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Whole-body energymetabolism entails the highly regulated balance between food intake,

nutrient breakdown, energy generation (ATP), and energy storage for the preservation of

vital functions and body mass. Purinergic signaling has attracted increasing attention in

the regulatory mechanisms not only for the reverse processes of white adipose tissue

lipogenesis and lipolysis, but also for brown adipocyte-dependent thermogenesis and

leptin production. This regulatory role has remarkable implications in the handling of

body’s energy expenditure and energy reservoir. Hence, selected purinergic receptors

can play a relevant function in lipid metabolism, endocrine activity, glucose uptake,

ATP-dependent increased expression of uncoupling protein 1, and browning of adipose

tissue. Indeed, purinergic P2 receptors regulate adipogenesis and lipid metabolism and

are involved in adipogenic differentiation. In particular, the ionotropic ATP-activated P2X7

subtype is involved in fat distribution, as well as in the modulation of inflammatory

pathways in white adipose tissue. Within this context, very recent evidence has

established a direct function of P2X7 in energy metabolism. Specifically, either genetic

deletion (P2X7 knockout mice) or subchronic pharmacological inhibition of the receptor

produces a decrease of whole-body energy expenditure and, concurrently, an increase

of carbohydrate oxidation. As further evidence, lipid accumulation, increased fat mass

distribution, and weight gain are reported in P2X7-depleted mice. Conversely, the

stimulation of P2X7 enhances energy expenditure. Altogether, this knowledge supports

the role of P2X7 signaling in the fight against obesity and insulin resistance, as well as in

the promotion of adaptive thermogenesis.

Keywords: P2X7 receptor, energy metabolism, lipid oxidation, adipose tissue, thermogenesis, skeletal muscle

INTRODUCTION

At difference with the primary function of intracellular nucleotides that provides the energy
supply for cell viability and survival, extracellular nucleotides such as ATP can act as signaling
molecules when released into the extracellular compartment. By means of their capacity to use
extracellular ATP, adenosine, and other nucleotides and nucleosides for triggering intracellular
signal transduction mechanisms, the purinergic receptors have a distinctive role also in the
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regulation of intracellular metabolism and energy homeostasis
(1–3). Basically, there are two wide families of purinergic
receptors, the adenosine-binding (P1) and the ATP-binding (P2)
subtypes that are, in turn, categorized in P2X ion channels and
P2Y G protein–coupled receptors (4). Respectively seven and
eight different subtypes have been identified for P2Xs (P2X1–7)
and P2Ys (P2Y1, 2, 4, 6, 11–14) receptors, all possessing different
binding affinities depending on the various nucleotides (4).

P2X RECEPTORS, LATENT
INFLAMMATION, AND
OBESITY-ASSOCIATED INSULIN
RESISTANCE

After the discovery by Geoffrey Burnstock of ATP as a
noncanonical extracellular mediator (5), accumulating evidence
corroborated the idea that ATP being constitutively released by
many different cell types allows for cell-to-cell communication.
Due to the pleiotropic functional role of ATP, P2X, and P2Y
receptors are involved also in a great number of disease
conditions. For instance, intense investigation is focused on the
therapeutic potential of P2X in cardiovascular diseases (e.g., heart
failure, ischemia) (6), cancer (7), neuropathic and inflammatory
pain (8), neurodegenerative diseases (9), and muscle and bone
disorders (10, 11). Within the context of these diseases, it
is also relevant that purinergic receptors are distributed not
only in neurons, but also in astrocytes, oligodendrocytes, and
immunocompetent microglia (12–14).

