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Abstract

Static light scattering is a popular physical chemistry technique that enables calculation of

physical attributes such as the radius of gyration and the second virial coefficient for a mac-

romolecule (e.g., a polymer or a protein) in solution. The second virial coefficient is a physi-

cal quantity that characterizes the magnitude and sign of pairwise interactions between

particles, and hence is related to aggregation propensity, a property of considerable scien-

tific and practical interest. Estimating the second virial coefficient from experimental data is

challenging due both to the degree of precision required and the complexity of the error

structure involved. In contrast to conventional approaches based on heuristic ordinary least

squares estimates, Bayesian inference for the second virial coefficient allows explicit model-

ing of error processes, incorporation of prior information, and the ability to directly test com-

peting physical models. Here, we introduce a fully Bayesian model for static light scattering

experiments on small-particle systems, with joint inference for concentration, index of refrac-

tion, oligomer size, and the second virial coefficient. We apply our proposed model to study

the aggregation behavior of hen egg-white lysozyme and human γS-crystallin using in-

house experimental data. Based on these observations, we also perform a simulation study

on the primary drivers of uncertainty in this family of experiments, showing in particular the

potential for improved monitoring and control of concentration to aid inference.

Introduction

For proteins in aqueous solution, measuring association states and propensities towards/away

from aggregation is essential for understanding the formation and evolution of both native

quaternary structure and deleterious aggregation, due to the fundamental roles of these prop-

erties in protein association [1–4]. Unfortunately, this is difficult, particularly in the highly rel-

evant case of systems at low concentration at or near physiological pH. Current state-of-the-

art approaches (e.g. small-angle X-ray scattering [5] and neutron scattering [6, 7]) require

access to a beamline, which is typically located at a national laboratory or other remote facility.
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Sending samples to a beamline is expensive and must be scheduled far in advance, which limits

the number of sample preparation conditions that can realistically be tested. A venerable but

useful alternative is static light scattering, which can allow one to infer such critical quantities

as aggregate size (and, in some cases, form factor) and local tendency towards or away from

aggregation (as measured by osmotic pressure virial coefficients) [8, 9]. Unlike X-ray or neu-

tron scattering, light scattering experiments can be performed with commercially available

instruments within a typical lab setting [10–12], allowing for both greatly reduced cost and

greatly enhanced flexibility.

A major barrier to the more widespread use of static light scattering for protein association

assays is the lack of a modern, principled approach to data analysis. In the context of soluble

proteins (and small oligomers or aggregates thereof), successful inference depends on both

error reduction (via a combination of careful experimental procedure and data preparation)

and leveraging of prior physical information. Standard approaches within the field, by con-

trast, are ad hoc and largely depend on graphical techniques developed in the 1940s-1950s

[13]. These methods provide no principled estimates of uncertainty, and are unable to fully

leverage the information content of the available data (e.g., exploiting the consistency between

multiple different types of measurements involving the same quantities). A more modern

approach to data analysis could greatly expand the reach of this approach, making it a viable

alternative to small-angle X-ray and related measurements for protein research.

In this paper, we address this gap by introducing a systematic approach to the processing

and analysis of data from static light scattering experiments on proteins and protein oligomers.

This approach can be generalized to larger protein aggregates and/or other polymers, although

we focus on the case of small to medium-sized globular proteins.

Our approach consists of two general elements. First, we employ a robust data cleaning and

pre-processing scheme to find and remove experimental artifacts from the data (see Section 1

in S1 File for details). This scheme is intended to be largely automated, with minimal supervi-

sion from the analyst required to verify that the data have been properly processed. Having

processed the raw observations, we then employ a hierarchical Bayesian model to correct for

known sources of error and infer quantities of scientific interest. At the core of this model is a

joint treatment of light scattering and refractive index data (the latter being required for analy-

sis of light scattering experiments) in a way that allows all available information to be leveraged

for inference.

The structure of this paper is organized as follows. The rest of this section offers a brief

overview on the theory of light scattering and conventional approaches to data analysis. The

section that follows describes the proposed Bayesian model in detail, which is applied to study

the aggregates of two soluble, globular proteins: lysozyme and human γS-crystallin, in the fol-

lowing two sections, respectively. Following a discussion of these results, we build on the find-

ings of these empirical case studies with a series of simulation experiments to understand the

impact of sample size and adjusting for measurement error in concentration measurements

on inferential accuracy, the results of which provide critical insights for future experiments.

We close with a general discussion and conclusion.

Small particle scattering: Theoretical and experimental background

Static Light Scattering (SLS) provides information regarding (variously) mass, radius of gyra-

tion, or interaction propensity among particles in solution, by exploiting the way these proper-

ties affect the scattering of incident light [14–16]. Specifically, if a sample is illuminated by a

beam of light at a fixed angle and wavelength, the intensity of light scattered at some angle θ
relative to the angle of incidence is a function of the properties of the scatterer, allowing the
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latter to be inferred from the former. This intensity is usually referred to in terms of the Ray-
leigh ratio, Rc,θ, an observable function of the intensity of the light detected at angle θ relative

to the intensity of the incident beam [17]. In practice, the Rayleigh ratio depends upon the

concentration of the solute (c), among other quantities; although its exact behavior is complex,

for the specific case of small particles in dilute solution it can be approximated as [10, 13]

Rc;y � K�MwPðrg ; yÞc � 2K�A2M2
wPðrg ; yÞ

2c2 þ Oðc2Þ; ð1Þ

or alternatively in its reciprocal form as [18]

K�c
Rc;y
�

1

MwPðrg ; yÞ
þ 2A2cþ Oðc2Þ ð2Þ

where P(rg, θ) is an angular dependence factor, c is the concentration of the solute, K� is a

material constant, Mw is the weight average molecular weight of the scattering particle (defined

SjWjMj, where Wj is the fraction of the total solute weight represented by each chemical spe-

cies j, e.g. monomers, dimers, etc,. each with molecular weight Mj, summed over all species

present), and A2 is the second virial coefficient, a key physical constant of substantial scientific

interest, governing the strength of pairwise interactions among particles. An intuitive explana-

tion of (1) is that the scattering intensity can be approximated to first order by the mass and

concentration of particles from which the beam can scatter (linear term), with a second-order

effect arising from the the pairwise interactions among particles (quadratic term): particles

that tend to cluster (A2 < 0) act “larger,” on average, generating a stronger signal, while parti-

cles that avoid each other (A2 > 0) produce fewer clusters and lower scattering intensity.

Higher-order virial coefficients (e.g., A3) govern the contributions from higher-order interac-

tions among greater numbers of particles; in dilute solution, such effects are small and exceed-

ingly difficult to measure, and as such their contribution is generally discarded.

In addition to the effect of concentration and particle interaction, the Rayleigh ratio

depends upon two other factors. The material constant K�,

K� �
4p2n2

0
ðdn=dcÞ2

NAl
4

depends on the intrinsic properties of the materials used for the experiments, and of the light

source: the wavelength of the incident light λ, the refractive index of the solvent n0, the refrac-

tive index increment, i.e. dn/dc of the solute/solvent pair, the mathematical constant π, and

Avogadro’s number, NA = 6.022 × 1023 / mol. In general, the intensity of the scattered light

also depends on an angular dependence factor P(rg, θ),

Pðrg ; yÞ
� 1
� 1þ

16p2

3l
2
hr2

g iwsin
2 y

2

� �

;

where hr2
g iw is weight average squared radius of gyration. For large scatterers (e.g., polymers)

with radii comparable to the wavelength of the light source, P(rg, θ) can vary appreciably. In

the case of small particles, however, where hr2
g iw � l2, P(rg, θ)−1� 1 and angular effects can be

ignored.

In this paper, we are specifically interested in the use of SLS to study aqueous solutions of

non-aggregating globular proteins at low concentration (typically on the order of 10 mg/mL),

under illumination by visible light (λ = 657 × 10−7 cm). In this regime, the second-order

approximation of Eq (1) holds, and we may focus exclusively on pairwise interactions between

particles without considering the higher-order interactions involving multiple particles that
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can occur in crowded solutions. Moreover, as these particle sizes are on the order of 10−7cm,

angular dependence on scattering is below the detection limit of typical instruments, and we

hence take P(rg, θ)−1 = 1 throughout. Without loss of generality, we work with the Rayleigh

ratio measured at angle θ = 90˚ with respect to the incident beam. Because we work at a con-

stant measurement angle (and the regime of interest is not angle-dependent), we henceforth

simplify notation by dropping reference to θ and P(rg, θ) in the remainder of the paper except

as noted otherwise.

