice | t) depends on a
decision variable DV = LE(buy,), which is a function of the
evidence e. The decision variable DV is defined to represent a
neural signal, situating DV is at a more concrete level than the
perceived values e and behavioral purchases P(choice | t). A
complete specification of a cognitive model’s scope—entirely
foreseeing future interpretations and applications—seems infea-
sible, but we advocate for clarifying a process model’s initial
intended levels of abstraction and nesting relations.

Intermediate stages The intermediate stage concerns the mod-
el structure and the relations among the input—output and in-
termediate levels, representing assumptions about how the
cognitive system transforms information (Marr, 1982;
Svenson, 1979; Weber & Johnson, 2009). Intermediate stages
are variables at the nested intermediate level that directly or
indirectly depend on the input variables and are not equal to

Can the intermediate
stage and output vary
data? separately?

Do the output and
intermediate stage
predict values?

Input and output are necessary for both input—output and process models.
The solid lines denote the interrelatedness of the components. For details,
see the text

the input variables. Intermediate stages are produced by infor-
mation transformations from the input or other intermediate
variables. In the real cognitive system, the process causes the
phenomenon of interest; and analogously, in a process model,
intermediate stages produce the higher-level output variables.’
While the real cognitive system can be assumed to change
states continuously in time, the intermediate stage values of
process models have a specific time scale, depending on the
level of abstraction. Intermediate stages may change continu-
ously in time, but may also be at a coarser temporal scale.
Process models have one or more intermediate stages.

Returning to the consumer choice model example by Gluth
et al. (2012), the model structure specifies that the input in terms
of the evidence e about the value of a good influences the
intermediate-stage decision value DV, which is sampled sequen-
tially over time until one of two thresholds is reached, which
produces the choice (= output). Intermediate stages in process
models are not restricted to sequential sampling. The intermedi-
ate stage here is the value of DV at the points in time. Cumulative
prospect theory (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992) exemplifies a model without intermediate
stage (cf. Pachur, Suter, & Hertwig, 2017); prospect theory com-
putes values of risky gambles by multiplying subjective payoffs
with subjective probabilities. Although the model formalizes the
input-output transformation, it leaves open how transformation
happens over time (e.g., if the mind first transforms payoffs,
probabilities, or both simultaneously®). No intermediate stage
is identifiable, without the refinement of prospect theory.

3 The intermediate stages may be the only variables that the ouput depends on,
or the output may depend additionally on more input variables.

4 Although the original prospect theory formulation mentioned an editing
stage before an integration stage, this temporal order was not included in the
final model.

@ Springer



1222

Psychon Bull Rev (2020) 27:1218-1229

Compatibility: Differentiating process models from as-if
models Compatibility implies that the information transforma-
tions proposed in the intermediate stage of a process model are
connected to current understanding of cognitive capacities. It
involves detailing the cognitive assumptions in a model.
Connecting model computations with cognitive functioning
distinguishes cognitive models from as-if models. The pur-
pose of compatibility is to explicate cognitive plausibility
(see also Gigerenzer, Hoffrage, & Goldstein, 2008; Winkel,
Keuken, van Maanen, Wagenmakers, & Forstmann, 2014),
rather than placing hard restrictions on a process model’s con-
tent. Also, compatibility permits models that include new pro-
cesses, if only the scientific reasoning behind the proposed
processes is made explicit.

The compatibility criterion is deliberately soft. We believe,
however, that it will foster model development and, impor-
tantly, theory integration. For example, imagine researchers
specify a model assuming unbound cognitive capacities.
Failing to relate their assumptions to the relevant literature
makes the test of the processing assumptions hard.
Moreover, since different models often predict the same out-
put (model mimicry), one way to distinguish models in cases
where hard empirical tests are complicated is by comparing
their degrees of compatibility, given the theories behind the
cognitive processes can be tested independently of the model.

