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Abstract

Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reser-

voirs are not cleared. Whether HIV epitope presentation is similar between latency reversal

and initial infection of CD4 T cells is unknown yet crucial to define immune responses able

to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC

comes from the intracellular degradation of proteins by proteasomes and post-proteasomal

peptidases but the impact of LRAs on antigen processing is not known. Here we show that

HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa)

increased them to a lesser extent than that induced by TCR activation. During the cytosolic

degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa

modulated degradation patterns of peptides and altered the production of HIV epitopes in

often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV

antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered

HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-depen-

dent manner. Interestingly the efficiency of endogenous epitope processing and presenta-

tion to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of

antigens. LRA-induced modulations of antigen processing should be considered and

exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve

immune recognition after latency reversal. This property of LRAs, if confirmed with other

antigens, might be exploited to improve immune detection of diseased cells beyond HIV.

Author summary

Latently HIV-infected CD4 T cells persist and remain invisible to the immune system.

Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal

agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune

responses. LRAs tested so far variably induced HIV re-expression but did not eliminate

reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides

displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are

similarly degraded and displayed by CD4 T cells after latency reversal or during initial
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infection is unknown. We showed that LRAs altered the activities of the degradation

machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-

infected CD4 T cells were variably recognized by immune cells in a time- and peptide-

dependent manner. Some LRAs increased the efficiency of HIV peptide presentation

despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide pre-

sentation by current or future LRAs should be accounted for and exploited to improve

HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells

after latency reversal.

Introduction

Despite efficient antiretroviral treatments (ART) HIV latently persists in long-lived CD4 T

cells [1]. One of the eradication strategies currently tested in clinical trials proposes to re-acti-

vate provirus expression with latency reversal agents (LRAs) to trigger HIV re-expression,

leading to cell death or elimination by pre-existing HIV-specific immune responses [2,3].

While HIV RNA re-expression can be induced to variable extents by LRAs in CD4 T cells ex

vivo or in vivo, the reservoir is never cleared [4,5]. This failure of LRAs may be explained by

limited reactivation of HIV provirus [6,7] and/or of antigen expression, mutations in epitopes

impairing immune recognition, ineffective magnitude or functionality of immune effectors

[8–11], or intrinsic resistance of cells to elimination [12,13]. Whether steps leading to HIV

MHC-peptide presentation to immune cells are similar during productive infection or latency

reversal is not known but play a major role in assessing the capacity of pre-existing immune

responses to recognize CD4 T cells after latency reversal and in defining additional vaccine-

induced immune responses relevant to latency reversal.

LRAs tested in vitro or in vivo in clinical trials [14] include HDAC inhibitors (HDACi)

such as Vorinostat [15], Romidepsin [16,17] or Panobinostat [18], PKC agonists (PKCa) such

as Bryostatin or Ingenol, aldehyde dehydrogenase inhibitor Disulfiram [19,20]. The addition

of immunomodulatory components such as TLR agonists [21–24], PD1 blockade [25], cyto-

kines such as IL-7 or IL-15 [26–28], activation of the RIG-I pathway [29], or of non-canonical

NF-κB signaling activator [30] may enhance HIV latency reversal in ex vivo or animal studies

but have not yet been tested in clinical trials or have not been successful.

Peptides displayed by MHC-I to CD8 T or NK cells derive from the intracellular degrada-

tion of proteins by the antigen processing machinery, including proteasomes and post-protea-

somal peptidases in the cytosol and endoplasmic reticulum (ER) where LRA-induced HIV

antigens may be found [31]. The expression and hydrolytic activities of the antigen processing

machineries are modulated by various stimuli such as cytokines [32], viral infection [33], TLR

ligands [34–36], TCR-induced cellular activation [37], oxidative stress [38] or enzyme inhibi-

tors [39–43]. We previously showed that TCR-mediated cellular activation enhanced peptidase

activities, modulated protein degradation patterns into peptides and CTL recognition [37].

The metabolic environment for HIV protein expression and degradation differs drastically

between productive infection in activated CD4 T cells [44,45] and latency reversal in differenti-

ated resting CD4 T cells [46,47], but the consequences on the degradation machinery and epi-

tope production are not known.