Important sources of errors. Because the second virial coefficient (i.e. A2) represents a

very small deviation in local effective particle density (relative to uniform mixing), it is chal-

lenging to estimate with high precision. Eqs (1) and (2) shows that estimating A2 requires

knowledge of the concentration c, refractive index increment dn/dc, and Rayleigh ratio Rc, all

of which are prone to measurement errors of different types and magnitudes. To obtain an

accurate point estimate and evaluation of the uncertainty of A2, accounting for these measure-

ment errors is of substantial importance. Modeling these errors requires a careful consider-

ation of the experimental procedure used to produce the associated measurements; we discuss

this in more detail below.

Units of measurement. The units of the physical quantities involved in this analysis are

listed (or can be derived using those listed) in Table 1. Unless otherwise specified, the units of

physical quantities remain the same as listed in Table 1 for the rest of this paper.

Standard approaches to data analysis

Conventionally, with refractive index increment (dn/dc) and weight average molecular weight

Mw assumed to be known in advance (or assumed to be accurately measured using other

means), and the concentration being measured accurately, SLS data have been analyzed based

on the “Zimm plot,” a two-stage regression proxy method developed by physical chemists

based on Eq (2). Despite its popularity, which is primarily due to simplicity and ease of use, the

Zimm plot cannot provide valid uncertainty estimates and can be numerically unstable. It can

also be sensitive to measurement error, particularly with respect to concentrations (which can

be difficult to calibrate precisely); more subtly, concentration enters into estimation of both

dn/dc and A2, leading to complex correlations among errors. Some of these limitations can be

mitigated by more principled statistical methods, such as the joint bootstrapped regression

combining SLS and refractive index measurements introduced in [19]. Although this scheme

provides a basis for obtaining confidence intervals for A2, and incorporates the interdepen-

dence of dn/dc and A2 estimation, it depends on the assumption of monodispersity (i.e., all

scattering particles contain approximately the same number of monomers), and does not offer

avenues for incorporation of prior information regarding either estimands or measurement

Table 1. Units of measurement. The physical quantity with unit of measurement 1 is unitless.

Physical quantity Unit of measurement Description

Rc,θ 1/cm Rayleigh ratio

n0 1 Refractive index of solvent

c g/mL Concentration of of the solute

dn/dc mL/g Refractive index increment

λ cm Wavelength of incident light

A2 mL mol/g2 Second virial coefficient

NA 6.022 × 1023/mol Avogadro’s number

Mw g/mol Weight average molecular weight

https://doi.org/10.1371/journal.pone.0258429.t001
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error. Given, on the one hand, the need to leverage as much information as possible to facili-

tate precise measurements of A2 from limited experimental data, and, on the other, the avail-

ability of substantial physical knowledge regarding model parameters, this last is a

consequential limitation.

The need for a combined treatment of dn/dc, A2, and particle size distribution is key to the

limitations of heuristic strategies (such as the Zimm plot). In general, the common assump-

tions that the refractive index increment (dn/dc) and weight average molecular weight Mw will

be known ex ante with high precision are not realistic. The refractive index increment, dn/dc,
is often approximated by a pre-specified constant (a “standard” value based on a reference pro-

tein such as bovine serum albumin, or some other conventional “average”), or in more sophis-

ticated cases a theoretical calculation based on refractivity of individual amino acids in

solution [20]; both have been shown to have limited accuracy, especially for proteins such as

the crystallins of the eye lens that are selected for high refractive index [21]. In practice, accu-

rate assessment of dn/dc hence requires that it be independently measured with a separate

instrument, leading to its own source of measurement error.

The situation for Mw is similar: while some proteins can be safely assumed to be monomeric

in dilute solution, SLS is frequently used specifically to investigate proteins that are prone to

aggregation and/or the formation of complex oligmeric states. In such cases, the size of the

scattering particles is generally unknown, and even monodispersity may be difficult to guaran-

tee (i.e., one may have a mix of oligomeric states). While (as we show) Mw can itself be esti-

mated from SLS data, errors in this estimate are obviously intertwined with errors in the

estimation of A2 (which depends on it). As noted above, estimation for all of these quantities

depends upon solute concentration, which itself is imperfectly known. Concentration can be

estimated from refractive index data, but this depends on knowledge of dn/dc which, as noted,

is itself uncertain. We thus face a situation in which we have several linked unknowns, which

must be resolved by leveraging multiple types of measurements simultaneously. Procedures

that ignore such uncertainties by simply fitting to nominal values of concentration, dn/dc, or

Mw may lead to seriously biased estimates and misleading uncertainty estimates [22, 23].

To incorporate a priori scientific knowledge into the analysis, as well as to effectively

account for interacting measurement errors in a principled and unified way, we here propose

a fully Bayesian model for analyzing the SLS data based on the idea in errors-in-variable (EIV)

modeling framework [24, 25]. This model is specified in detail below.

Bayesian inference for light scattering data

Given processed data from an SLS experiment, we develop a full Bayesian model for statistical

inference for A2, dn/dc, and related quantities. A Bayesian modeling framework is particularly

suitable for this problem, as it allows us to efficiently express the complex dependence among

the physical quantities in the system, and to incorporate physical information regarding both

parameters and the measurement process. Bayesian model construction also allows us to natu-

rally emulate the logical structure of the experiment itself, with a clear representation of the

flow of information from the different measurement processes and priors into the unknown

model parameters. Finally, Bayesian answers for quantities such as posterior uncertainty in A2

values are especially useful given that even high-quality experiments typically estimate A2 with

limited precision, and the range of a posteriori plausible A2 values is important for tasks such

as comparison with simulation studies (e.g., [19]). Here, we proceed by first describing the

structure of the model, followed by prior specification and implementation. The succeeding

sections demonstrate applications to protein data, and provide a simulation experiment prob-

ing sensitivity to sample size and data quality.
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Model structure

We assume data in the form of measurements taken under L distinct solution conditions (e.g.,

ionic concentration, pH, etc.), at I distinct concentrations. For every condition l and concen-

tration i, we observe a concentration measurement cmil , a refractive index measurement (i.e.,

measured refractive index minus solvent refractive index) Δnil, and light scattering measure-

ment Ril. The plate diagram of Fig 1 shows the structure of the proposed model, which we

explain in this section.

We begin by incorporating known physical constraints. First, we observe that the change in

refractive index of the solution (versus solvent), Δnil, is proportional to the sample concentra-

tion, i.e.

Dnil ¼ nil � n0l ¼ cil � dn=dc ð3Þ

where cil is the true concentration (g/mL) corresponding to measured concentration cmil , and

dn/dc is the refractive index increment (i.e., the change in refractive index per concentration

increment). We take dn/dc to be constant over the conditions of interest (as is generally the

case). The formula for Rayleigh scattering Ril (1/cm) follows that of (1),

Ril � K�Mw;lcilð1 � 2A2;lMw;lcilÞ ð4Þ

where A2,l is the second virial coefficient (mol mL/g2) and Mw,l (Da; g/mol) is the weight aver-

age molecular weight under experimental condition indexed l. (For simplicity of notation, we

shall omit the units when specifying the models.) The material constant K�, and its important

parameters are described in the Introduction. In our experiments, we take the wavelength of

the incident light to be fixed at the value reported in the instrument manual (λ = 657 × 10−7

cm), and we treat n0 as fixed because it can be accurately determined by repeated

Fig 1. Structure for the Bayesian SLS model. Outer plate reflects distinct experimental conditions (e.g., variation in

solution conditions), while inner plate reflects measurements at distinct concentrations. Measured quantities shown as

shaded circles, with latent variable as unshaded circles; hyperparameters are shown as uncircled quantities.

https://doi.org/10.1371/journal.pone.0258429.g001
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measurements using a high-precision refractometer. Therefore, the only random element of

K� is dn/dc.
We model the observed readings of the light scattering (LS) and refractive index (RI) detec-

tors, Rm
il and Dnm

il , as independent Gaussian and truncated Gaussian random variables centered

at the respective theoretical values given by (4) and (3),

Rm
il � N ðRil; s

2
RÞ ð5Þ

where s2
R is the inverse precision of the scattering measurement, and

Dnm
il � T N ð0;1ÞðDnil; s

2
DnÞ ð6Þ

with s2
Dn likewise being the inverse precision of the refractive index measurement. We take

these precisions to be constant across measurements. Restricting Dnm
il to be non-negative

reflects physical constraints, although in practice this will have little impact except near the

dection limit.