In addition to trophic support (15), ATP can also act
as a danger signal upon tissue injury or cell damage, by
triggering the consecutive phases of inflammatory insurgence
and resolution, as well as immune system activation by regulation
of T lymphocyte proliferation, T-helper 1 production, and
macrophage chemotaxis (16–19). A major common feature
underlying systemic inflammation in which P2X receptors are
known to play a pathogenic role is altered regulation of energy
homeostasis (20, 21). Moreover, there is now large consensus
about the role of chronic “low-grade systemic inflammation” as
a common factor connecting aging, neurodegenerative diseases,
diabetes, and metabolic syndrome (22–24). By definition,
obesity is a low-grade systemic inflammatory disease where
excessive/uncontrolled energy intake coexists with insufficient
energy expenditure (EE) causing abnormal fat accumulation
with expansion of adipose tissue (AT) and energy stores
(25). It is now accepted that the study of excessive white
AT storage (i.e., adiposity) is of major importance for the
comprehension of maladaptive chronic inflammatory response
and the generation of low-grade systemic inflammation and
obesity comorbidities, such as type 2 diabetes, dyslipidemia,

Abbreviations: AT, Adipose tissue; BzATP, 3′-O-(4-Benzoyl)benzoyl ATP;
EE, energy expenditure; FFAs, free fatty acids; HFD, high-fat diet; IL,
interleukin; IL-1Ra, interleukin-1 receptor antagonist; NLRP3, nucleotide-binding
oligomerization domain, leucine rich repeat and pyrin domain containing
protein 3; ROS, reactive oxygen species; SERCA, sarco(endo)plasmic reticulum
Ca2+ATPase; TNF-α, tumor necrosis factor α; UCP1, uncoupling protein 1; UCP3,
uncoupling protein 3.

cardiovascular disease, and neurodegenerative diseases (26–28).
Indeed, over the last decade, the concept of AT as inert energy
reservoir has been finally replaced by the notion of endocrine
organ, with the identification of a growing number of AT-
secreted hormonal factors or adipokines involved in the control
of energy homeostasis (29). In parallel, mounting evidence
has helped to clarify that adipocytes hypertrophy and aberrant
secretory activity involving inflammatory adipokines, such as
tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6),
are significantly associated with recruitment, infiltration, and
accumulation of B and T lymphocytes and macrophages into the
white AT and development of insulin resistance (30, 31). On the
other hand, before the occurrence of insulin resistance, several
mechanisms, such as early activation of proinflammatory and
anti-inflammatory immune cells, release of adipocyte-derived
cytokines, and secretion of lipolytic hormones (e.g., leptin),
can activate the sympathetic nervous system and trigger brown
AT-mediated thermogenic responses (32, 33), thus limiting
white AT accumulation. However, in the case of protracted
positive energy balance, adaptive inflammation and acute
immune activation become inadequate responses, and white
AT enlargement will produce the alteration of fat distribution,
ectopic lipid (i.e., triglycerides) deposition, dyslipidemia, and
insulin resistance (34).

Both P2X and P2Y receptors have been found to be
regulators of adipogenesis and adipocyte differentiation from
bone marrow—and AT-derived mesenchymal stromal cells.
In particular, P2Y1, P2Y4, P2Y14, and P2X6 receptors are
involved in adipogenic differentiation (35, 36), whereas P2Y2
and P2Y13 receptors have been described in bone marrow–
derived adipocyte differentiation (37, 38) (Table 1). The present
survey on the role of purinergic signaling in obesity and
insulin resistance will be focused on the pleiotropic P2X7
receptor subtype (41) for its major involvement not only in
the modulation of fat distribution and inflammation in white
AT (42), but also in energy metabolism and nonshivering
thermogenesis (39, 40).

P2X7: FROM INFLAMMATION
GATEKEEPING TO ENERGY METABOLISM

As other components of the P2X receptor family, also the
P2X7 member is largely expressed on immune cells such as
B and T lymphocytes, macrophages/microglia, mast cells, and
natural killer cells (43), thus contributing to the orchestration
of innate and adaptive immune responses (44). Because ATP
is also constitutively and/or passively released upon tissue
injury or cell damage, the ATP-mediated signaling downstream
from activation of P2X7 receptor (possessing a higher Kb
for ATP with respect to the other P2 receptors) is often
related to the damage- or pathogen-associated molecular pattern
molecules and inflammasome formation [e.g., nucleotide-
binding oligomerization domain, leucine rich repeat and pyrin
domain containing protein 3 (NLRP3)] (43, 45). For this reason,
the P2X7 is of major importance for host defense, being
considered a sensor of danger signals (46, 47). Indeed, the
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activation of P2X7 is associated with a remarkable number
of inflammatory clinical conditions, including systemic lupus
erythematosus and rheumatoid arthritis (48), cancer (49),
cardiovascular diseases (50), liver disease (51), colitis and
inflammatory bowel disease (52, 53), pain development (54),
epilepsy (55), and depression (56).