Here we showed that HDACi and PKCa used in clinical trials modulate cellular peptidase

activities of primary CD4 T cells in opposite ways. They variably altered degradation patterns

of HIV long peptides, the production of known HIV epitopes often in opposite ways. HDACi

narrowed the coverage of HIV antigenic fragments by 8-11aa-long degradation peptides while
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PKCa broadened it. LRAs modulated the efficiency of endogenous processing and presenta-

tion of HIV epitopes by HIV-infected CD4 T cells and CTL responses in a time- and epitope-

dependent manner. Interestingly PKCa Ingenol increased the efficiency of peptide presenta-

tion to CTL at early time points despite low levels of antigens inside cells. Altogether the data

show that the impact of LRAs on antigen presentation should be accounted for and exploited

to enhance immune recognition of CD4 T cells after latency reversal and for the design of vac-

cines against reservoirs. Rather than aiming for strong HIV reactivation, augmenting or

broadening HIV peptide presentation after LRA treatment despite low antigens production

would improve immune detection. Beyond latency reversal of HIV, HDACi or PKCa improv-

ing or broadening MHC peptide presentation at low levels of antigens may facilitate the

immune detection of diseased cells.

Results

Different classes of LRA alter cytosolic peptidase activities

We assessed the effects of 5 LRAs on the antigen processing machinery of primary CD4 T

cells. The selected LRAs with confirmed in vitro and partial in vivo efficacy on HIV reactiva-

tion included HDACi Panobinostat (Pano) and Romidepsin (Romi); Disulfiram (Disu); and

PKCa: Bryostatin (Bryo) and Ingenol-3-angelate (Inge) while anti-CD3/CD28 TCR stimula-

tion defined the maximum cellular activation.

We measured with a fluorescence-based enzymatic assay the hydrolytic activities of the pro-

teasome (chymotryptic, tryptic-like and caspase-like activities) and the post-proteasomal ami-

nopeptidase activities involved in MHC-I presentation in live CD4 T cells of healthy donors at

6, 24 and 48 hours post-treatment [37] (Fig 1). Peptidase activities significantly changed after a

48 hours treatment (Fig 1A). Bryostatin treatment significantly increased aminopeptidase

hydrolytic activities by an average 1.6-fold and Panobinostat significantly decreased hydrolytic

activities by 0.78-fold (Fig 1A and 1B). Overall on 8–15 healthy donors, HDACi and disulfiram

had opposite effects on peptidase activities of primary CD4 T cells when compared to PKCa or

aCD3/CD28 (Fig 1C and S1 Fig). Treatment with HDACi or disulfiram significantly decreased

the proteasomal chymotryptic-like, tryptic-like and caspase-like hydrolytic activities and ami-

nopeptidase activities (0.35- and 0.85-fold depending on the activities). In contrast PKCa sig-

nificantly increased aminopeptidase and proteasomal activities (2.05- to 4.9-fold increase

depending on the activities) but to a lesser extent than TCR activation. Our previous work

indicated that the increase in peptidase activities following aCD3/CD28-stimulation is posi-

tively correlated with cellular activation of primary CD4 T cells [37]. We assessed the expres-

sion of activation markers CD25 and CD69 at the surface of primary CD4 T cells following

LRA-treatment (Fig 1D). Neither HDACi nor disulfiram changed the proportion of CD25+

and/or CD69+ primary CD4 T cells when compared to DMSO-treated cells but both PKCa

increased the expression of the activation markers over time with a maximum of 40%-70% of

activated CD4 T cells following PKCa treatments, remaining below the stimulation achieved

with aCD3/CD28 (up to 88%), in accordance with previously reported PKCa-induced T cell

activation measurements [48–50]. Unlike what we previously reported for cellular activation

following CD3/CD28 engagement, the changes in peptidase activities following LRA treatment

were not necessarily correlated with the percentage of activated cells. The multivariate analysis

of all four peptidase activities and activation levels after DMSO, HDACi, PKCa or aCD3/CD28

treatment in CD4 T cells with dimensionality reduction by tSNE showed clustering of DMSO

and HDACi treatment while PKCa and aCD3/28 clustered separately (Fig 1E), in accordance

with the decreased peptidase activities induced by HDACi and the increased peptidase activi-

ties induced by PKCa.
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Fig 1. Different classes of LRA alter cytosolic peptidase activities. A. Aminopeptidase hydrolytic activity in primary CD4 T cells of healthy donors (n = 8–10) at 6,

24 and 48 h after treatment with DMSO (open circles), Bryostatin (green triangles) or Panobinostat (blue squares). B. Aminopeptidase hydrolytic activity in paired