Ideally, the hypothesized process is congruous with sup-
ported theories or with data about the capabilities of the
modeled system. This can be a theoretical argument, an empir-
ical argument, or a reference to data. For example, that the
computations at the intermediate stage are cognitively tracta-
ble, the memory requirements do not exceed known limita-
tions, the proposed process is consistent with empirical phe-
nomena. To illustrate, Busemeyer and Townsend (1993) link
the computations in decision field theory to findings from
approach—avoidance research and choice response-time theo-
ries. Brandstitter et al.’s (2006) priority heuristic model as-
sumes that individuals prefer one of two gambles if its payoff
exceeds that of the other gamble by at least 10%, and they
justify the threshold of 10% by reference to the culturally em-
bedded decimal number system. These arguments for compat-
ibility of the processes are verifiable independently of the per-
formance of the process model (for a similar argument, see de
Houwer, 2011).

Testability: Differentiating process models from machine
learning tools Testability concerns model predictions.
Cognitive process models need to make testable predictions
not only at the level of the output but also at the lower level of
the intermediate stages (i.e., the nested level; see Scope sec-
tion). Process models jointly predict values across levels. The
predictions need to be specific enough to be empirically
assessed using appropriate data, similar to ways in which pre-
dictions by nonprocess models, input-output models, need to

@ Springer

be testable. Predictions at the nested level are often referred to
as process predictions. Examples include predictions about
attention, uncertainty, speed, and others, but what counts as
process prediction is the prediction at the intermediate stage
level, which is the more concrete level of abstraction. The data
used to test the intermediate-stage-level predictions are often
called process data (e.g., Johnson et al., 2008).

The process data is the data that the scientific community
agrees on as measures of the properties of the cognitive system
that the intermediate stage’s variables represent. Notably, we
cannot define the class of process data in general, because the
intermediate stage level that the data measures is unique to a
model. However, the scope of the model and the available
measurement methods together define a class of process data
that is model specific. In the cognitive system, the process is
the change of states over time. Because sometimes concurrent
measurement is not possible, process data is often measured
not while the cognitive system processes. but process data can
also be assessed retrospectively, such as by confidence ratings
(e.g., Schulte-Mecklenbeck, Kiihberger, & Ranyard, 201 lb).5

Besides making joint predictions for phenomena at differ-
ent levels, the model predictions need to be sufficiently pre-
cise to be operationalized, tested, and measured by other re-
searchers. These joint, precise predictions distinguish process
models from machine learning tools, which need no process
predictions. For process models, it suffices if, in principle,
process predictions can be derived from a process model, they
need not be tested yet.

One example of a model that makes a joint prediction at nested
levels is the priority heuristic (Brandsttter et al., 2006), which is a
computer-programmed model, that predicts choices between two
risky gambles, and predicts in which order which information will
be considered. The model is a decision algorithm with if~then
statements based on input attributes, and is programmed such that
for some attribute value combinations the algorithm exits after
fewer if-then statements than for other inputs (similar to a tree
depth). The exit structure is more concrete than the algorithm
itself, and is thus at the lower conceptual level. The number of
if-then statements depends on the input values, and makes pre-
cise, testable, ordinal response-time predictions: choices should be
faster for earlier exits. The response-time prediction in the exam-
ple has been tested in studies on information search, failing to
support the process predictions despite support for the output
predictions (Glockner & Betsch, 2008; Johnson et al., 2008).
Another example comes from the domain of forgiveness, where
both Franklin’s rule and fast-and-frugal trees predicted the output
(choices) well, but the (nested) information acquisition process
poorly (Tan, Luan, Gonzalez, & Jablonskis, 2018). As these

> What types of data count as process data is model-specific and dynamic,
because it depends on what psychometrics and physics regard as valid and
reliable measure of the changing states of the cognitive system that the scope
defines as related to the intermediate variables in the model. What counts as
process data is defined by the scope of a model (see Scope section).
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examples show, careful experimental design that aims to discrim-
inate models based on their output-level predictions optimally
(e.g., Myung & Pitt, 2009; Westfall, Kenny, & Judd, 2014)
may not suffice to discriminate models. Comparisons of process
models based on their performance on output data (e.g., choices,
without considering process data) require a task that discrimi-
nates models. In case of comparing models based on output data,
researchers might, however, want to refrain from drawing strong
inferences about the plausibility of the underlying cognitive pro-
cesses in the winning model (reverse inference), before testing
the process predictions (Schulte-Mecklenbeck et al., 2011b).

