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CXCL12 methylation-mediated 
epigenetic regulation of gene 
expression in papillary thyroid 
carcinoma
Sijia Zhang1, Yihan Wang2, Meijun Chen1, Lulu Sun1, Jun Han1, V. Kazakova Elena1 & 
Hong Qiao1

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and its incidence 
rate is rapidly growing. It is necessary to understand the pathogenesis of PTC to develop effective 
diagnosis methods. Promoter methylation has been recognized to contribute to the alterations in 
gene expression observed in tumorigenesis. Our RNA-seq data identified 1191 differentially expressed 
mRNAs and 147 differentially expressed lncRNAs in PTC. Next, promoter methylation of these genes 
was detected by reduced representation bisulfite sequencing (RRBS) technology and comprehensively 
analyzed to identify differential methylation. In total, 14 genes (13 mRNAs and 1 lncRNA), in which 
methylation was intimately involved in regulating gene expression, were proposed as novel diagnostic 
biomarkers. To gain insights into the relationships among these 14 genes, a core co-function network 
was constructed based on co-expression, co-function and co-methylation data. Notably, CXCL12 was 
identified as an essential gene in the network that was closely connected with the other genes. These 
data suggested that CXCL12 down-regulation in PTC may be caused by promoter hypermethylation. 
Our study was the first to perform an RRBS analysis for PTC and suggested that CXCL12 may contribute 
to PTC development by methylation-mediated epigenetic regulation of gene expression.

Thyroid carcinoma is the most common malignant tumor of the endocrine system, accounting for 90% of all 
endocrine tumors, and its incidence has dramatically increased over the last 30 years1. Papillary thyroid carci-
noma (PTC) is the predominant pathological type of thyroid carcinoma, accounting for more than 80% of all 
thyroid cancers, 60% for adults2 and 100% for children3. Approximately 32% of postoperative patients relapse 
or have lymphatic metastasis; patients with lymphatic metastases have a postoperative recurrence rate of up to 
38.5–58.8%4. PTC is a strongly latent disease, and the diagnostic time is relative long; thus, studying PTC patho-
genesis is of great significance.

In recent years, the deeper understanding of PTC and the rapid development of molecular detection tech-
nology have allowed, analyses of PTC at the molecular level, which have provided essential information to our 
understanding of PTC pathogenesis. For example, Huang et al. were the first to use chip detection technology 
to analyze the expression of 12,000 transcripts, which revealed a new molecular marker of PTC5. Choi et al. 
found that the cell fate regulator PROX1 was inactivated in PTC at the mRNA expression, and that restoring 
PROX1 expression in thyroid cancer cells not only activated the Wnt/β -catenin pathway, but also regulated mul-
tiple other PTC-associated genes, indicating that PROX1 reactivation is a potential therapeutic strategy6. Other 
studies have suggested that the specific expression of Runx family genes in PTC, especially Runx2, Runx3, exerts 
considerable influence on cancer initiation and progression7,8. Furthermore, PTC is also associated with various 
oncogene mutations, such as activating BRAF or RAS mutations, and chromosomal rearrangements involving 
RET 9. Handkiewicz-Junak et al. found that the BRAFV600E mutation is present in 40–70% of PTC patients10. This 
hyper-activating mutation leads to persistent MAPK signaling, which has been shown to be a tumor initiating 
event.
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Along with these genetic factors, epigenetic plays an important role in carncinogenesis. For example, DNA 
methylation is known to result in the transcriptional inactivation of tumor suppressors in the early stages of can-
cer. To date, investigations into DNA methylation in PTC can be divided in two types: those focused on 1) specific 
candidate genes or genes in the same pathway, or 2) the detection of whole genome methylation levels. Lee et al. 
specifically studied changes in the methylation and expression of three genes (DUSP4, DUSP6 and SERPINA5) 
in PTC and their effects on the MAPK pathway, and discovered that SERPINA5 expression was regulated by 
DNA methylation11. Kikuchi et al. used Infinium HumanMethylation27 BeadChip to analyze genome-wide DNA 
methylation patterns in 14 thyroid carcinoma patients and 10 heathy controls12. Kikuchi et al. demonstrated that 
six genes were silenced in PTC by DNA hypermethylation and suggested that these could be potential biomark-
ers. Based on Illumina450K BeadChip, White et al. found 1226 differentially methylated loci, including genes that 
are known to regulate pathways involved in thyroid carcinogenesis, such as PI3K, PTEN and P5313. Currently, the 
Infinium HumanMethylation450 BeadChip is broadly used in genome-wide DNA methylation studies due to its 
low cost, but it has limited CpG coverage, with less than 15,000 genes14. However, reduced representation bisulfite 
sequencing (RRBS) not only has a higher sensitivity, meaning less DNA is needed to directly detect simple base, 
but also has a wider range and detects more loci. Here, we present the first epigenomic data using RRBS in PTC.