The measured concentrations cmil are obtained via UV absorption spectroscopy, a high-pre-

cision technique. However, the true concentration cil may still depart from the measured con-

centration due to the presence of filters and effects from liquid handling (e.g., adhesion of

protein to surfaces, effects from transferring the prepared samples from the test tube to the

instrument, etc.) that arise after the measurement is made. To account for these effects, we

consider a multiplicative, Berkson-type measurement error model [26],

cil ¼ cmil uil; ð7Þ

where uil is independent of cmil and has a lognormal distribution

uil �
iid LN ð0; s2

uÞ; ð8Þ

with s2
u reflecting the log-variance of concentration discrepancies.

Combining (5), (6), (7) and (8) together, we note that our model can be viewed as a multi-

variate response quadratic regression (Rm
il , Dn

m
il ) with multiplicative measurement error in the

explanatory variable cil. It is also worth mentioning that the aggregation status of the protein of

interest is unknown (and is often the subject of intense interest) in some experimental settings,

and our proposed framework is flexible enough to allow for statistical inference on Mw; we dis-

cuss this in our sample applications.

Prior specification

We assign Gaussian priors to dn/dc,

dn=dc � N ðmdn=dc; s2
dn=dcÞ; ð9Þ

with its location and scale being determined using literature values. To facilitate statistical

inference with a parsimonious model, we assume that dn/dc for a specific type of protein is

unchanged across different experimental conditions, which is plausible under the conditions

covered in our experiments in Table 2. A hierarchical structure on dn/dc can be adopted when

Table 2. Experimental conditions for lysozyme. Values in each cell indicate the number of experimental runs (solution n0 in parentheses) under respective condition.

NaCl (mM) 50 75 100 125 150 200 250 300

pH = 4.7 1 (1.3272) 1 (1.3272) 1 (1.3285) 1 (1.3279) 1 (1.3276) 0 0 1 (1.3296)

pH = 6.9 1 (1.3291) 1 (1.3295) 1 (1.3273) 1 (1.3289) 1 (1.3309) 1 (1.3312) 1 (1.3331) 1 (1.3310)

https://doi.org/10.1371/journal.pone.0258429.t002
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the NaCl concentrations and pH values have larger spans. We then assign inverse-gamma pri-

ors to variance parameters,

s2
u � IGðau; buÞ

s2
R � IGðaR; bRÞ

s2
Dn � IGðaDn; bDnÞ

with the shape and rate parameters chosen based on precisions reported by the instrument

manufacturers and concentrations based on the strength of prior belief in said reports (this

type of intuitive specification being facilitated by use of an exponential family). The prior for

the second virial coefficient, A2, is set to be a Gaussian distribution,

A2;l �
iid N ðmA2

; s2

A2
Þ;

where we choose mA2
¼ 0 and sA2

¼ 1 (in the units of Table 1) to reflect that A2 can be either

positive or negative, and to provide a prior that is fairly flat over the physically plausible range

(magnitudes less than� 10−2mL mol/g2) without imposing hard upper or lower limits.

Connections with other models

The proposed model assumes a lognormal-based multiplicative Berkson-type measurement

error in the concentrations, which can be viewed as “explanatory variables” from a regression

modeling standpoint. To the best of the authors’ knowledge, the model structure of Fig 1 is

novel—it is different from well-established statistical procedures [25, 27] that focus on classical

measurement error, and it is also different from the literature on additive Berkson-type mea-

surement error [28, 29] and prior work on bounded multiplicative Berkson-type measurement

errors [30].

We note that the proposed model is well-posed from a Bayesian perspective in the sense

that the posterior distribution of s2
u can be estimated as long as the prior for s2

u is a legitimate

probability distribution [31, 32]. We consider the issue of posterior precision given sample size

and data quality in the simulation study that follows our empirical case studies.

Implementation

All computations in this paper were performed in R (version 4.0.1) [33] on a computing server

(256GB RAM, with 8 AMD Opteron 6276 processors, operating at 2.3 GHz, with 8 processing

cores in each). We used the library R2jags (version 0.6.1) [34] and the JAGS sampler software

(version 4.3.0) [35] for conducting Markov Chain Monte Carlo (MCMC) sampling in both

case studies and simulation experiments. We note that the proposed model can be imple-

mented using other commonly-used, open-access tools such as WinBUGS [36] and Stan
[37].

Application to aggregation propensity assessment in lysozyme

In this section, we apply the Bayesian model to analyze SLS data collected from experiments

on lysozyme, an antimicrobial enzyme produced by animals that forms part of the innate

immune system. Lysozyme can be either aggregation resistant or aggregation prone under par-

ticular conditions, and is a common model system for protein aggregation studies [1, 38, 39];

determining the solution conditions under which A2 switches from positive (repulsive interac-

tions) to negative (attractive interactions) is a point of particular interest. Here, we examine

this question in the context of experiments that vary both pH (altering protonation states, and
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hence both protein fold and surface charge distribution) and ionic concentration (affecting

charge screening, and the stability of salt bridges).

Experimental conditions and data collection

Lyophilized hen egg white lysozyme was purchased from MP Biomedicals (Solon, OH), and

the lysozyme was first weighed and then dissolved in 10 mM sodium phosphate (pH 4.7 and

6.9) containing 0.05% sodium azide and sodium chloride (i.e., NaCl) concentrations at 50, 75,

100, 125, 150, 200, 250, and 300 mM for a target protein concentration of 50mg/mL. This

stock solution was then diluted sequentially to produce solutions with nominal lysozyme con-

centrations of 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 45, and 50 mg/mL, a total of 14

concentration levels. The concentrations were measured by UV absorbance spectroscopy

using a Cary 7000 spectrophotometer (Agilent Technologies, Santa Clara, CA). A molar

absorptivity coefficient of � = 2.64 mL mM−1 cm−1 at 280nm was used. Refractive index incre-

ments were measured using a batch-mode technique with an Optilab rEX refractive index

detector (Wyatt Technology, Santa Barbara, CA). Light scattering measurements were per-

formed using a Wyatt Instruments Dawn HELEOS multi angle light scattering (MALS) instru-

ment. (Wyatt Technology, Santa Barbara, CA).

Table 2 gives a list of experimental conditions. The value in each cell of Table 2 indicates

the number of experimental runs under each respective condition. There are two pH levels

(4.7, 6.9) and eight NaCl concentration levels (50, 75, 100, 125, 150, 200, 250, and 300 mM) by

the original design; however, the data for the experiments under conditions (pH = 4.7,

NaCl:200mM and 250mM) could not be obtained. As a result, the SLS experiments for lyso-

zyme have a total of 14 experimental conditions (varying pH and salt concentration), each of

which has one run with 14 lysozyme concentration levels.

Data preparation

We remove the experimental artifacts, highlighted in black in Fig 2 (left panel), using the auto-

matic data pre-processing algorithm detailed in Section 1 in S1 File. The pre-processed data

are shown in the right-hand panel of Fig 2. and the median scattering intensity at 90˚ was used

as the Rayleigh ratio measurement for each concentration. This procedure could also be gener-

alized to multiple detectors if desired.

We note that the RI detector produced unphysical values for relatively high concentrations

(due to exceedance of its upper detection limit), and we thus only included refractive index

measurements from nominal lysozyme concentrations no greater than 20 mg/mL. Within this

range, all LS measurements are included in the analysis because the LS detector gives physically

valid measurements across the entire concentration range after removing the artifacts. Table 3

shows which LS and RI measurements are included in the analysis for each experimental run

—within each experimental run, only the eight lowest concentration levels give valid refractive

index measurements, whereas all the concentration levels provide valid Rayleigh ratio

measurements.