Separability: Differentiating process models from measure-
ment models Separability concerns directional dependencies in
the model predictions. The intermediate stage predictions pro-
duce the output predictions, but the output predictions should
not fully or partially produce the intermediate stage predictions.
This means that the intermediate stage variables do not decrease
in their dependency on the input given the values of the output
variables. In other words, knowing the output prediction does not
contribute to the predictions at the intermediate stage level (re-
verse inference).

For instance, in Nosofsky’s (1986) generalized context model,
the classification probability of stimulus i, P(class | s;), is a func-
tion of the psychological distance dj; between i and previously
experienced stimuli j and their class labels. The psychological
distance dj; is an intermediate stage. Separability means that
knowledge of the classification probability P(class | s;) is not
required for the computation of the distance d;, but knowing
the distance dj; is required to compute the value of P(class | s,).

Many models contain free parameters. If the intermediate
stages consist of free parameters and no other stages, we speak
of a measurement model. In measurement models, contrary to
process models, the intermediate stages are a function of the
output. This is exemplified by linear weighting models of
multiattribute choice. These models contain attribute importance
as free parameters, and the importance weights usually do not
only depend on the input but are estimated from the output values
and the data. The separability criterion can help to transform
these models into process models by suggesting to make the
importance dependent on, for example, a visual saliency model,
nested in the linear-weighting model, that computes bottom-up
importance weights.

The benefit of separability in process models is that the input—
output relation and the input-intermediate—stage relations can be
independently empirically supported. Separability means that
empirical evidence can support the process predictions, while
not supporting the output predictions (and vice versa).
Separability can take different forms. Models may involve pa-
rameters that depend on the input and lead to process predictions.
Drift rates in sequential sampling models, which yield reaction
time predictions, may depend on features of the stimuli (Bhatia,
2014). In this instance, separability holds: reaction-time data and

choice data can support the model independently, and the param-
eters here are not mere measures of reaction times. Other models
lack a functional dependency between parameters and input, but
the structure of the model produces separable process predic-
tions. Classification or decision trees, for instance, can involve
early exits in one branch (e.g., fast-and-frugal trees; Jenny,
Pachur, Lloyd Williams, Becker, & Margraf, 2013; Martignon,
Vitouch, Takezawa, & Forster, 2003). In fast-and-frugal trees,
which have an exit at each level, the tree’s exit structure predicts
shorter reaction times whenever decision makers reach an early
exit. Critically, these trees are parameter free because the ques-
tion order and the exit structure are fixed.® Another class of
models involves process predictions as a direct function of the
model input. Consider choice models with attention weights,
where the weights are a function of stimulus saliency, and yield
process predictions for eye gaze. In this case, separability also
holds: Process data and choice data can independently support
the models’ predictions. Separability makes no prescriptions
about including free parameters or not; rather, it refers to the
implementation of the process predictions in a model.

The criterion of separability aims at protecting researchers
from concluding that processes in models are likely from a
good model performance regarding output data (e.g., choices),
“affirming the consequent” (Geis & Zwicky, 2011). Social
preference models in economics, for example, have been crit-
icized by Burton-Chellew and West (2013) for inferring “the
existence of prosocial preferences . . . post hoc from the results
of economic games, rather than with direct experimental tests”
(p. 216). While affirming the consequent is unproblematic for
output models (Friedman, 1953) or measurement models, in
process models it renders the inferences we draw about the
actual process implausible.

Separability can also be useful to refine models. For example,
random walk-based models (e.g., Ratcliff & Rouder, 1998) pre-
dict choices and reaction times, given the model parameter.
Early versions of random walk models predicted choices rela-
tively well, but did not always capture response times. Some
versions predicted equal reaction times for correct and incorrect
choices in inference tasks (Ratcliff & Tuerlinckx, 2002), while
in the data response times tend to be faster for errors than for
correct responses (Ratcliff & Smith, 2006; Ratcliff, Van Zandt,
& McKoon, 1999). As a result, the parameters in the random
walk model could be refined. The random walk models used
separability to simultaneously allow response-time predictions
to be tested against response-time data, and choice predictions
against choice data. Without separability, this discrepancy could
have gone unnoticed (for a similar argument, see also Gregg &
Simon, 1967). Although not every model including a random
walk fulfills separability, the example illustrates how separability
is useful in model refinement.