In this study, we analyzed the genome-wide transcriptomes and epigenomes of three PTC patients using 
RNA-seq and RRBS, respectively. We also compared differentially expressed mRNAs and lncRNAs in tumor 
tissues and normal tissues. We then investigated the mechanism causing these alterations, and demonstrated that 
differential methylation occurred in the promoter regions of several affected genes. Through further analysis, we 
obtained 14 genes whose expression was negatively regulated by methylation in PTC that could act as potential 
biomarkers. Finally, a core co-functional network was constructed based on expression, methylation and func-
tional similarities between the 14 genes, and revealed the important roles of CXCL12 in PTC. CXCL12 may be a 
potential therapeutic target for PTC which provided guidance for clinical diagnose and therapy.

Results
Analysis of PTC transcriptome characteristics. We performed whole transcriptome sequencing (RNA-
seq) on three pairs of matched PTC tumor tissues and matched adjacent normal tissues. A total of 53.6 million 
reads were generated from single-end sequencing using the Hiseq 2500 sequencing system, on average there were 
8.9 million reads per sample with an average read length of 50 bp. Cufflinks was used to assemble probable tran-
scripts and yielded 286,587 distinct transcriptional loci. Additionally, by comparing our merged transcriptome 
with known gene annotations, we discovered 30 novel putative long intergenic noncoding RNAs (lincRNAs; see 
Materials and Methods). The expression of all transcripts after Cuffnorm normalization were in agreement, with 
strong pairwise correlation (Pearson Correlation), especially among the three normal samples and three tumor 
tissues (Supplementary Figure S1A).

The low expression transcripts with FPKM < 0.01 in more than 50% of samples were removed from further 
study. Finally, the transcriptome assembly retained 78,266 distinct transcripts that were primary classified into 
8 categories: protein-coding, pseudo, processed transcript, miRNA, antisense lncRNA, intronic lncRNA, known 
lincRNA and novel lincRNA (Fig. 1A). The analysis revealed that more than half (54%) of expressed transcripts 
were protein-coding transcripts (mRNAs) and non-coding RNAs accounted for approximately 35% of the total. 
Among the species of non-coding RNAs, we focused on the specific categories of long non-coding RNAs, such as 
novel lincRNAs, known lincRNAs, intronic lncRNAs and antisense lncRNAs. Both novel lincRNAs and known 
lncRNAs had fewer exons than protein-coding genes (2.14, 3.24 and 9.26 on average, respectively), likewise, they 
had shorter average transcript length (3932 bp, 4340 bp, and 19296 bp, respectively), while novel lincRNAs had 
higher expression than known lncRNAs and protein-coding genes (median 5.66 FPKM, 1.09 FPKM, and 1.96 
FPKM, respectively) (Fig. 1B,C and D).

Differentially expressed mRNAs and lncRNAs were functionally associated with PTC. To char-
acterize differentially expressed genes within our transcriptomes, we performed differential expression analyses 
for mRNAs and lncRNAs respectively. R package “edgeR” and fold change were combined to identify differentially 
expressed transcripts. In total, only 2597 mRNAs were differentially expressed in tumor samples compared with adja-
cent normal samples, including 935 up-regulated mRNAs and 1662 down-regulated mRNAs. The group of differen-
tially expressed lncRNAs included 367 intronic lncRNAs, 161 antisense lncRNAs, 160 known lincRNAs and 6 novel 
lincRNAs, of which 281 were up-regulated and 413 were down-regulated. Hierarchical clustering analysis exhibited 
that samples from the same source were collapsed into one cluster, suggesting that the expression level of both differ-
entially expressed mRNAs and lncRNAs in tumor tissues were significantly different from adjacent normal tissues. 
To validate our results, we also identified differentially expressed genes in The Cancer Genome Atlas RNAseq dataset. 
Among our differentially expressed genes, 601 up-regulated mRNAs, 590 down-regulated mRNAs, 77 up-regulated 
lncRNAs and 70 down-regulated lncRNAs also showed differential expression in this independent dataset. We used 
this overlapping set of more reliable differentially expressed genes for further analysis (Fig. 2A).

To explore the potential functions of the differentially expressed transcripts, we performed a functional 
enrichment analysis for the mRNAs using the DAVID functional annotation tool15. The results revealed that the 
differentially expressed protein-coding genes were significantly enriched for many PTC-associated pathways and 
biological functions, such as, ECM-receptor interaction, blood vessel development, response to wounding and 
regulation of cell proliferation (Fig. 2B).