The main liability of P2X7 in AT inflammation and obesity
was at first suggested by the fact that visceral and subcutaneous
AT expresses functional P2X7 receptors (both mRNA and
protein) and by the notion that such expression is higher in
subjects with metabolic syndrome (57). Remarkably, stimulation
of isolated adipocytes with the prototypic P2X7 agonist 3′-O-(4-
benzoyl)benzoyl ATP (BzATP) triggers the production of IL-6,
TNF-α, and plasminogen activator inhibitor 1 (57). Moreover,
the exacerbation of the inflammatory status and formation of
the P2X7-NLRP3 inflammasome complex have been reported
in perivascular AT of subjects with heavy smoking habits (58),
in which the overactivation of P2X7 was also associated with
higher IL-1β and IL-18 plasma levels. Indeed, P2X7 activation
is a potent trigger of IL-1β release and a major cause of innate
immune cells activation, proinflammatory activity, and chronic
inflammatory diseases (59). However, the same activation of
P2X7 is also involved in the release of the anti-inflammatory
IL-1 receptor antagonist (IL-1Ra), for instance, in macrophages
(60). Of note, it has been shown that an increase of IL-1Ra may
provide a protective potential against pancreatic beta cell damage
and improve glucose homeostasis in patients with type 2 diabetes,
whereas IL-1Ra pancreatic deletion can impair glucose tolerance
in mice (61). In agreement with the role of IL-1Ra in glucose
homeostasis and beta cell function, the targeted deletion of
pancreatic IL-1Ra in mice has been reported to decrease glucose-
stimulated insulin secretion and induce glucose intolerance (62).
In particular, the study of P2X7-mediated control over IL-1Ra
secretion in both lean and obese diabetic patients has helped to
disclose a potential regulatory function exerted by PX7 activation
on pancreatic beta cell function (63). Moreover, pancreatic IL-
1Ra resulted downregulated in beta cell islets of diabetic patients,
and P2X7 knockout mice show reduced IL-1Ra secretory
capacity, hyperglycemia, glucose intolerance, and impaired beta
cell compensation in response to high-sucrose diet (63). Recently,
higher IL-1Ra serum levels and improved beta cell function have
been found in diabetic patients bearing a polymorphism of the
P2X7 gene [i.e., 1,068 G>A, single nucleotide polymorphism
(SNP)], although in the lack of significant improvement of
glycemic control (64). Together, while the functional association
between P2X7-mediated regulation of IL-1Ra secretion and
disruption of beta cell function and glucose homeostasis awaits
further experimental confirmation, the interplay between IL-1β
and the P2X7R is “solid as rock”(65).

Persistent exposure to high-fat diet (HFD) is a well-
known experimental model of metabolic syndrome, obesity,
and type 2 diabetes, which are relevant risk factors for the
increasing incidence of chronic kidney disease (66). High-fat
diet–induced renal inflammation involves the P2X7 receptor via
the activation of NLRP3 inflammasome, whereas reduced kidney
damage, inflammation, and decreased NLRP3 upregulation
are observed in mice genetically depleted of the receptor
(67). Moreover, while renal P2X7 expression is enhanced in