6 Also, in the case of continuous variables, the thresholds at which to decide
“yes” or “no” in a fast-and-frugal decision tree can be fixed.
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Summary and comments on the framework

In sum, a process model should have a clear scope and contain
at least one cognitively motivated intermediate stage that oc-
curs after the input but before the output. The model should
also yield separate predictions for the processes and for the
behavior at the output level, allowing the two stages to be
empirically disentangled. The process indicated by the inter-
mediate stage should be compatible with mental capacities
and be empirically testable.

Our framework does not imply that process models are
better models than output models. A model that fulfills the
process model criteria can obviously be falsified (for a
discussion of what constitutes a good model, see e.g., Myung
etal., 2003), and we wish to stress that model performance and
the nature of process models are two separate discussions.

The process model framework includes testability, separa-
bility, and compatibility—and no other characteristics—for
the following reasons. The characteristics are deliberately in-
dependent of formal model notation (stochastic vs. determin-
istic, verbal vs. statistical, parallel vs. serial, etc.) because form
and content are independent. Researchers can choose the form
of a process model. Throughout the article, we deliberately
provided examples from different formal modeling para-
digms. Second, the requirements testability, separability, and
compatibility indirectly or directly link the model to data,
which we consider paramount. Third, our framework circum-
vents the issues of optimality and suboptimality mentioned in
the Introduction, which relate more to choosing between op-
timality criteria than to the model class. Last, the framework
provides criteria that are independent of a particular theory.

The proposed process model framework can be used by any
scientist aiming to build new process models. In particular, the
process model criteria are useful in the following ways:
Comparably to the standardized way in which the “method”
section in scientific articles is structured, a standardized struc-
ture for modeling sections will facilitate scanning the growing
number of modeling publications. Considering the growing
number of modeling publications, this seems useful. Further,
a standardized set of criteria will facilitate differentiating
models. In particular, the criterion of separability provides a
precise instruction for ways to refine existing nonprocess
models. Next, the criterion of compatibility will make it easier
for future researchers to find the relation between theories,
data, and formal models. Lastly, the separability criterion sets
apart process models from other type of models.

Application of the framework
Below we provide an example illustrating the usage of the
framework with a model we consider unambiguous—a lex-

icographic heuristic model of decisions in a mini-
ultimatum game (Hertwig, Fischbacher, & Bruhin, 2012).

@ Springer

The model (henceforth LEX) is a graphical model (deci-
sion tree) with a depth of three (three decision nodes) and
an exit node at each level. The decision nodes use three
aspects of the offer that the proposer selected (relative size,
possible size, own preference) as follows: Node 1: If the
relative size of the offer is greater than the proposer’s
share, accept it (exit), else go to decision Node 2. Node
2: If the offer is the larger of the two possible offers, accept
it (exit), else proceed to decision Node 3. Node 3: If the
offer is the one that the responder would have made if roles
were reversed, accept, else reject. Is LEX a process model
according to our framework?

Conceptual scope A conceptual scope is given if the au-
thors define not only input and output but also the
properties of the cognitive system that the model vari-
ables relate to and hierarchical levels of abstraction. In
LEX, the input is the proposer’s offer, the output is the
acceptance or rejection decision, and the intermediate
stage is related to a “social motive” like inequality aver-
sion or kindness (Fischbacher, Hertwig, & Bruhin,
2013). The structure of the decision tree provides a
more detailed temporal representation of the information
transformation of the attributes of the offer compared
with only the offer and the choices. Thus, LEX has a
conceptual scope.

Intermediate stage LEX postulates that responders evaluate
offers by considering three attributes of the offer sequentially,
the attributes produce the choice and the structure of the tree
postulates that given different attribute combinations, a differ-
ent number of decision nodes is needed, which is an interme-
diate variable value that depends on the input; and thus the
model includes three intermediate fairness-driven decision-
making stages.

Testability Testability holds if models allow specific predic-
tions to be derived for output and intermediate stages. The
specification of LEX makes for two types of predictions—
namely, responders’ decisions (output prediction) and an in-
crease in response latency in the number of attributes consid-
ered (intermediate stage prediction). The predictions are precise
and lie within the scope of the model; testability is fulfilled.

Separability Separability holds if models predict processes
without reverse inference from the output. LEX predicts re-
sponse latency independently from decisions. The model
might correctly predict decisions but fail to predict reaction
times, or vice versa. LEX’s process and output are separable.