Model specification

Current understanding of the aggregation states of lysozyme in solution under these experi-

mental conditions suggests that dimers are likely to be the dominant oligomeric species under

the conditions studied here [40, 41]. Thus, we propose the following competing models for the

aggregation state (expressed via the mass-averaged molecular weight, Mw):

• M1 : Mw;l ¼ M

PLOS ONE Static light scattering

PLOS ONE | https://doi.org/10.1371/journal.pone.0258429 October 14, 2021 9 / 25

https://doi.org/10.1371/journal.pone.0258429


• M2 : Mw;l ¼ 2M

• M3 : Mw;l ¼ ðkl þ 1ÞM; kl�
iid Bernð0:5Þ

• M4 : Mw;l�
iid UðM; 2MÞ

where M = 14307 g/mol is the molar mass of a lysozyme monomer, Bern is the Bernoulli distri-

bution, and U is the continuous uniform disribution. The first three models assume monodis-
persity—that is, the scattering particles within each experimental condition are exclusively
monomers or dimers—withM1 andM2 additionally assuming homogeneity across conditions
andM3 allowing aggregation state to vary by condition. As it is of substantial interest to explore

whether this assumption of monodispersity is supported by experimental data or not, the

fourth model relaxes the monodispersity assumption by allowing the weight average molecular

weight to take continuous values between the weight of monomers and dimers (with this value

being permitted to vary by condition). A data-driven answer to this scientific question can be

facilitated by model selection techniques; specifically, we employ the Deviance Information

Criterion (DIC) [42] for this purpose, which can be automatically evaluated by the R function

bugs in the package R2WinBUGS [43]. The DIC is a generalization of the well-known

Table 3. LS and RI measurements under different nominal concentration levels within an experiment replicate. “Y” indicates the corresponding signal is included in

the analysis, otherwise “N”.

level (i=) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

concentration (mg/mL) 2.5 5 7.5 10 12.5 15 17.5 20 25 30 35 40 45 50

RI Y Y Y Y Y Y Y Y N N N N N N

LS Y Y Y Y Y Y Y Y Y Y Y Y Y Y

https://doi.org/10.1371/journal.pone.0258429.t003

Fig 2. (Left) Light scattering data for lysozyme in 10 mM phosphate, 100 mM sodium chloride, 0.05% sodium azide at pH 6.9. Scattering intensity is

recorded over the time of the experiment. Each color represents a particular concentration of lysozyme being injected into the MALS instrument (by design

concentration), with the first and last being buffer for baseline correction; each line reflects a different detector. Black areas indicate artifacts introduced by

the sample injection (see supplement for processing details). (Right) Post-cleaning scatting intensity measurements; horizontal lines indicate trimmed

median estimates used for subsequent analysis.

https://doi.org/10.1371/journal.pone.0258429.g002
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Akaike’s Information Criterion [44], both of which are model selection criteria that attempt to

assess the extent to which a model will generalize well to new data (in the sense of the log likeli-

hood of a hypothetical replicated data set) by penalizing the observed model fit by a term

related to model complexity (its effective degrees of freedom, and hence tendency to over-fit).

Competing models with lower DIC are expected to have better generalization performance (in

this sense), and are preferred.

To conduct posterior inference, we need to specify hyperparameter values for the prior dis-

tribution. We do so as follows:

• dn=dc � T N ð0;1Þðmdn=dc ¼ 0:1970;s2
dn=dc ¼ 0:0052Þ, reflecting the prior knowledge that the

mean of the refractive index increment of lysozyme is about 0.1970 [45] and the refractive

index increment of globular proteins is non-negative and has a range of about ±0.03 [21].

• s2
R � IGðaR ¼ 1; bR ¼ ð10� 5Þ

2
Þ and s2

Dn � IGðaDn ¼ 1; bDn ¼ ð10� 4Þ
2
Þ, reflecting the prior

knowledge that the precision level of LS and RI measurements should have order of magni-

tude 10−5 and 10−4, respectively, while there is also considerable probability that the preci-

sion can go beyond or below the nominal level.

• s2
u � IGðau ¼ 1; bu ¼ ðlogð1þ 0:05Þ=1:96Þ

2
Þ, reflecting the belief (based on the experi-

menters’ experience with similar sample preparation protocols) that the true concentration

should be between 95% and 105% of the measured value with fairly large probability.

Results

For each candidate model, we run 5 independent Markov Chain Monte Carlo (MCMC) chains

with random starting values and conservative settings (300000 total MCMC iterations, burn-

in 200000, storing every 250-th iteration of the last 100000 draws as posterior samples). Visual

inspection of the trace plots and the Brooks-Gelman-Rubin statistic [46, 47] shows that the

chains mix well (For a general introduction to Bayesian MCMC procedures, see e.g. [48].)

These independent chains are run in parallel, with each chain taking approximately 10.50,

13.56, 12.25, and 13.27 minutes for M1, M2, M3 and M4, respectively.

Table 4 presents the DIC values for the competing models, indicating that M1 and M3 fit

the data equally well and are substantially better than other competing models. Further investi-

gations on the posterior samples under M3 show that the kl, l = 1, . . ., 14 all converge to 0 (i.e.,

Mw,l = (kl + 1)M = (0 + 1)M = M). These results favor the assumption that lysozyme is in the

monomeric form under these experimental conditions, and hence we select M1 as the model

for subsequent inferential analysis on A2.

Table 5 presents several summary statistics for the posterior samples of A2,l, l = 1, . . ., 14.

Under each fixed pH, we observe an overall downward trend of A2 values, which is in line with

the theory that interactions between monomers become less repulsive as the ionic strength in

the solution becomes stronger (i.e., higher NaCl concentrations). Under fixed NaCl concentra-

tion, smaller A2 is associated with a higher pH, consistent with the observation that protein sol-

ubility is decreased when approaching the isoelectric point (which is strongly basic for

Table 4. DIC values for candidate models for lysozyme solution. Optimal model with lowest DIC value is highlighted

in bold.

M1 M2 M3 M4

DIC -5447.9 -4462.1 -5449.3 -5244.8

https://doi.org/10.1371/journal.pone.0258429.t004
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lysozyme). Interestingly, this downward pattern is slightly violated when the NaCl concentra-

tions are at 200mM and 250mM (perhaps reflecting a change of conformational state), provid-

ing a target for protein structure modeling studies. As shown in the rightmost column of

Table 5, we have high posterior certainty that the pairwise interaction between lysozyme

monomers is repulsive (i.e., P(A2 > 0|�)� 1) under low NaCl concentrations (pH = 4.7, NaCl:

50, 75, 100, 125 mM; pH = 6.9, NaCl: 50, 75 mM), and fairly high certainty that the pairwise

interaction between lysozyme monomers is attractive (i.e., P(A2 > 0|�) < 0.01) under high

NaCl concentrations (pH = 4.7, NaCl: 300mM; pH = 6.9, NaCl: 125, 150, 200, 250, 300 mM).

These findings confirm the previous experimental observations that high salt conditions pro-

mote attractive interaction and hence e.g., crystallization [1].

We perform a sensitivity analysis with a much looser prior on s2
u (i.e., bu = (log(1 + 0.25)/

1.96)2) to examine the robustness of our results. Figs 3 and 4 show the posterior samples of sec-

ond virial coefficients (A2), dn/dc, σR, σΔn and σu. These figures show that our results are in

general not sensitive to loose-yet-meaningful priors on s2
u (fairly large probability of true con-

centration falling between 75% and 125% of the measured concentration). As expected, we

note that the posterior samples of σu are slightly larger under looser priors.

As a point of comparison, we also run a model without adjusting for measurement errors in

concentrations, in which we treat the measured concentration as the true concentration.

Table 5 shows that the model without measurement error adjustment results in very different

point and interval estimates of A2, and gives almost opposite qualitative results for the changes

in A2 (pH = 4.7, NaCl: 150mM; pH = 6.9, NaCl: 250 mM). As shown in Fig 4, such a model

clearly forces the here unaccounted-for errors in concentration measurements to be propa-

gated into other sources: σΔn under the “no adjustment” model is estimated to be almost three

times that of M1, and σR under the “no adjustment” model is estimated to be almost two times

that of M1. These effects emphasize the need to account for concentration errors during analy-

sis. We further illustrate the importance of adjusting for measurement errors via a simulation

study in below.