One of the major challenges in studying lncRNAs is to determine their biological function; GREAT software 
provides a well-established way to assign biological meaning to non-coding regions by analyzing the annotations 
of the nearby genes16. The test set of 147 genomic regions picked 238 (1%) of all 18,041 genes. The disease ontology 
revealed that the differentially expressed lncRNAs were enriched in papillary thyroid carcinoma and associated dis-
eases, and they were related to the biological processes of immune response and defense response (Fig. 2C).
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Figure 1. Analysis of transcriptome data in papillary thyroid carcinoma. (A) All individual transcriptomes 
were merged into a consensus transcriptome that included both tumor and normal tissues, and low expressed 
transcripts were discarded. The remaining transcripts were categorized as annotated protein-coding, non-
coding, pseudo and other unannotated transcripts based on the Ensembl annotated genes. The novel lincRNAs 
we identified were included in non-coding RNAs. (B) The number of exons per transcript. (C) Transcript size 
distributions of different transcript types. (D) Transcript expression distributions of different transcript types.
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Methylome analysis of promoters with distinct CpG density. As DNA methylation is frequently 
altered in tumors, there is great interest in further exploring how these changes contribute to PTC and whether 
they affect transcription. To this end, DNA methylation profiles of the three matched pairs of PTC tumor tissues 
and adjacent normal tissues were also detected. The Reduced Representation Bisulfite Sequencing (RRBS) gen-
erated 359 million paired–end short reads, on average there were 59.9 million reads per sample with an average 
read length of 100 bp. After quality control using Trim Galore, 352 million clean reads were retained. The shared 
1,036,077 CpG sites for each sample were used for further study. The pairwise correlation analysis revealed that 
all six samples had strong correlation (Supplementary Figure S1B).

Altered promoter methylation has been reported to be associated with various malignancies, in this study, we 
limited our analysis to CpG sites within promoter regions. Altogether, we found promoter methylation for 23,565 
mRNAs and 7262 lncRNAs. As cytosine methylation can interfere with transcription factor binding via recruit-
ment of methyl-CpG binding domain (MBD) proteins that induce chromatin changes17, the local density of CpG 
within promoters may affect the strength of repression. Therefore, we calculated the CpG ratio, GC content and 
methylation level in the promoter regions. The CpG density, including CpG ratio and GC content, were highest at 
transcription start sites (TSSs) and decreased beyond 500 bp from TSSs. Meanwhile, a negative relationship was 
found between methylation level around TSSs and CpG density (Fig. 3A). Therefore, we investigated the effect 
of promoter methylation on genes with different CpG density. Three classes of promoters were defined based on 
CpG ratio, GC content and length of CpG-rich region: high-CpG promoters (HCPs), low-CpG promoters (LCPs) 
and intermediate CpG promoters (ICPs)18. It was found that most promoters were HCPs (19,469, 82.62%), 3013 
(12.79%) promoters were ICPs and 1083 (4.59%) ones were LCPs. The results exhibited that significant difference 
methylation patterns among the three classed of promoters. HCPs had the lowest methylation levels, whereas 
LCPs had the highest methylation levels, especially in mRNAs (Fig. 3B). Moreover, the methylation levels of 
mRNAs were higher than lncRNAs on the whole. Next, the methylation distribution patterns of tumor and nor-
mal tissues were shown in scatterplots, which implied that more hypomethylation (methylation level < 0.2) in the 
ICPs and a bimodal distribution in the LCPs for mRNAs, while for lncRNAs there was a bimodal distribution in 
the ICPs and more hypermethylation (methylation level > 0.6) in the LCPs (Fig. 3C).

Identification of PTC-associated differentially methylated promoters. To explore whether 
promoter DNA methylation contributed to PTC, we identified differentially methylated mRNA and lncRNA 
promoter regions. We obtained 1182 differentially methylated mRNA promoters, of which 473 had higher meth-
ylation in tumors than normal tissues (hyper-DMPs) and 709 that had the opposite trend (hypo-DMPs). Smilarly, 
364 lncRNA promoters were differentially methylated, including 166 hyper-DMPs and 198 hypo-DMPs. We per-
formed a functional analysis of the differentially methylated mRNAs and lncRNAs using the same methods as 
for differentially expressed genes. The differentially methylated protein-coding genes were also involved in many 
cancer-related biological processes, such as cell adhesion, positive regulation of apoptosis, and positive regulation 
of programmed cell death. The significantly enriched terms of disease ontology for the differentially methylated 
lncRNAs included thyroid carcinoma, epithelial carcinoma and endocrine system disease.