diabetic patients and is associated with damage of glomerular
filtration and increased fibrosis, the pharmacological blockade
of P2X7 receptor reduces renal macrophage accumulation in
experimental diabetic nephropathy (68). It should be noted that
P2X7 receptors are expressed by different types of pancreatic
cells such as alpha and beta cells, and multiple evidence
corroborates the regulatory action exerted by the P2X7 on
pancreatic stellate cell proliferation, insulin secretion, and
involvement in type 2 diabetes pathogenesis (69–71). Also, the
study of P2X7 polymorphisms further demonstrates that P2X7
hypofunction dysregulates glucose homeostasis with reduced
insulin sensitivity and compromised glucose tolerance (72).
Accordingly, as recently shown (71), P2X7 receptors are activated
by glucose elevation, and through their expression on beta cells,
they are able to regulate Ca2+ signaling, cell proliferation, and
insulin secretion. As reported recently, the P2X7 receptor of the
beta cells line INS-1E plays a functional role in the regulation
of glucose-dependent ATP release. The results prompt for a
model according to which glucose is metabolized to ATP after
its entry in beta cells, and ATP is also released via pannexin 1
channels under the cooperative regulation of P2X7-dependent
modulation of Ca2+ influx and potentiation of insulin secretion
(71). Within the same line of investigation, it has been observed
that P2X7 stimulation induces internalization of GLUT2 in
intestinal epithelial cell line (73), and mice lacking P2X7 show
upregulation of GLUT2 expression at enterocyte level (74). As
a consequence, the authors have found that blood glucose is
increased in P2X7 knockout together with hypercholesterolemia,
hypertriglyceridemia, and insulin resistance (74).

As for HFD-induced renal inflammation and diabetes-
associated renal failure, diabetic retinopathy is exacerbated by
sustained P2X7 signaling causing proinflammatory TNF-α and
IL-1β release and apoptosis of retinal microvessels (75), which
can be limited by P2X7 pharmacological blockade (76). In the
context of type 2 diabetes and pathogenesis of insulin resistance,
P2X7 activation behaves like a double-edged sword, which may
have beneficial effects on glucose homeostasis and pancreatic
islet function (71), while in conditions of overnutrition (77,
78) and exposure to obesogenic environments (79), a sustained
P2X7 activation concurs to weight gain, hyperglycemia, AT
inflammation, and excess of circulating free fatty acids (FFAs).

Indeed, changes of dietary patterns involving the
overconsumption of high-energy-dense diets and low-quality
foods represent the current nutritional scenario, at least for
Western people and developing countries. In such a scenario,
it becomes of great relevance to understand the role of P2X7
not only on the impact of nutritional overload, AT enlargement,
ectopic fat deposition, and adipose inflammation for the
development of insulin resistance, but also its role on defective
thermogenesis in obesity.

CONTROL OF ENERGY EXPENDITURE
AND P2X7 SIGNALING

Among the several different hypotheses that have been proposed
to explain body mass regulation (e.g., the dual intervention point
model) (80), there is the idea that body weight is regularly
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adjusted and preserved according to a given set point, which
results from the balance between energy intake and EE. Because
the active defense of body weight set point is constantly
threatened by both living in an obesogenic environment and
tendency of human genome to store energy as fat, the restriction
of energy intake and the increase of EE are the only options
to fight body weight gain, adiposity accrual, and obesity. As
three major components, EE includes the basal metabolic rate
that keeps internal temperature and vital functions, physical
activity, and the dissipation of cell energy via heat production
(i.e., thermogenesis). It is known that, in addition to white
adipocytes where extra calories are stored as triglycerides and
released as FFAs, there are also brown and beige/brite adipocytes
that are required for adaptive thermogenesis (81–83). The brown
AT is highly vascularized and rich in mitochondria and is able
to burn energy and generate heat by the activation of the
uncoupling protein 1 (UCP1), which “uncouple” mitochondrial
respiration and electron transport chain from ATP generation.
Because the energy produced by the uncoupling of respiration
from ATP production is dissipated as heat into a futile cycle
(i.e., proton leak), the brown AT is the major responsible of
adaptive or nonshivering thermogenesis. Although UCP1 is
mostly brown AT-restricted, low levels of UCP1 are also present
in beige/brite adipocytes that are localized within the white AT
and exhibit, upon stimulation, inducible thermogenic capacity.
Notably, cold exposure, sympathetic nervous system activation,
noradrenaline release, binding to β3-adrenergic receptors,
prostaglandins, fibroblast growth factor 21, as well as drugs
such as thiazolidinediones, may trigger the differentiation from
white to brown-like beige adipocytes (83–85). Of importance for
thermogenesis in humans, in large adult mammals and not only
in rodents, a scattered accumulation of brown adipocytes can
still be identified in the neck, in the supraclavicular area, and in
paravertebral and perirenal AT (86–88).