DMSO- (open circles) and Panobinostat-treated (blue circles, left) or DMSO- and Bryostatin-treated (green circles, right) primary CD4 T cells at 48 h post-

treatment (n = 8 healthy donors). Wilcoxon matched-pairs signed-rank t tests analysis. C. Fold change in aminopeptidase, proteasomal chymotryptic, caspase-like,

tryptic-like hydrolytic activities in LRA-treated over DMSO-treated cells at 48 hours: Panobinostat- (blue), Romidepsin- (red), Disulfiram- (orange), Bryostatin-

(green), Ingenol- (purple) or aCD3/CD28-treated samples (n = 6–16). One-Way ANOVA Kruskal-Wallis tests on the 6 groups and p-values are reported. D. CD25

and CD69 surface levels were monitored by flow cytometry in primary CD4 T cells at 6, 24 and 48 h post treatment with DMSO (black crosses), Panobinostat
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The changes in cytosolic peptidase activities following LRA treatment alter

antigen processing

We evaluated if the changes in cellular peptidase activities induced by LRAs affected the degra-

dation of two long HIV peptides and the production of HIV epitopes (Figs 2 and 3). First, we

compared the degradation of a HIV-1 Gag 35mer containing 6 MHC-I-restricted HIV epi-

topes, p24-10-35m MVHQAISPRTLNAWVKVVEEKAFSPEVIPMFAALS, in matched cellu-

lar extracts of primary CD4 T cells treated for 48 hours with DMSO, aCD3/CD28, Bryostatin,

Ingenol, Panobinostat or Disulfiram (Fig 2A). Degradation peptides generated at various time

points were purified, identified and quantified by mass spectrometry as in [37]. We compared

the degradation patterns of the 35-mer by quantifying the relative amount of peptides starting

or ending at each aa. A representative diagram of the N-terminal cleavage sites is shown in Fig

2B. While the main cleavage sites (H3, A13, V15, V17, E20, V27) were similar in the DMSO-,

LRAs- and aCD3/CD28-treated cells, the amount of fragments starting at each residue varied

with the treatment. For instance, fragments starting at H3 or N12 were reduced by 10-fold in

Panobinostat-treated extracts, while those starting at V2, V15, V17 were increased by Panobi-

nostat and reduced by Bryostatin and aCD3/CD28. To measure the changes in cleavage sites

in multiple donors (n = 6–15), we calculated the average fold change at each aa (peptide

amount obtained for LRA-treated divided by matched DMSO-treated extracts), and plotted

the values as heatmaps for N-terminal (top) and C-terminal (bottom) cleavage sites (Fig 2C;

compare intensity of each aa vertically). Most cleavage sites were variably increased or

decreased by treatments. Anti-CD3/CD28-stimulation caused the most frequent and signifi-

cant changes with 12 altered cleavage sites at the N-terminus (9 increased, 3 decreased) and 10

positions for the C-terminus (6 increased, 4 decreased), in accordance with our published

results [37]. PKCa treatment significantly changed several N- and C-terminus cleavage sites

but distinct from aCD3/CD28-induced changes. Ensuing the opposite changes in peptidase

activities, HDACi and PKCa had opposite effects on specific cleavage sites (for instance more

peptides starting at V17 in Panobinostat and fewer in Bryostatin-treated extracts).

We then assessed the production of known HIV-1 CTL epitopes spanning p24-10-35m (Fig

2A and 2C). Out of 11 known HIV epitopes 10 were produced as optimal or N-extended pep-

tides across 20 donors. We calculated the fold change in epitope production by dividing the

relative amount of epitope produced in LRA-treated extracts by the value obtained for the

matched DMSO control across all experiments (Fig 2D and 2E). HLA-B57 KF11 production

was increased by PKCa and aCD3/CD28, unchanged by Panobinostat and decreased by disul-

firam (Fig 2D). Since the impact of LRA treatment is variable across donors (as seen for all

HIV-related parameters measured ex vivo or in vivo on LRA-treated cells [14], we plotted the

amount of KF11 produced in paired DMSO/LRA samples, showing significantly increased

KF11 production in PKCa-treated extracts and reduced KF11 production in disulfiram-treated

extracts in most donors (Fig 2E). The production of 3 other HLA-B57 HIV epitopes (QW11,

ISW9 and FF9) was variably affected by LRA treatments (Fig 2F). HLA-B57 FF9 was mostly

unchanged by all treatments while QW11 production was increased in aCD3/CD28- or disulfi-

ram-treated extracts. Interestingly ISW9 was the only epitope increased by Panobinostat treat-

ment (low peptidase activities) and decreased by aCD3/CD28 treatment. Epitopes produced