Figure 2. Hierarchical clustering and functional enrichment analysis for differentially expressed mRNAs 
and lncRNAs. (A) Two-way hierarchical clustering of differentially expressed mRNAs and lncRNAs in papillary 
thyroid carcinoma tissue samples and normal tissue samples. In the samples, “ca” and “adj” represent tumor and 
normal samples respectively, and “3”, “10”, “16” were the sample numbers. (B) KEGG pathway analysis and GO 
functional enrichment analysis for differentially mRNAs using DAVID. (C) Disease ontology analysis and GO 
functional enrichment analysis for differentially expressed lncRNAs using GREAT.
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In addition, Table 1 lists the number of hyper-DMPs and hypo-DMPs classified to the three classes of pro-
moters. The results showed that differential methylation occurred more often in intermediate or low CpG density 
promoters for both mRNAs and lncRNAs. Notably, for lncRNAs, hypo-DMPs were enriched in ICPs (Fisher test, 
p =  6.767 ×  10−4). To further characterize the features of the differentially methylated promoters, we displayed the 
methylation states among the three classes of promoters. The ICPs and LCPs had higher methylation levels than 
HCPs for both mRNAs and lncRNAs. However, for mRNAs, the difference values between tumor and normal 

Figure 3. Methylation analysis of different CpG density promoters for mRNAs and lncRNAs. (A) The 
CpG ratio, GC content and methylation level at different distances from TSSs for all samples that included 
both tumor and normal tissues. (B) Boxplots of methylation levels in HCPs, ICPs and LCPs for all samples that 
included both tumor and normal tissues. (C) Scatterplots of methylation levels in HCPs, ICPs and LCPs for 
tumor and normal tissues, respectively.
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were larger in the LCPs than HCPs and ICPs, and for lncRNAs, methylation in the ICPs showed the great differ-
ence (Fig. 4A and B).

Differentially expressed genes regulated by promoter DNA methylation in PTC. It is widely 
accepted that promoter hypermethylation causes a downregulation of gene expression, whereas promoter hypo-
methylation is associated with the upregulation of gene expression19,20. To understand if changes in promoter 
methylation affect gene transcription in PTC, we evaluated groups of genes that showed both differential methyl-
ation and expression between tumor and normal tissues. Nineteen mRNAs were hypomethylated at their promot-
ers and up-regulated in PTC and 26 were hypermethylated at their promoters and down-regulated, while only 3 
lncRNAs showed hypermethylation and down-regulation (Fig. 4C). Thus, it seemed that promoter methylation 
of mRNAs may play more important roles in PTC.

Promoter CpG islands are primarily involved in gene regulation, and approximately 70% of annotated gene 
promoters are associated with a CpG island21. Among the 45 mRNAs and three lncRNAs, 13 mRNAs and one 
lncRNA that mapped to 14 individual genes had CpG islands in their promoters. We assumed that the differen-
tial methylation affected the transcription of these 14 genes, which included CXCL12, FBLN7, FAM3B, PROX1, 
COL23A1, GJB3, LAD1, PIWIL1, DNASE1L2, EVPL, COX4I2, LCN12, AGPAT2 and DOK7 (Table 2). As CpG 
islands were contained within their promoters, most of 14 genes were of high CpG density, except for FAM3B, 
COL23A, COX4I2, LCN12 and DOK7, which were of intermediate CpG density. Receiver operating characteristic 
(ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic effects of these poten-
tial biomarkers and to determine appropriate cut-off points (Supplementary Figures S2, S3 and S4). The results 
showed that they had the ability to discriminate between the diseased and healthy populations. The AUCs of all 
genes were over 0.75 in at least two datasets. As the dataset GSE33630 were derived from microarray, there may 
be some bias from the RNA-seq data. Furthermore, we calculated the correlation between promoter methylation 
and gene expression for the 14 genes using HumanMethylation450 BeadChip and RNA-seq data from TCGA. The 
expression of AGPAT2, CXCL12, DNASE1L2, DOK7, FAM3B, GJB3, LAD1 and LCN12 were negatively correlated 
with methylation in patients (Pearson Correlation, p <  0.05, Fig. 5A and B). These results indicated that the dif-
ferentially expressed gene associated with PTC were regulated by promoter methylation.

Identification of potential biomarkers by constructing a core co-functional network. In light of 
the complexity in gene regulation, we expected to find links between DNA methylation and protein expression 
in PTC-associated genes. On the basis of our results, correlations between expression, methylation and semantic 
similarities of GO terms for the 14 genes were used to construct a core co-function network (Fig. 5C). The gene 
pairs which had significant expression, methylation and functional correlation were reserved and the Pearson 
correlation coefficients of methylation were used as linkage weights. Finally, we obtained a core co-function net-
work based on methylation and expression among the 14 genes. Based on topological analysis of this network, 
we found EVPL and CXCL12 had higher degrees than the others, reflecting their predominant roles. Meanwhile, 
in comparison to EVPL, CXCL12 was found to be down-regulated and hypermethylation in both our data and 
TCGA datasets. Therefore, we speculated CXCL12 might be involved in PTC carcinogenesis and could possibly 
serve as a diagnostic biomarker. C-X-C motif chemokine ligand 12(CXCL12), also termed stromal cell-derived 
factor 1(SDF-1), is a member of the CXC chemokine subfamily that plays a role in immune surveillance, inflam-
mation response, tumor growth and metastasis. It has been reported that differential expression of CXCL12 
occurrs in numerous cancers. In a study of gastric cancer, Zhi et al. found that aberrant CXCL12 methylation 
frequently causes a down-regulation of CXCL12 expression and suggested that CXCL12 may play a role in can-
cer progression and metastasis22. Researchers have also found that the constitutive expression of CXCL12 in the 
colonic epithelium is silenced by DNA hypermethylation in primary colorectal carcinomas as well as colorectal 
carcinoma-derived cell lines23.