Adaptive thermogenesis is described by the capacity of UCP1
inside the inner mitochondrial membrane to dissipate the
electrochemical proton (H+) gradient generated by the electron
transport chain and to release energy as heat, a mechanism
identified 25 years ago (89) and nowwidely accepted. Uncoupling
protein 1 can be activated by the long-chain fatty acids released
in brown adipocytes via adipose triglyceride lipase-dependent
hydrolysis of triglycerides (90, 91). Recently, UCP1 currents
in the inner mitochondrial membrane have been studied by
a patch-clamp technique demonstrating that long-chain fatty
acids are not only required for UCP1-mediated H+ transport
activity, but they are also “anchored” in a substrate-like fashion
to UCP1 substrates, thus allowing to carry H+ across UCP1
(92). Of note, while UCP1 is activated by FFAs, there is also
evidence that UCP1 is inhibited by purine nucleotides and,
mostly, by ATP-mediated binding on the cytosolic portion of
UCP1 that hampers the kinetics of UCP1 translocation (93, 94).
Considering the role of P2X7 as sensor of the extracellular ATP
environment (being activated by higher ATP concentrations with
respect to other P2X receptors) and that loss of P2X7 function
in mice disrupts adipocyte distribution inducing adipocyte
hyperplasia and lipid ectopic depots (42), a possible opposite
impact of loss- or gain-of-function of P2X7 in whole-body energy

metabolism has been hypothesized. Indeed, a recent work has
demonstrated that genetic depletion and, to a lesser extent,
also pharmacological inhibition of P2X7 elicit a pronounced
decrease of the whole-body EE and metabolic rate in mice,
with a significant increase of the respiratory exchange ratio,
thus indicating a prevalent increase of carbohydrate oxidation
(39). The relative sparing of fatty acid storage and concomitant
defective energy homeostasis were also associated to body weight
gain (39), thus generating lipid accumulation, increased fat mass
distribution, and, ultimately, weight gain that is also reported
in P2X7-depleted mice (42). In line with these results, under
standard nutritional conditions, both metabolic rate as measured
in terms of O2 intake and heat production were significantly
increased by subchronic administration of BzATP for seven
consecutive days (40). Notably, the increase of metabolic rate/EE
was generated also in the lack of motor activity, as detected
during the overall resting period recorded across the entire light–
dark cycle. Moreover, because the enhancement of EE was not
attributable to changes of food intake, it was possible to rule out
the potential contribution of diet-induced thermogenesis. On the
other hand, because respiratory exchange ratio was decreased
by subchronic BzATP administration, the activation of P2X7
produced a significant shift in the level of nutrient substrate
utilization, and in particular of lipid consumption over other
food energy sources (i.e., carbohydrates and proteins). Being
simultaneously consumed more O2 without evident alteration
of motor behavior, an increase of fatty acid oxidation and a
prevalent use of lipids as energy source after P2X7 receptor
stimulation, was demonstrated. Providing further confirmation,
the preadministration of the specific P2X7 antagonist A804589
delayed and attenuated the increase in O2 consumption and EE
induced by BzATP-induced potentiation of P2X7 activity (40)
(Figure 1, Table 1). Thus, these data support the notion that an
opposite regulation of P2X7 function (namely, suppression vs
potentiation) is able to produce antithetical effects onwhole-body
energy metabolism, being the EE reduced by P2X7 suppression
and boosted by P2X7 potentiation. Accordingly, while lipid
oxidation is decreased by suppression of P2X7 function, fatty
acids are more selectively oxidized by the stimulation of P2X7
function (39, 40).