We conduct posterior predictive checks [49] to examine whether posterior predictive sam-

ples of LS and RI readings can cover the measured values reasonably enough to be scientifically

plausible (see Section 2 in S1 File for more details).

Table 5. Posterior mean, standard deviation (SD), 2.5% and 97.5% quantile of A2 × 105 under various pH and NaCl strength conditions for lysozyme. The units of A2

are mL mol/g2. The probability of A2 being positive is also presented. The numbers in parentheses are the results under the “no adjustment” model.

l = pH NaCl (mM) Mean SD 2.5% quantile 97.5% quantile P(A2 > 0|�)

1 4.7 50 35.521 (36.450) 1.3 (2.1) 32.859 (32.693) 37.699 (40.891) 1.000 (1.000)

2 4.7 75 25.803 (26.512) 1.4 (1.8) 22.817 (23.089) 28.237 (29.958) 1.000 (1.000)

3 4.7 100 23.829 (24.431) 1.4 (1.9) 20.983 (20.716) 26.286 (28.052) 1.000 (1.000)

4 4.7 125 9.755 (9.708) 2.3 (2.0) 4.894 (5.926) 14.053 (13.628) 1.000 (1.000)

5 4.7 150 -2.681 (4.250) 3.4 (2.1) -9.610 (-0.113) 3.479 (7.788) 0.217(0.973)

6 4.7 300 -7.654 (-6.199) 3.2 (2.4) -14.163 (-11.333) -1.979 (-1.809) 0.005 (0.000)

7 6.9 50 20.312 (20.713) 1.7 (2.1) 17.281 (16.541) 23.679 (24.699) 1.000 (1.000)

8 6.9 75 13.308 (14.295) 1.7 (1.6) 9.898 (11.341) 16.435 (17.081) 1.000 (1.000)

9 6.9 100 -0.630 (1.688) 2.8 (1.9) -6.531 (-2.000) 4.607 (5.268) 0.427 (0.835)

10 6.9 125 -11.225 (-5.739) 3.6 (2.4) -18.011 (-10.845) -4.490 (-1.281) 0.003 (0.007)

11 6.9 150 -19.510 (-16.836) 3.8 (2.6) -26.754 (-22.297) -12.304 (-11.917) 0.000 (0.000)

12 6.9 200 -8.681 (-4.811) 3.5 (2.0) -15.642 (-9.082) -2.179 (-0.722) 0.003 (0.007)

13 6.9 250 -7.888 (5.490) 3.5 (1.3) -15.181 (3.083) -1.318 (8.170) 0.007(1.000)

14 6.9 300 -32.855 (-22.884) 4.4 (3.0) -41.955 (-28.556) -25.435 (-17.275) 0.000 (0.000)

https://doi.org/10.1371/journal.pone.0258429.t005
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Application to aggregation propensity assessment in human γS-

crystallin

In this section, we study the aggregation status of human γS-crystallin (HγS), a major struc-

tural component of the human eye lens. HγS is noteworthy for its ability to remain in solution

at the extremely high concentrations necessary to give the lens its refractive power, while

resisting aggregation; indeed, as the lens contains no mechanisms to either remove or replace

aggregated HγS, it must remain in solution for one’s entire life [50–52]. Crystallin aggregation

leads to cataract, the leading cause of blindness worldwide [53], and is hence of considerable

scientific importance. The transient oligomerization states of HγS along the path to aggrega-

tion are poorly understood beyond dimers [54, 55], and precise measurements of its A2 values

under different solution conditions are so far lacking, making it a natural target for investiga-

tion using SLS.

Experimental condition and data preparation

DNA encoding the sequence of human γS-crystallin (UniProt ID: CRYGS_HUMAN) [56],

codon-optimized for expression in E. coli, was purchased from Blue Heron (Bothell, WA).

This gene was cloned into a pET28a(+) plasmid (Novagen, Darmstadt, Germany) containing

an N-terminal 6× His tag and a TEV cleavage sequence (ENLFQG), which leaves a glycine in

place of the initiator methionine. The protein was overexpressed in a Rosetta E. coli cell line

Fig 3. Boxplots of posterior samples (lysozyme): The second virial coefficients for lysozyme (A2) estimated from M1 under different priors (red and

green), and a model without concentration error adjustment (blue). Failing to account for error in concentrations leads to highly discrepant results, as

well as underestimation of uncertainty in A2 values.

https://doi.org/10.1371/journal.pone.0258429.g003
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(DE3) using autoinduction as described by [57]. Cell pellets were collected via centrifugation

at 4,000 rpm for 30 minutes, resuspended, lysed, and spun again at 14,000 rpm for 60 minutes.

Finally, the protein was purified via nickel affinity chromatography, digested with TEV prote-

ase (produced in-house), and the His-tag removed using a nickel affinity chromatography

step. Three experiments were conducted under the same solution condition (pH = 6.9,

NaCl = 100mM; this is similar to the environment of the human lens); the biophysical mea-

surements were carried out in the same way as for lysozyme.

Table 6 shows the availability of RI and LS measurements for HγS under different nominal

concentration levels, which is similar to that of lysozyme—note that RI readings are not avail-

able for conditions with nominal concentrations > 20 mg/mL, due to limitations of the refrac-

tometer for proteins of particularly high refractive index.

The raw experimental data were cleaned before analysis, using the automatic procedure

detailed in Section 1 in S1 File.

Fig 4. Boxplots of posterior samples (lysozyme): dn/dc, σR, σΔn and σu under M1 and a model without concentration error adjustment. Assuming

perfectly measured concentrations leads to overestimation of dn/dc and inflated estimates of instrument error.

https://doi.org/10.1371/journal.pone.0258429.g004

Table 6. LS and RI measurements for HγS under different nominal concentration levels within an experiment replicate under our experiment condition (pH = 6.9,

NaCl concentration:100mM). “Y” indicates the corresponding signal is included in the analysis, otherwise “N”.

level (i=) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

concentration (mg/mL) 0.5 1 2 3 4 5 7.5 10 12.5 15 17.5 20 25 30

RI Y Y Y Y Y Y Y Y Y Y Y Y N N

LS Y Y Y Y Y Y Y Y Y Y Y Y Y Y

https://doi.org/10.1371/journal.pone.0258429.t006
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Model specification

Although HγS is generally monomeric in its functional state, it exists under very crowded con-

ditions in the eye lens, where it avoids persistent aggregation despite having mildly attractive

intermolecular interactions [58]. The current understanding of the transient oligomerization

states of γS-crystallin is limited; possibilities include both polydispersity and monodispersity

with large, dynamically exchanging structures (scattering units). With this in mind we con-

sider the following candidate models for Mw (here we omit the index l as we only have one pH

and salt condition, which was chosen to mimic the physiological situation):

• Mx : Mw ¼ xM, x = 1, 2, . . ., 20

• M21 : Mw � UðM; 20MÞ

• M22 : Mw � N ðmMw
; s2

Mw
Þ, where mMw

� UðM; 20MÞ, s2
Mw
� IG 1; M

3

� �2
� �

where M = 20959.80 g/mol. Models Mx; x ¼ 1; 2; ; 20 assume monodispersity (with particle

sizes ranging from 1 to 20 monomers), while M21 and M22 allow the co-existence of different

aggregation states. In model M22, the prior for s2
Mw

is chosen to ensure that possible aggregates

are close to the center. Other hyperparameters for the HγS models were chosen as per the lyso-

zyme analysis (i.e., the same values were employed).