Furthermore, to explore CXCL12 functions, a module was extracted from a protein-protein interaction net-
work, which was integrated from five databases including HPRD, IntAct, DIP, MINT and BIND (Fig. 5D). The 
module contained genes directly connected with CXCL12 and all the links within them. We noticed that 11 
genes were contained in the module and they were enriched significantly in cell migration and cell motility, of 
which CXCR4, DPP4 and FN1 were also differentially expressed in our data. The contribution of the CXCL12/
CXCR4/CXCR7 axis to cancer progression has been increasingly recognized24. CXCL12 is associated with the 
CXCR4-mediated activation of G protein-coupled signaling molecules, including ERK1/2, MAPK, JNK and 
AKT25,26. The CXCL12/CXCR4/CXCR7 axis may contribute to thyroid cancer development by regulating cancer 
cell migration and invasion via AKT, ERK signaling and MMP-2 activation27. Furthermore Zhu et al. found that 

hyper-DMPs hypo-DMPs Total

mRNA_HCPs 132(0.68%) 229(1.18%) 19469

mRNA_ICPs 184(6.11%) 283(9.39%) 3013

mRNA_LCPs 157(14.50%) 197(18.19%) 1083

lncRNA_HCPs 55(1.19%) 23(0.50%) 4609

lncRNA_ICPs 57(3.24%) 104(5.91%) 1761

lncRNA_LCPs 54(6.05%) 71(7.96%) 892

Table 1.  The number of DMPs and total promoters with three different promoter CpG density.
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more than 90% of PTCs were associated with CXCL12 immunohistochemical staining, indicating that CXCL12 
may be an effective supplementary diagnostic marker for PTC27.

Discussion
In this study, by sequencing the whole genome DNA methylation and transcripts expression of the tumor tis-
sues and normal thyroid tissues from three PTC patients, we performed an integrated analysis to investigate 

Figure 4. Analysis of differentially methylated promoters for mRNAs and lncRNAs. (A) Boxplots of 
methylation levels of different density DMPs in tumor and normal samples. (B) Boxplots of methylation 
differences at different density DMPs between tumor and normal samples. (C) Venn diagrams of differential 
expression and differential methylation.

Ensembl_id Type symbol T_meth (ave ± sd) N_meth (ave ± sd) T_exp (ave ± sd) N_exp (ave ± sd)

ENST00000395794 mRNA CXCL12 0.195 ±  0.029 0.120 ±  0.020 10.71 ±  9.13 41.87 ±  26.35

ENST00000272559 mRNA FBLN7 0.333 ±  0.027 0.267 ±  0.038 3.80 ±  1.05 12.53 ±  1.24

ENST00000398647 mRNA FAM3B 0.289 ±  0.075 0.192 ±  0.178 3.12 ±  3.83 9.55 ±  4.44

ENST00000366958 mRNA PROX1 0.067 ±  0.115 0.000 ±  0.000 0.09 ±  0.07 1.09 ±  0.13

ENST00000390654 mRNA COL23 A1 0.442 ±  0.125 0.370 ±  0.080 0.00 ±  0.00 0.86 ±  1.21

ENST00000373362 mRNA GJB3 0.250 ±  0.072 0.502 ±  0.143 13.09 ±  3.77 0.23 +  0.27

ENST00000367313 mRNA LAD1 0.189 ±  0.053 0.310 ±  0.069 22.33 ±  10.25 2.50 ±  0.66

ENST00000245255 mRNA PIWIL1 0.567 ±  0.328 0.665 ±  0.061 2.48 ±  3.45 0.10 ±  0.12

ENST00000382437 mRNA DNASE1L2 0.305 ±  0.008 0.361 ±  0.005 26.43 ±  4.45 2.26 ±  0.73

ENST00000589231 mRNA EVPL 0.641 ±  0.166 0.703 ±  0.036 94.73 ±  50.55 13.32 ±  12.56

ENST00000376075 mRNA COX4I2 0.380 ±  0.225 0.574 ±  0.107 141.33 ±  151.69 24.85 ±  28.68

ENST00000371632 mRNA LCN12 0.282 ±  0.120 0.411 ±  0.123 306 ±  181.73 38.46 ±  38.70

ENST00000371694 mRNA AGPAT2 0.052 ±  0.017 0.121 ±  0.012 210.18 ±  177.80 14.07 ±  24.36

ENST00000515886 lncRNA DOK7 0.087 ±  0.058 0.267 ±  0.040 7.57 ±  2.82 0.99 ±  0.15

Table 2.  The information of methylation and expression of 14 genes.
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connections between epigenetic regulation and PTC pathogenesis. The aim was to discovery novel molecular 
diagnostic biomarkers that may be useful for early diagnosis and targets for future PTC therapies.