MUSCLE MACHINERY, FATTY ACIDS
OXIDATION, AND P2X7 SIGNALING

As one of the largest tissue accounting for ∼50% of body mass,
the skeletal muscle is a major determinant of the whole-body
metabolic rate (95), possessing a remarkable capacity to rapidly
shift from carbohydrates to fatty acids utilization in response
to increasing energy demand and intensity of physical exercise
(96–98). As a consequence, generation of reactive oxygen species
(ROS) is augmented in skeletal muscles as part of a physiological
response to exercise, adaptation to increased workload, and
optimization of the contractile capacity (99). In particular,
in the muscle gastrocnemius the physical exercise specifically
stimulates the mRNA levels of NADPH oxidase 2 (NOX2) (100),
a superoxide-generating enzyme and major source of ROS under
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FIGURE 1 | Role of P2X7 in energy metabolism. Genetic deletion or

subchronic pharamacological inhibition of P2X7 (A804589) decreases the

whole body energy expenditure causing weight gain without affecting food

intake (in blue). Stimulation of P2X7 by BzATP enhances energy expenditure

and fatty acid oxidation causing weight loss and heat production in mice

(in red).

TABLE 1 | Role of P2 receptors in adipogenic functions and energy metabolism.

Function Receptor References

Adipogenic differentiation P2Y1 (36)

P2Y4 (35, 36)

P2Y14 (35)

P2X6 (35)

Bone marrow–derived adipocyte differentiation P2Y2 (37)

(38)P2Y13

Energy metabolism, thermogenesis, substrate

oxidation

P2X7 (39)

(40)

resting and contractile muscle conditions (101). Importantly,
BzATP-induced activation of P2X7 increases the content of the
glycoprotein gp91phox (a component of the membrane bound
NADPH oxidase complex) in the gastrocnemius (possessing both
fast- and slow-twitch fibers) and tibialis anterior (with 95% fast-
twitch fibers) muscles, thus indicating that P2X7 activationmight
have a role in the contraction-induced intracellular signaling
mediated by nonmitochondrial ROS sources such as NOX2 (40).
We do not exclude that the BzATP-induced activation of P2X7
might mimic the increase of oxygen consumption (102, 103)
and the NOX2-dependent redox adaptation that occur in mixed
and fast-twitch glycolytic fiber types (104) after high-intensity
training and endurance exercise. Under this perspective, the
sustained activation of P2X7might cause a remodeling of fatigue-
susceptible muscles (i.e., type II fibers) and reprogramming of the
global muscle gene expression toward a slower, more oxidative
transcription program.

Skeletal muscle exhibits shivering and adaptive thermogenic
capacity, as well as the ability to increase EE as a function
of different types of physical exercise, adjusting the intensity
of contractile activity and metabolic pathways to the changing

energy requests (i.e., by shifting from carbohydrates to prevalent
fatty acids utilization). These remarkable features, combined with
the well-known possibility to breakdown almost 80% of the
insulin-stimulated glucose uptake, make the skeletal muscle a
specialized tissue to manage insulin sensitivity and, whenever
defective, a primary player in type 2 diabetes pathogenesis. It
is known that P2X7 activation triggers the opening of cations
permeable channels allowing a considerable mobilization of
intracellular Ca2+ (105) and the increase of mitochondrial Ca2+

and cellular ATP levels (106). Interestingly, within the context
of Ca2+ handling and preservation of muscle physiology, the
activity of sarco(endo)plasmic reticulum Ca2+ATPase (SERCA)
provides a key contribution not only to the maintenance of
intracellular Ca2+ homeostasis, but also to the nonshivering
thermogenesis. By subserving the removal of cytosolic Ca2+

and its reuptake into the sarcoplasmic reticulum lumen (107),
the SERCA pump contributes to Ca2+ handling and muscle
contraction–relaxation cycle (108). As a result, a protracted
inhibition of SERCA activitymay lead to cytosolic Ca2+ overload,
as observed in defective muscle regeneration and muscular
dystrophies (109, 110). Indeed, excessive increase of intracellular
Ca2+ is an early pathogenetic event in the progression of
Duchenne muscular dystrophy (109–112), and P2X7 receptor
seems to have a role in muscular dystrophies (113, 114). Thus,
the excessive levels of extracellular ATP observed in dystrophic
muscle might contribute to the overactivation of the P2X7
receptor and then to abnormal intracellular Ca2+ homeostasis
and chronic inflammation (113–115). Because sarcolipin binding
to SERCA is facilitated by high cytosolic Ca2+ (116), there is the
possibility that P2X7 overactivation and increase of intracellular
Ca2+ may promote sarcolipin binding to SERCA and thus
increase nonshivering muscle thermogenesis.