Results

Fig 5 presents the DIC values for the candidate oligomerization state models. We observe that

x = 12 yields the smallest DIC value, which is similar to the DIC of M21 and M22. Fig 6 shows

Fig 5. DIC values for Mx; x ¼ 1; 2;… ; 20, M21 (blue circle) and M22 (red triangle) for HγS. The x-axis values of points associated with M21 and M22

are determined by the posterior mean of Mw/M.

https://doi.org/10.1371/journal.pone.0258429.g005
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that M12, M21 and M22 yield similar posterior median mass estimates (1.43, 1.22 and

1.29 × 10−5 mLmol/g2, respectively) and probabilities of being positive (1, 0.988 and 0.995,

respectively) for A2, though the latter two models give wider posterior intervals. In addition,

these models also yield similar inference on Mw, suggesting the dodecamer (x = 12) might be

the dominant structure in human γS-crystallin solution under this solution condition

(pH = 6.9, NaCl concentration: 100mM), with a nontrivial chance that decameric (x = 10),

undecameric (x = 11) and tridecameric (x = 13) forms might exist as well. The model assess-

ment parameters can be found in Section 3 in S1 File. Taken together, the combination of

large Mw and positive A2 suggests a “self-avoiding cluster” model for HγS, in which monomers

interact attractively to form moderately sized oligomers, with the oligomers tending to repel

one another (possibly due to selective exposure of less favorable interaction sites on the surface

of the cluster, with sites favorable to surface interaction occupied by interactions with other

cluster members). Such behavior may in part explain how γS-crystallin manages the simulta-

neous functional requirements of high-density packing within the eye lens (necessary to pro-

vide the refractive index needed for lens function) and aggregation resistance (necessary for

the lens to operate over the lifespan of the organism, given the absence of protein turnover in

the mature lens): dodecameric packing is extremely space-efficient (allowing for high local

concentration), while repulsion between dodecameric clusters avoids aggregation. If this

hypothesized mechanism is correct, it is plausible that this pattern will be found in other lens

crystallins. Alternatively, it may be that the observed dodecamers occur only in isolated HγS,

Fig 6. Boxplots of posterior samples of weight average molecular weight Mw and A2 for HγS. The red horizontal line in the boxplot for Mw indicates the

value of Mw under model M12, that is, 12 × 20959.80 = 251517.6 g/mol.

https://doi.org/10.1371/journal.pone.0258429.g006
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but are absent in the lens, which contains a mixture of structural and chaperone crystallins.

These hypotheses would seem to be a fruitful target for future experimental research.

In passing, we note that when multiple competing models (M1; ;Mm) represent very dif-

ferent scientific mechanisms but yield similar performance in terms of the model selection cri-

teria, Bayesian Model Averaging (BMA) [59] can be leveraged to incorporate the model

uncertainty into the posterior inference of the physical quantities of interest (e.g., A2 in this

analysis), which is another advantage of pursuing a Bayesian solution to this problem. Given

the MCMC samples, the marginal likelihood PðdatajMjÞ; j ¼ 1; 2; ;m required in BMA can

be calculated by various different methods, including one-block Metropolis–Hastings method

[60], power posteriors and thermodynamic integration [61, 62], etc. Although we do not pur-

sue this here (since the high-probability models in this case are already in strong substantive

agreement), this approach would be viable in cases where greater differences were observed in

posterior estimates.

Simulation study

A recurring theme in our analysis has been the importance of accounting for both uncertainty

and measurement error in concentration. Here, we conduct a systematic simulation study to

shed light on the impact of sample size and error control in concentration on inferential accu-

racy, thereby providing guidance for the design of future experiments. As A2 is the key physical

quantity of interest in SLS experiments of the type discussed here, we focus on how well it can

be estimated using the proposed Bayesian model. Specifically, the metrics for evaluating model

performance are the bias of posterior means, the frequentist coverage and the width of poste-

rior 95% credible intervals. As there are many different components of the proposed model,

some of which are subject to physical constraints or the precision level of instruments—we fix

those quantities at physically meaningful values and perform a full factorial design on the fol-

lowing four factors

1. A2 = ±0.01, ±0.001, ±0.0001, ±0.00001. These values cover the possible order of magnitude

for A2 in most real-world proteins. As chosen in the case studies, we consider the flat prior

N ð0; 12Þ (with respect to the scales of possible values of A2) across all simulation runs.

2. s2
u ¼ ðlogð1þ 0:01Þ =1:96Þ

2
; ðlogð1þ 0:05Þ =1:96Þ

2
; ðlogð1þ 0:10Þ=1:96Þ

2
; ðlogð1þ

0:20Þ=1:96Þ
2
. These choices correspond to the possible range of percentage errors in con-

centration measurements, 1%, 5%, 10% and 20%, respectively.

3. Prior on s2
u:

• Informative (s2
u � IG 1þ 1

2þ2s2
u
; 1

2

� �
): The informative prior is an Inverse-χ2 distribution

with prior mean equal to corresponding true s2
u.

• Intermediate informative (s2
u � IGð1;s2

uÞ): intermediate informative prior is an Inverse-

Gamma distribution that concentrates a considerable amount of its mass around true

value of s2
u while being fairly spread.

• Weakly informative (s2
u � IGð1; ðlogð1þ 0:40Þ=1:96Þ

2
Þ): the weakly informative prior is

an Inverse-Gamma distribution that concentrates most of its mass around a realistic upper

bound (40% relative error) of the measurement errors in concentrations while being fairly

spread.
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• No adjustment: Assuming the measured concentration is the true concentration, which

can be viewed as a Bayesian analog to the bootstrapped regression modeling approach

introduced in [19].

4. Number of experiment replicates (dictating the sample size): 1, 2, 5, 10.

We have a total of 8 × 4 × 4 × 4 = 512 settings, each of which is run for 100 replicates. All

MCMC chains are run for 300000 iterations, and we store every 250th iteration of the last

100000 draws as posterior samples (the first 200000 draws are discarded as burn-in). The data

are generated using the model described above, the concentration levels are set as those in

Table 3, and the true values of s2
R and s2

Dn are fixed at the posterior mean reported in Table 4 to

mimic the settings in real SLS experiments. Table 7 shows the ground truth values and priors

for parameters that are unchanged across different experimental runs.

Tables 8 and 9 show the relative bias of posterior mean estimates (i.e., EðA2 � Â2Þ=A2,

where Â2 is the posterior mean estimate and A2 is the true value) and the frequentist coverage

of 95% posterior intervals, respectively. Examination of the results leads to a number of practi-

cal insights that can inform experimental procedure (thus illustrating the value of statistical

modeling to inform data collection practices):

• Estimating A2 accurately becomes harder as it decreases, and improper treatment of the con-

centration error or small sample size can lead to substantial bias. It is thus particularly

important to attend to these issues when A2 is potentially low.

• Compared to models where measurement errors in concentration are adjusted for, the

model with no adjustment leads to larger relative bias when the error in concentrations is

large (> 10%) and the absolute value of true A2 is relatively large (� 0.001).

• A major concern with not adjusting for measurement errors in concentration is the “no-

adjustment” model’s inability to provide correct uncertainty estimates, that is, substantial

undercoverage, given the error in concentration measurements are beyond 5%. This prob-

lem persists when the sample size is large.

• When the measurement errors are adjusted, upward biases are generally associated with neg-

ative A2, while downward biases are mainly associated with positive A2, regardless of other

factors. It is also worth noting that we have slightly more difficulty in estimating negative A2

values compared to positive A2 values. We observe that, in general, the detection of repulsive

effects is harder than that of attractive effects in dilute solution (a physical asymmetry that

should be borne in mind e.g. when selecting sample sizes).

• Larger sample size improves performance (i.e., more replicates can help mitigate the bias),

with diminishing returns for going beyond 5 replicates.

Table 7. True values and priors for parameters that are unchanged across different experimental runs. The symbol

“-” means no prior assigned to the corresponding quantity (i.e., known constant that is not inferred using the model).

True value Prior

s2
R 1 × 10−11 IG(1, 10−10)

s2
Dn 2 × 10−9 IG(1, 10−8)

dn/dc 0.20 N ð0:195; 0:0052Þ

n0 1.33 -

λ 657 × 10−7 -

M 14307 -

https://doi.org/10.1371/journal.pone.0258429.t007
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• A considerable gap exists between the performance of the weakly informative prior and the

other two prior choices, while the gap between two other priors is often minimal. For robust-

ness, we recommend the “intermediate informative” prior.

• Larger discrepancies between measured concentrations and the actual concentrations can

lead to substantial bias, and such bias may persist even if we know its magnitude very well

and do many replicates, especially when the absolute value of A2 is small. Therefore, high pre-
cision in concentration measurements is crucial. We suggest that experimenters use high-pre-

cision concentration measurement devices, reduce the errors in liquid handling, and more

importantly, measure concentrations both before and after the LS and RI experiments, if

possible.

Table 8. Relative bias of posterior mean estimates of A2 under different settings.