Compatibility LEX is compatible if the intermediate stages are
explicitly linked to supported theory or data regarding the
conceptual scope. Fischbacher et al. (2013) reference research
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on the use of use similar lexicographic choice strategies (e.g.,
Gigerenzer & Goldstein, 1996). Therefore, compatibility is
fulfilled.

We conclude that this graphical model, the LEX model, is a
process model.

Application of the framework to ambiguous cognitive models
We now apply the framework to two models considered am-
biguous process models because half of the survey respon-
dents (see Introduction) classified them as process models:
the anchoring and adjustment model (Tversky &
Kahneman, 1974), and the equal weighting model (Dawes,
1979). Table 1 shows the features and the resulting classifica-
tion according to the framework. Although we conclude that
the models do not qualify as process models, the process
model framework shows a road map as to how to convert
them into process models—for example, by detailing the in-
termediate stages of the anchoring and adjustment model in a
more explicit way. In the Supplement we apply the framework
to a formal categorization model (Lamberts, 1998).

General discussion

We proposed a framework for characterizing and building
cognitive process models. We argued that a process model
should include at least one intermediate stage between input
and output, and a conceptual scope that clarifies what the
model’s input, output, and intermediate stage refer to and

specifies nested levels of abstraction. A process model should
provide testable hypotheses within the scope for the output
and process, and, moreover, predict process data independent-
ly of its output predictions (avoiding reverse inference).
Finally, the proposed intermediate stage should be compatible
with current knowledge about cognition (within the scope).
Conceptual clarity about the meaning of frequently used
terms is desirable in its own right, but clarity also facilitates
the advancement of the area of interest. Many arguments have
been made about the advantages of process models (e.g., Berg &
Gigerenzer 2010; Gregg & Simon 1967) and interest in process
models is growing. Yet the field provides little advice on how to
build them. We think this is the result of a lack of clarity.
Cognitive models that fail to meet the criteria for being consid-
ered a process model could be called “formal cognitive models.”

Building process models

The checklist nature of our framework enables researchers
interested in cognitive processes to identify exactly what parts
of a model need to be tweaked or added in order to arrive at
predictions that are testable on a process level (see Fig. 3).

Implications for process tracing

Process data are required to test a process model (Johnson
et al., 2008), but it is unclear what counts as process data.
For example, eye movements could be process data to deci-
sion scientists (Lemonnier, Brémond, & Baccino, 2014;

Table 1 Classification of two ambiguous models using the process model framework
Dimension Anchoring and adjustment model (Tversky & Kahneman, 1974;  Equal weighting model (Dawes, 1979; D79)
KT74)

Scope Yes. “people make estimates by starting from an initial value that is No. The author defines the model variables as paramorphic
adjusted to yield the final answer” (KT74, p. 1128). Inputs to the ~ representations of cognition: “Hoffman termed the use of linear
models are initial values; outputs are value estimates; the models a paramorphic representation of judges, by which he
intermediate level that is temporally between input and outputis ~ meant that the judges’ psychological processes did not involve
the adjustment. computing an implicit or explicit weighted average of input

variables” (D79, p. 574, see also Dawes & Corrigan, 1974)
Intermediate ~ Yes. The adjustment produces the output: “estimates . . . are biased No. Because there is no intermediate level, there are also no
stage toward the initial value” (KT74, p. 1128). The intermediate stage  intermediate stages.
is the adjusted value that is biased towards the anchors.

Testability No. The model does predict an effective outcome given a stimulus  No. The model predicts an outcome (i.e., judgments), but makes no

(i.e., that “different starting points yield different estimates™; process predictions.
KT74 p. 1128). The model includes no testable process
predictions, because how much exactly the adjustment is carried
out is not specified explicitly.
Separability ~ No. Since the model specifies no process predictions, data cannot ~ No. Since the model specifies no process predictions, data cannot

support process predictions separately from outcome predictions.

Compatibility Yes. Literature is cited that shows that “adjustments are typically

insufficient” (KT74, p. 1128).

support process predictions separately from outcome
predictions.

Yes. Literature is cited that shows that “it is not in the ability to
integrate information that people excel” (D79, p. 573).