The most part of whole-body adaptive thermogenesis that
occurs in skeletal muscle cannot rely on UCP1 (not expressed in
muscle), but on the analog UCP3 that is prevalently expressed in
both skeletal muscle and brown AT (117). Uncoupling protein
3 is activated by FFAs and can be inhibited by the direct
competition between FFAs and purine nucleotides (118). The
expression of UCP3 in muscle appears regulated by the levels
of fatty acid oxidation occurring during prolonged physical
activity (119), fasting (120), or under HFD regimen (121),
supporting the concept of UCP3 as functionally involved in
muscle fatty acid transport, beta-oxidation (122), and protection
against HFD-induced insulin resistance (123). Although muscle
UCP3 does not contribute to brown AT-mediated thermogenesis
(124, 125), there is nevertheless evidence that in the lack of
UCP3 both the thermogenic response to sympathomimetic
drugs and lipopolysaccharide challenge are blunted (126, 127),
thus supporting the notion that UCP3 may be important in
amplifying brown AT thermogenesis and promoting skeletal
muscle thermogenic activity and/or fatty acid oxidation (127,
128). Most importantly, it should be underlined the protective
mechanism exerted by UCP3 against mitochondrial fatty acid
accumulation and fatty acid–induced damage of mitochondrial
oxidative capacity (129–131). Further support to this aspect
comes from experiments on UCP3 knockout mice in which an
increase in mitochondrial ROS production is observed together
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with reduced uncoupling activity but in the absence of body
weight alterations or cold-induced thermogenesis (132, 133).
Under this regard, the result that direct P2X7 activation increases
fatty acid oxidation and reduces body weight might also suggest
a potential UCP3-mediated facilitatory action of the receptor.

CONCLUSIVE DISCUSSION

In the present survey, we have highlighted the major involvement
of P2X7 in determining and regulating fat distribution,
white AT inflammation, energy metabolism, and nonshivering
thermogenesis. Indeed, functional P2X7 receptors are found
expressed in visceral and subcutaneous AT, and the alteration
of P2X7 function greatly contributes to AT inflammation
and adiposity.

Next, we reported recent evidence that modulation of P2X7
can change whole-body EE, also determining the rate of
macronutrient oxidation and the adjustment of fuel selection
(i.e., carbohydrate vs lipid) to achieve body weight regulation.
In particular, we have reported that BzATP-induced activation
of P2X7 increases EE and induces NOX2 expression in
gastrocnemius and in fast-twitch tibialis anterior. Because
balanced levels of NOX2 and ROS are viewed as mediators of
glucose transport in muscle (134), we suggest that activation
of P2X7 function may not only increase fatty acid oxidation
and EE and decrease body weight, but also possibly reduce
the susceptibility to insulin resistance under high-fat feeding
and/or during the dysregulation of the muscle P2X7/Ca2+/
UCP3/sarcolipin-SERCA axis.

Because selective overexpression of UCP3 in muscle has
been found to act as exercise mimetic not only by increasing
fatty acid oxidation and EE (135), but also by modulating
the mutual interplay between ROS generation and fatty acid
oxidation (133), it might become important to next improve
our knowledge about the ability of P2X7 to shape the metabolic
signature of muscle fibers mimicking high-intensity training
and endurance exercise (40, 102). However, given the “double-
edged sword” nature of P2X7 (136), caution must still be
recommended because continuous or excessive stimulation
of P2X7 could exacerbate endoplasmic reticulum stress that
has been recently recognized to be mechanistically involved
in the decrease of brown AT-dependent EE and obesity
progression (137).
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