True values Informative Intermediate informative Weakly informative No adjustment

|A2| A2 concentration errors in(%) 1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10

0.01 0.01 1.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.01 0.00 0.00 -0.00

0.01 0.01 5.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.01 0.00 0.01 0.00

0.01 0.01 10.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.02 0.01 0.02 0.00

0.01 0.01 20.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.04 0.03 0.04 0.02

0.01 -0.01 1.00 0.01 0.00 0.00 -0.00 0.01 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.01 0.00 0.00 -0.00

0.01 -0.01 5.00 0.01 0.00 0.00 -0.00 0.01 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.01 0.01 0.01 0.00

0.01 -0.01 10.00 0.01 0.00 0.00 -0.00 0.01 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.02 0.01 0.02 0.00

0.01 -0.01 20.00 0.01 0.00 0.00 -0.00 0.01 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.05 0.04 0.04 0.02

0.001 0.001 1.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.00 -0.00 0.00 -0.00

0.001 0.001 5.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 -0.01 -0.01 -0.00 -0.00 0.00 -0.00 0.00 0.00

0.001 0.001 10.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 -0.01 -0.01 -0.00 -0.00 0.00 0.00 0.01 0.00

0.001 0.001 20.00 -0.00 -0.01 0.00 -0.00 -0.00 -0.01 0.00 -0.00 -0.01 -0.01 -0.00 -0.00 0.01 0.01 0.02 0.01

0.001 -0.001 1.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.03 0.01 -0.00 0.01 0.01 0.00 0.00

0.001 -0.001 5.00 0.02 0.02 0.01 0.00 0.02 0.02 0.01 0.00 0.04 0.03 0.01 -0.00 0.02 0.01 0.01 0.00

0.001 -0.001 10.00 0.04 0.03 0.02 0.00 0.04 0.03 0.02 0.00 0.04 0.04 0.01 -0.00 0.03 0.02 0.03 0.00

0.001 -0.001 20.00 0.05 0.04 0.02 0.00 0.05 0.04 0.02 0.00 0.04 0.04 0.02 0.00 0.07 0.05 0.06 0.02

0.0001 0.0001 1.00 -0.04 -0.03 -0.00 -0.00 -0.05 -0.04 -0.00 -0.00 -0.18 -0.07 0.06 0.04 -0.04 -0.03 -0.00 -0.00

0.0001 0.0001 5.00 -0.10 -0.06 -0.03 -0.01 -0.09 -0.06 -0.03 -0.01 -0.17 -0.08 0.04 0.04 -0.06 -0.04 -0.02 -0.00

0.0001 0.0001 10.00 -0.17 -0.11 -0.07 -0.02 -0.16 -0.10 -0.07 -0.02 -0.18 -0.10 0.00 0.03 -0.10 -0.07 -0.05 -0.00

0.0001 0.0001 20.00 -0.28 -0.21 -0.15 -0.06 -0.27 -0.20 -0.16 -0.06 -0.22 -0.14 -0.08 -0.01 -0.19 -0.13 -0.11 -0.01

0.0001 -0.0001 1.00 0.06 0.04 0.01 0.00 0.06 0.04 0.01 0.00 0.25 0.17 -0.02 -0.04 0.05 0.04 0.01 0.00

0.0001 -0.0001 5.00 0.12 0.08 0.04 0.01 0.12 0.07 0.04 0.01 0.25 0.18 0.00 -0.04 0.08 0.05 0.04 0.00

0.0001 -0.0001 10.00 0.23 0.16 0.10 0.02 0.21 0.15 0.10 0.03 0.26 0.20 0.05 -0.02 0.14 0.09 0.09 0.01

0.0001 -0.0001 20.00 0.37 0.29 0.21 0.07 0.36 0.29 0.21 0.07 0.29 0.26 0.15 0.03 0.29 0.20 0.21 0.04

0.00001 0.00001 1.00 -0.49 -0.36 -0.06 -0.03 -0.51 -0.37 -0.06 -0.03 -2.15 -1.17 0.42 0.46 -0.47 -0.35 -0.05 -0.03

0.00001 0.00001 5.00 -1.09 -0.70 -0.35 -0.08 -1.04 -0.65 -0.34 -0.07 -2.14 -1.23 0.19 0.42 -0.67 -0.47 -0.29 -0.01

0.00001 0.00001 10.00 -1.99 -1.30 -0.84 -0.23 -1.86 -1.22 -0.85 -0.24 -2.19 -1.47 -0.21 0.27 -1.17 -0.76 -0.65 -0.04

0.00001 0.00001 20.00 -3.25 -2.48 -1.84 -0.65 -3.16 -2.44 -1.89 -0.66 -2.53 -2.00 -1.20 -0.19 -2.35 -1.59 -1.53 -0.21

0.00001 -0.00001 1.00 0.51 0.37 0.06 0.03 0.53 0.38 0.06 0.03 2.20 1.33 -0.38 -0.46 0.47 0.35 0.06 0.03

0.00001 -0.00001 5.00 1.12 0.71 0.37 0.08 1.05 0.66 0.36 0.08 2.25 1.36 -0.13 -0.41 0.68 0.47 0.30 0.01

0.00001 -0.00001 10.00 2.05 1.35 0.87 0.24 1.91 1.24 0.89 0.25 2.30 1.53 0.28 -0.26 1.23 0.79 0.69 0.05

0.00001 -0.00001 20.00 3.32 2.55 1.90 0.66 3.24 2.51 1.93 0.68 2.56 2.12 1.25 0.20 2.45 1.68 1.64 0.26

https://doi.org/10.1371/journal.pone.0258429.t008
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Discussion

Considerations for experimental procedure

As illustrated by the results of our simulation study, controlling errors in concentrations is the

key to accurate static light scattering experiments. Naive methods with no adjustment for con-

centration errors can lead to reliable estimates when the relative error in concentration is

extremely small (e.g. 1%). As the concentration errors become larger, accurate results require

at minimum that we have some knowledge about the possible range of the measurement errors

in concentration, and account for such errors in the model; further, larger sample sizes (e.g.,

more experimental replicates) are required to mitigate the bias caused by the concentration

errors. As this suggests, our findings strongly underscore the importance of minimizing concen-
tration errors when performing SLS experiments, and motivate the development of improved

protocols to control this source of error. However, we do find that good results can be obtained

Table 9. Coverage rates of 95% credible intervals for A2 under different settings.

True values Informative Intermediate informative Weakly informative No adjustment

|A2| A2 concentration errors in(%) 1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10

0.01 0.01 1.00 1.00 0.99 0.95 0.94 1.00 0.99 0.95 0.96 1.00 1.00 0.96 0.95 1.00 0.99 0.93 0.98

0.01 0.01 5.00 1.00 0.98 0.97 0.96 1.00 0.99 0.97 0.95 1.00 1.00 0.97 0.97 0.80 0.79 0.82 0.88

0.01 0.01 10.00 1.00 1.00 0.97 0.94 1.00 1.00 0.97 0.94 1.00 1.00 0.97 0.93 0.72 0.74 0.76 0.83

0.01 0.01 20.00 0.99 1.00 0.97 0.93 0.99 1.00 0.97 0.94 1.00 0.99 0.97 0.94 0.66 0.68 0.66 0.77

0.01 -0.01 1.00 1.00 1.00 0.95 0.99 1.00 0.99 0.95 0.98 1.00 1.00 0.95 0.98 0.98 0.99 0.93 0.97

0.01 -0.01 5.00 1.00 0.99 0.94 0.99 1.00 1.00 0.95 0.98 1.00 1.00 0.94 0.99 0.77 0.74 0.81 0.88

0.01 -0.01 10.00 1.00 1.00 0.94 0.99 1.00 0.99 0.94 0.99 1.00 1.00 0.95 0.99 0.72 0.73 0.76 0.83

0.01 -0.01 20.00 1.00 1.00 0.93 0.97 1.00 1.00 0.92 0.97 1.00 1.00 0.94 0.98 0.65 0.69 0.67 0.78

0.001 0.001 1.00 0.99 0.97 0.95 0.94 1.00 0.98 0.93 0.93 1.00 1.00 1.00 0.99 0.99 0.98 0.92 0.90