Note. Classification was based on the information in the following publications: anchoring and adjustment model: Tversky and Kahneman (1974); equal
weighting model: Dawes (1979)
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1. Decide on a scope by specifying what real-world phenomena
should be modeled and at what level the postulated mental
events take place.

2. Specify in what stages the model transforms the relevant input
values into output values.

A 4

3. Check if the model makes precise testable predictions for the
output variables (given current methodology) as well as for one or
more variables related to the intermediate stages, within the
scope. If not, go back to step 2 and refine.

4. Check if the output data is needed to infer the process
predictions / variables in the model. If yes, either fix the
parameters for the process variables or modify the model such
that it makes process predictions based on the input values alone.

y

5. Check if the cognitive transformation steps presumed in the
model contradict supported theories or data about the cognitive
capacities of the system being modeled (e.g., memory limitations).

Fig. 3 Checklist to construct cognitive process models. For further
details, see text

Orquin & Mueller Loose, 2013), but output data to researchers
studying reading (e.g., Reichle, Rayner, & Pollatsek, 2003).
The separability and testability criteria of our framework can
help identify process data as data that support the proposed
intermediate stage. If one model is specified as a process mod-
el according to this framework, the data that the model pre-
dicts from its intermediate stages (e.g., eye movements) con-
stitute the process data. If another researcher proposes another
model with an intermediate stage that also predicts eye move-
ments, the process predictions of these models can be com-
pared, using process-tracing methods. Process models can
connect process tracing and cognitive modeling.

Implication for scientific debates

Our framework may advance ongoing debates about process
modeling. One such debate is a normative debate, questioning
the usefulness of process models, with some arguing that, giv-
en that the mind is the object of interest, models should incor-
porate real mental processes to provide a genuine explanation
(Berg & Gigerenzer, 2010), and that process models are more
realistic models of the mind than other models (Berg &
Gigerenzer, 2010; Gigerenzer, 2010; Svenson, 1979). Others
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argue that rational models tend to describe the mind better than
process or mechanistic models (e.g., Chater, 2009). The other
debate concerns model classification: What counts as a process
model of decision making (Ayal & Hochman, 2009;
Brandstitter et al., 2006; Busemeyer, Pothos, Franco, &
Trueblood, 2011; Pachur, Hertwig, Gigerenzer, &
Brandstitter, 2013)? To advance these debates, a first step is
providing clarity about what process models are. Once the field
agrees on the characteristics of process models, researchers
will be able to argue whether a model serves its intended pur-
pose and whether a model claiming to be a process model
provides the explanation that it advertises using a common
language.

Implications for model testing

Because of the separability criterion of our framework, pro-
cess models should be tested with at least two sources of
data—for example, choice and brain data. Critically, if models
fail regarding choice data but not process data, the implica-
tions differ from cases where models fail regarding process
data but not choice data. Failing to predict process data while
predicting choice data well means that mainly the intermediate
stage of the model needs rethinking. By contrast, failing to
describe the choices while describing process data well leaves
open which part of the model needs improvement. Also, in a
model comparison, where one model outperforms another re-
garding choices, but the second outperforms the first regard-
ing process, we may think of merging the two models.

Implications for plausibility arguments

The assertion that process models need to have “plausible”
processes was meant to constrain the space of models, but it
has resulted in many degrees of freedom for the researcher.
For example, Bayesian cognitive models may be plausible to
some but not others (e.g., Jones & Love, 2011). Our frame-
work defines plausibility operationally: being compatible with
a supported theory or set of data. This allows third-party ver-
ification of the notion of plausibility. It additionally allows
formerly plausible models to become implausible with scien-
tific advancements. The plausibility of process models can,
and we believe should, be able to change with scientific
progress.

Conclusion

The increasing use of modeling techniques is one of the most
exciting trends in cognitive science. Modeling allows cogni-
tive processes to be specified and tested at a resolution far
greater than before. In particular, process modeling can foster
greater understanding by testing theories and integrating
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diverse perspectives in order to build a full picture of human
cognitive functioning. If the field is to take advantage of the
explanatory potential of process models, there needs to be
clarity about what constitutes a process model. We hope that
our framework contributes by providing a common ground for
discussions between researchers who share interest in process
explanations but have backgrounds in different paradigms, so
that better process models will result.
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