The rapid and persistently increasing incidence of PTC has made this disease a public health problem. With 
the increasing availability and applications of high-throughput sequencing methods, more and more studies have 
focused on the molecular mechanisms of cancer. Transcriptome analysis is an efficient tool for characterizing and 
understanding the molecular basis of phenotypic variation in cancers. Searching for differentially expressed genes 
is the most common analysis in transcription profiling. Clarifying the key genes in cancer-associated molecular 
events has great significance for PTC diagnosis and treatment. Here, we identified 1191 differentially expressed 
mRNAs and 147 differentially expressed lncRNAs, and found that they were involved in cancer-associated 
pathways and functions. For example, differentially expressed genes were enriched in the GO term extracel-
lular matrix. Collagen is a major extracellular matrix component that plays a critical role in promoting tumor 
growth28. COL23A1 is a transmembrane collagen that has been found to be differentially expressed in prostate 

Figure 5. Visualization of methylation and expression of partial potential biomarkers. (A) Scatterplots 
show the significantly negative correlation between methylation and expression of eight genes using TCGA 
tumor datasets. (B) Examples were presented by UCSC using our RNA-seq and RRBS data. (C) The core 
co-expression network of 14 potential biomarkers. Nodes represent genes, and lines represent significant co-
expression, co-function and co-methylation between gene pairs. (D) The CXCL12 module extracted from the 
protein-protein interaction network.
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and non-small-cell lung cancer29,30. Therefore, we inferred that the aberrant expression of COL23A1 may also 
affect tumor development in papillary thyroid carcinoma.

Changes in environmental and lifestyle exposures are also factors that could lead to an increased risk of thy-
roid cancer incidence, but the specifics remain unclear31. Growing evidence has shown that aberrant epigenetic 
changes may participate in the regulation of gene expression and function32,33. DNA methylation is a cornerstone 
of epigenetics that has been widely studied in cancer. Aberrant DNA methylation- mediated gene expression 
alterations play a role in tumourigenesis and cancer progression, and has been reported in many carcinomas, 
including PTC32,34,35. Recently, novel sequencing technologies have been applied to tumor genomes and epige-
nomes, making comprehensive whole-genome detection of gene expression and DNA methylation more accessi-
ble, which has provided great insights into pathological mechanisms. However, only methylation arrays have been 
applied to the study of PTC, which limits the characterization of many potential risk loci and the representation 
of methylation patterns. Whole genome bisulfite sequencing is the gold standard for detecting DNA methylation, 
but its widespread application is limited by high sequencing costs36,37. Promoter methylation of 23,565 expressed 
mRNAs and 7262 expressed lncRNAs in PTC was described in this study. In addition, we were able to not only 
detect known differentially methylated genes, but also identified 14 novel genes regulated by DNA methylation 
in PTC. Our results also showed that the expression of lncRNAs may be less affected by promoter methylation 
in PTC.

To examine potential crosstalk between these genes, a core co-function network was constructed based on 
their correlation of expression, methylation and functional similarities. Within this network, we noted the key 
position of CXCL12, and further investigated interaction information using a protein–protein interaction net-
work. In a small module consisting of CXCL12, CD4, CXCR4 and DPP4, we found that three genes were dif-
ferentially expressed, not CD4. A study has reported that DPP4 inhibition can recruit regenerative stem cells 
via CXCL12, which infulenced ischaemia-reperfusion injury in murine lung transplantation model38. The 
CXCL12–CXCR4 pair was found to be related to various tumors, including many solid cancers and hemato-
poietic malignancies39,40. Zhi et al. have proposed that loss of CXCL12 and maintenance of CXCR4 expression 
imparts metastatic cancer cells a phenotype similar to highly migratory circulating leukocytes and lympho-
cytes22,41. Studies have also reported that epigenetic down-regulation of CXCL12 is involved in breast carcinoma 
and non-small cell lung cancer metastasis42,43. In addition, CXCL12 hypermethylation has been shown to be asso-
ciated with lymph node metastasis development and higher proliferation rates of breast cancer cells44. Although 
previous studies have shown CXCL12 to be a marker for many cancers including PTC, we propose that the essen-
tial role of CXCL12 methylation is in regulating gene expression in PTC.

In conclusion, we investigated the potential biological significance of DNA methylation in PTC by integrat-
ing methylation and expression data, which revealed that the aberrant methylation of CXCL12 was involved in 
carcinogenesis. This may contribute to the design of early diagnostic methods and/or future clinical trials for 
adjuvant chemotherapy for PTC patients.