0.001 0.001 5.00 0.98 0.99 0.93 0.93 0.98 0.97 0.94 0.93 1.00 1.00 1.00 1.00 0.92 0.85 0.72 0.76

0.001 0.001 10.00 0.97 0.98 0.94 0.94 0.97 0.96 0.93 0.95 1.00 1.00 1.00 0.98 0.77 0.67 0.62 0.70

0.001 0.001 20.00 0.97 0.94 0.93 0.95 0.95 0.92 0.94 0.95 1.00 1.00 0.98 0.96 0.65 0.62 0.51 0.60

0.001 -0.001 1.00 1.00 0.99 0.95 0.99 1.00 0.98 0.96 0.99 1.00 1.00 0.99 1.00 0.99 0.95 0.95 0.96

0.001 -0.001 5.00 1.00 0.99 0.92 0.98 0.98 0.97 0.90 0.98 1.00 1.00 1.00 1.00 0.81 0.75 0.82 0.85

0.001 -0.001 10.00 1.00 0.99 0.92 0.98 0.98 0.98 0.91 0.98 1.00 1.00 0.98 0.99 0.70 0.72 0.77 0.83

0.001 -0.001 20.00 1.00 0.99 0.93 0.99 0.99 0.98 0.93 0.99 1.00 1.00 0.96 0.99 0.69 0.66 0.73 0.80

0.0001 0.0001 1.00 1.00 0.98 0.97 0.97 1.00 0.98 0.97 0.96 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.95

0.0001 0.0001 5.00 0.99 0.98 0.94 0.99 0.99 0.95 0.94 0.96 1.00 1.00 1.00 1.00 0.97 0.89 0.89 0.95

0.0001 0.0001 10.00 0.98 0.95 0.92 0.98 0.97 0.91 0.91 0.97 1.00 1.00 1.00 1.00 0.85 0.81 0.85 0.87

0.0001 0.0001 20.00 0.99 0.94 0.91 0.96 0.97 0.90 0.88 0.96 1.00 1.00 0.99 0.99 0.75 0.75 0.81 0.84

0.0001 -0.0001 1.00 1.00 0.98 0.98 0.97 1.00 0.98 0.98 0.96 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.96

0.0001 -0.0001 5.00 0.99 0.98 0.93 0.98 0.99 0.95 0.92 0.97 1.00 1.00 1.00 1.00 0.92 0.83 0.88 0.89

0.0001 -0.0001 10.00 0.99 0.95 0.91 0.98 0.97 0.91 0.90 0.98 1.00 1.00 1.00 1.00 0.77 0.76 0.84 0.84

0.0001 -0.0001 20.00 0.97 0.93 0.89 0.96 0.95 0.93 0.89 0.96 1.00 1.00 0.98 1.00 0.72 0.71 0.77 0.83

0.00001 0.00001 1.00 1.00 0.98 0.97 0.97 1.00 0.98 0.98 0.96 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.96

0.00001 0.00001 5.00 1.00 0.99 0.94 0.98 0.99 0.94 0.93 0.96 1.00 1.00 1.00 1.00 0.94 0.85 0.90 0.93

0.00001 0.00001 10.00 0.99 0.94 0.89 0.97 0.97 0.92 0.87 0.97 1.00 1.00 1.00 1.00 0.82 0.78 0.84 0.84

0.00001 0.00001 20.00 0.99 0.92 0.90 0.96 0.98 0.93 0.91 0.96 1.00 1.00 0.99 0.99 0.75 0.72 0.76 0.84

0.00001 -0.00001 1.00 1.00 0.98 0.98 0.96 1.00 0.98 0.97 0.97 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97

0.00001 -0.00001 5.00 1.00 0.99 0.94 0.99 1.00 0.97 0.93 0.97 1.00 1.00 1.00 1.00 0.92 0.83 0.87 0.91

0.00001 -0.00001 10.00 0.99 0.94 0.90 0.98 0.96 0.93 0.88 0.97 1.00 1.00 1.00 1.00 0.80 0.79 0.85 0.86

0.00001 -0.00001 20.00 0.97 0.94 0.90 0.97 0.96 0.92 0.90 0.96 1.00 1.00 0.99 1.00 0.74 0.72 0.76 0.82

https://doi.org/10.1371/journal.pone.0258429.t009
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with non-vanishing levels of concentration error, so long as an appropriate error model is

used and adequate numbers of replicates are performed. While error reduction via improved

procedure is always a priority, building in replicates and avoiding “no-adjustment” models is

recommended in practice.

Conclusion

In this article, we proposed a novel Bayesian model for static light scattering (SLS) data that is

sufficiently flexible to accommodate the complex relationship between physical quantities and

their measurements, and to account for measurement errors. We ran simulation studies to

gain insights about how measurement errors and sample size can affect the estimation of the

second virial coefficient, and converted these insights into actionable guidance for future

experiments. With the proposed model, we studied the protein aggregation behavior of two

important proteins, lysozyme and human γS-crystallin, in the former case identifying the con-

ditions under which monomers transition from repulsive to attractive interactions, and in the

second case showing the presence of a distinctive “self-avoiding cluster” structure in which

monomers form oligomers of approximately dodecameric order which then interact repul-

sively. Facilitating this was a protocol for cleaning and pre-processing SLS data, which provides

a largely automated way to remove common artifacts and detect problems in data acquisition.

This article demonstrates the great value of Bayesian statistics in advancing data analysis

within the biophysical context. Firstly, Bayesian analysis provides a principled way to update

our beliefs about physical quantities using a combination of existing knowledge and experi-

mental data. Secondly, though error modeling from a frequentist perspective is powerful, it

can suffer from identitifiability problems if the error mechanism is not precisely known, or if

certain classes of errors cannot be strictly ruled out. In contrast, Bayesian treatments are less

sensitive to such difficulties so long as the posteriors remain characterizable, and informative

priors can aid in filling in information that the data alone cannot supply. As considerable back-

ground information is often possible in biophysical settings, this is a natural context for

employing informative Bayesian analysis. Thirdly, the Bayesian perspective can provide fully

probabilistic answers to many scientific questions of interest, e.g, questions such as “what is

the probability of A2 being positive given the experimental data?” This advantage is highly

valuable for problems such as A2 estimation, where measurement is inherently difficult and

residual uncertainty is expected to be large. Last but not least, continued advances in computa-

tional techniques mean that the “Bayesian crank” can be easily implemented using various

freely available software packages, making it easier to supply solutions to practitioners without

requiring them to be experts in e.g. MCMC simulation.

Given a powerful and flexible statistical model for the analysis of static light scattering data,

researchers will be able to gain better understanding of the mechanisms governing protein

aggregation. Such advances have the potential to inform areas such as medical research to

develop better treatments for diseases such as Alzheimer’s and Parkinson’s Diseases, which are

caused by protein aggregation.

In closing, we comment on four potential directions for future work. First of all, we only

work with the LS readings from angle θ = 90˚ in this analysis. Incorporating additional angles

where available may improve precision, although it then becomes necessary to account for

additional sources of error associated with mechanisms such as differences in detector align-

ment or sensitivity. Secondly, this work is concerned with small proteins with P(rg, θ)� 1, and

it is natural to consider extending our approach to large particles. Such an extension also

requires further investigation on the use of readings from angles other than θ = 90˚. Thirdly,

motivated by the need to inform simulation-based work on protein aggregation, it would be
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interesting to consider whether higher-order virial coefficients could be inferred. While pres-

ent experimental methodology lacks the precision required for such analyses in settings like

those studied here, future developments may remove this barrier. Finally, the concentration

levels in the experiments analyzed in this paper are chosen based on the experimenters’ heuris-

tics and the difficulty posed by different concentration ranges for sample preparation. It seems

natural to attempt to improve on this by setting concentrations using sampling design theories

for regression models (see, e.g., [63–66]), potentially leading to more efficient experiments

with similar inferential power.

Supporting information

S1 File. The supplementary file contains details of (1) a systematic data cleaning algorithm

for removing experimental artifacts; (2) posterior predictive assessments for two case stud-

ies presented; (3) a table showing relative width (average width / true |A2| value) of 95%

posterior credible intervals of A2 in the simulation study. R and JAGS codes along with the

data for the computations in this paper are available from https://github.com/fyin-stats/bayes-

light-scattering.

(PDF)
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