Materials and Methods
Sample collection. This study was approved by the Ethics Committee of the Second Affiliated Hospital 
of Harbin Medical University, and written informed consent was obtained from all participants prior to inclu-
sion. We obtained three matched pairs of pathologically-confirmed post-operative PTC tumor samples and 
normal thyroid tissues from three patients who underwent thyroidectomy at the Second Affiliated Hospital of 
Harbin Medical University. All methods were carried out in accordance with the relevant guidelines of the Ethics 
Committee of the Second Affiliated Hospital of Harbin Medical University. The six samples were immediately 
frozen with liquid nitrogen and stored at − 80 °C after surgery. The ages of the patients, who were all female, were 
37-, 39- and 41-year-old. The patients we recruited had not received preoperative radiotherapy or chemotherapy, 
and the specimens were not necrotic tissue. The controls were normal thyroid tissues more than 2 cm away from 
the tumor and without cancer cell infiltration.

RNA-seq library preparation, sequencing and data processing. Tissues were thoroughly ground in 
liquid nitrogen, and 50–100 mg was added to 1 mL TRIzol and homogenized. The homogenate was then placed at 
room temperature for 5 min, centrifuged at 12,000 ×  g for 10 min at 4 °C, following which, supernatants contain-
ing RNA were collected. Then, samples were spun again at 4 °C at 12,000 ×  g for 15 min. The upper aqueous layer 
with RNA was obtained, and we precipitated RNA with isopropanol for 30 min, and collected after centrifugation 
at 12,000 ×  g for 10 min at 4 °C. RNA pellets were visible, and the supernatant was removed. The RNA precipi-
tate was washed with 75% ethanol, dissolved in 25–200 μ l RNase-free water and stored at − 70 °C. A NanoDrop 
(Thermo Fisher Scientific, Waltham, MA, USA) was used for RNA quantitation. According to these results, we 
took 500 ng for 1% agarose gel electrophoresis. Then, we synthesized dscDNA, complemented the ends and added 
A-tailing buffer and processing joints. PCR enrichment and Qubit Instruments (Invitrogen Carlsbad, CA, USA) 
quantitative library were performed. The expression data was obtained using Illumina Hiseq2500 sequencing.

The libraries were sequenced using Hiseq2500 platform, and 50 bp single-end reads were generated. T Quality 
control of the raw reads was performed using FastQC, and then were mapped to the human genome (GCRh37/
hg19) using Tophat v2.0.645 with default parameters, except that the Gene Transfer Format (GTF) file for reads 
mapping in “-G” option were collected from Ensembl gene annotation. The mapped reads were assembled into 
transcripts guided by Ensembl gene models using Cufflinks v2.2.146. All transcripts for the six samples were 
merged with Cuffmerge to generate a consensus transcriptome and their expression abundances were quantified 
by Cuffquant. To remove sources of bias in the data, the expression level of all transcripts were then normalized 
by Cuffnorm using the default normalization method. The low expressed transcripts with FPKM < 0.01 in more 
than 50% of samples were filtered out.
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RRBS library preparation, sequencing and data processing. Tissues (not exceeding 25 mg) were 
ground in a 1.5 mL centrifuge tube, 200 μ l ALT was added, mixed by vortexing, and after adding 20 μ L proteinase 
K, were incubated in a 56 °C water bath for 30 min. Then, the samples were vortexed for 15s after adding 4 μ L 
Rnase A and incubating at room temperature for 2 min. Then, vortexed for 15s after the addition of 200 μ L AL and 
incubated in a 70 °C water bath for 10 min. We then added 200 μ L of ethanol and put it into a column after mixing. 
After centrifugation at 6000 ×  g for 1 min, the filtrate was discarded. We then added 500 μ L AW1, centrifuged 
at 6000 ×  g for 1 min and discarded the filtrate, added 500 μ LAW2, centrifuged for 3 min at 20,000 ×  g and the 
collection tube and filtrate was discarded. The column was placed in a new 2 mL collection tube and centrifuged 
for 1 min at 20,000 ×  g. The column was then placed in a 1.5 mL centrifuge tube for 2 min at room temperature. 
The prepared tube was then placed into another 1.5 mL centrifuge tube and we added 80–200 μ L ddH2O into the 
center of the membrane and incubated at room temperature for 2 min. Genomic DNA was eluted after centrif-
ugation at 12,000 ×  g for 1 min. Quantifications were performed using a NanoDrop (Thermo Fisher Scientific). 
According to these results, we used 50 ng for 1% agarose gel electrophoresis, and 5 μ g was subsequently frag-
mented, termini were complemented and A-tailing buffer and processing joints were added. Finally, 150–175 or 
175–225 bp fragments were screened by 2% agarose gel electrophoresis and DNA was reclaimed using QIAGEN 
gel extraction kits (Hilden, Germany) according to the manufacturer’s recommendations. PCR enrichment and 
Qubit Instruments (Invitrogen, Carlsbad, CA, USA) quantitative library were performed. The methylation data 
was obtained using Illumina Hiseq2500 sequencing.

The libraries were sequenced using a Hiseq2500 platform, and 100 bp pair-end reads were generated. First, 
the raw low-quality reads were filtered and 3′ /5′  adapters were removed using Trim Galore. Then, the clean reads 
were aligned to Ensembl human GCRh37/hg19 reference genome using Bismark v0.7.047. Methylation calling of 
each CpG was processed by a module in Bismark called “Methylation Extractor”. From this analysis, 4–9 ×  106 
CpG sites were detected in each sample, with an average sequencing depth of each sample in 11–27x. Only the 
CpG sites that were covered at least 5x in one sample were retained in the analysis. After removing the X and Y 
chromosomal loci, the number of the loci entered to the analysis was 1,036,077 CpG sites for each sample.

Discovery of novel putative lincRNA transcripts. All available samples (tumor and adjacent normal) 
were used to discovery novel putative lincRNA transcripts. Firstly, we aggregated known gene annotations in gene 
transfer format (GTF) from Ensembl, RefSeq, ENCODE and UCSC, and removed redundancies. Additionally, 
lincRNAs identified from the Human Body Map project across 22 human tissues and cell lines were also down-
loaded from UCSC. Then, Cuffcompare was used to compare our merged transcriptome to a comprehensive list 
of known mRNAs and lncRNAs. Only transcripts over 200 nt with more than one exon and annotated by “x” 
were retained. We also removed transcripts that overlapped with known transcripts or were within 1000 bp of the 
nearest coding genes. Finally, to obtain reliable novel lincRNAs, the coding potential of putative lincRNAs were 
calculated using CPC48 and CPAT49, two robust approaches for distinguishing coding from noncoding RNAs. 
Only those transcripts with a CPC score < 0 and a CPAT score < 0.364 were retained as novel putative lincRNAs 
for the analysis.

Identification of differentially expressed transcripts. The R package “edgeR”50 was used to identify 
differentially expressed transcripts between tumor and adjacent normal samples. Those transcripts with p val-
ues < 0.05 and fold change > 1.5(or < 2/3) for each of the three pairs were defined as differentially expressed 
transcripts. To make our results more reliable, we downloaded thyroid cancer RNA-seq V2 isoform expression 
profiles of 513 tumor samples and 59 normal samples from TCGA and performed differential expression analyses 
using the same criteria.

Definition of promoter classes. The promoter of a transcript was defined as 1500 bp upstream of the TSS 
to 500 bp downstream of the TSS. The promoters were divided into three classes18 according to CpG ratio, GC 
content and length of CpG-rich region, and included HCP, LCP and ICP. The CpG ratio was calculated as: (num-
ber of CpGs ×  number of bp)/(number of Cs ×  number of Gs). The three categories of promoters were deter-
mined as follows: HCPs contained at least a 500-bp window with a CpG ratio above 0.75 and GC content above 
55%; LCPs do not contain a 500-bp window with a CpG ratio above 0.48; and ICPs are neither HCPs nor LCPs.

Identification of differentially DNA methylated promoters. We calculated the average methylation 
level of all CpG sites located in the promoter region of a particular gene as the promoter methylation. For promot-
ers of mRNAs and lncRNAs, the threshold for defining differential methylation was defined respectively based 
on methylation distributions. Promoters with absolute methylation differences between tumor and normal that 
ranked in the top 5% were regarded as differentially methylated promoters.

Functional enrichment analysis. The functional enrichment analysis for differentially expressed mRNAs 
was performed using DAVID function annotation tool, which includes KEGG pathway, biological process, 
molecular function and cellular component. GREAT software, which assigns biological meaning to non-coding 
regions by analyzing the annotations of nearby genes, was used to analyze the function of lncRNAs. The terms 
were significant enrichment if hypergeometric test or binomial test p <  0.05.

Construction of a core co-function network. A core co-function network was constructed by consid-
ering three relationships among potential biomarkers in PTC. First, Pearson correlation coefficients of expres-
sion were calculated and only significantly correlated pairs were extracted by performing 1000 permutation 
tests (p <  0.05). Next, semantic similarity of annotated GO terms was used to evaluate the functional similarity 
between the extracted gene pairs. The R package “GOSemSim”51 was used for this implementation. The pairs that 
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had average similarity scores in BP, CC and MF branch > 0.2 were reserved as functionally related gene pairs. 
Then, we calculated Pearson correlation coefficients of methylation between gene pairs. The significantly corre-
lated pairs were reserved (Pearson correlation, p <  0.05) and Pearson correlation coefficients of each gene pair 
were used as linkage weights. Finally, we obtained a core co-function network based on expression, function and 
methylation among the genes.
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