(inverted blue triangles), Romidepsin (red squares), Disulfiram (orange circles), Bryostatin (green triangles), Ingenol (purple diamonds) or aCD3/CD28 (grey

circles). n = 4–12 healthy donors. E. Unsupervised visualization with t-SNE on Z score centered and normalized data, which included the percentages of CD25-,

CD69-, CD38 and HLA-DR-positive CD4 T cells in each sample and the values for aminopeptidase and proteasome chymotryptic, caspase-like and tryptic-like

hydrolytic activities. Panobinostat and Romidepsin were grouped as HDACi (green, n = 13) and Bryostatin and Ingenol were grouped as PKCa (red, n = 30), also

displayed are mock-treated DMSO (blue, n = 33) and aCD3/CD28-treated (black, n = 14). Ellipses indicate 75% confidence interval.

https://doi.org/10.1371/journal.ppat.1008442.g001
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Fig 2. LRA treatments alter the degradation pattern of HIV-1 p24-10-35m and epitope production. A. Sequence of HXB2 HIV-1 Gag p24-10-35m

substrate and MHC-I optimal epitopes. B. Cleavage patterns of p24-10-35m after a 120-minute degradation in extracts of primary CD4 T cells treated
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mostly as shortly N-extended peptides such as Cw-01 VL8 and HLA-E AA9 also showed dif-

ferent production patterns according to LRA treatments. Like ISW9, VL8-containing peptides

accumulated with treatments lowering peptidase activities while AA9 production was only

increased in aCD3/CD28 extracts (Fig 2G).

We similarly assessed the processing of another HIV fragment, p24-161-24mer, after LRAs

or aCD3/CD28 treatments (Fig 3A). Anti-CD3/CD28 treatment changed 12 (11/12 increased)

N- or C-terminal cleavage sites while Bryostatin treatment significantly increased 6 cleavage

sites. Panobinostat decreased peptide production at most aa (Fig 3B). The production of epi-

topes HLA-A02 YL9, HLA-A24 DT9, HLA-A33 DR11 and HLA-B35 QW9 were increased in

PKCa- and aCD3/CD28-treated extracts (Fig 3C) with variable fold change across donors in

LRA-treated extracts (Fig 3D). Altogether these data show that HDACi and PKCa induced het-

erogenous and often opposite changes in cleavage sites which variably affected HIV epitope

production. While many known HIV epitopes saw increased production upon PKCa treat-

ment and reduction or limited changes upon HDACi treatment, other epitopes such as

B57-ISW9 or CW01-VL8 were increased in conditions lowering peptidase activities (HDACi

treatment). We previously showed ISW9 is among the most degradable p24 sequences while

KF11 or DT9 were less degradable in the cytosol of primary cells [51]. Thus, the degradability

of a specific sequence together with drug-induced increased or decreased hydrolytic activities

will set changes in peptide production upon LRA treatment. Highly degradable sequences may

only accumulate in reduced hydrolytic environment while poorly degradable epitopes may be

processed faster in higher hydrolytic conditions.

LRAs change the production of degradation peptides and their distribution

across the HIV sequence

We analyzed whether LRA-induced changes in peptidase activities and cleavage sites could

broaden or narrow the production of degradation peptides of 8-11aa (a size compatible with

MHC-I loading) beyond known HIV epitopes (Fig 4). For both p24-10-35m and p24-161-24m

we measured the contribution of each aa to the amount of 8-11aa peptides across the sequence,

generating a density plot (Fig 4A and 4C) and a heatmap (Fig 4B and 4D) of the sequence cover-

age by 8-11aa degradation peptides. In p24-10-35m the amount of 8-11aa peptides was higher

in Bryostatin- or aCD3/CD28-treated extracts than in DMSO- or Panobinostat-treated extracts,

and the difference was heightened by up to 5-times in the second half of the sequence (Fig 4A).

This is in agreement with the lower degradability of the second half of p24-10-35m that may

subsist under higher hydrolytic activities induced by PKCa or aCD3/CD28 [37,51]. We then cal-

culated a ratio of peptide coverage in treated over DMSO extracts for each condition in multiple

with DMSO- (open bars), Panobinostat- (blue), Bryostatin- (green) or aCD3/CD28–treated (grey) showing the relative amount of fragments starting at

each residue (N-terminus cleavage site). Results shown for a representative experiment. C. Ratios of the relative amount of fragments starting (top) and

ending (bottom) at each residue in matched DMSO- over LRA-treated samples (n = 6–15). Changes in fragments starting (N-terminus) or ending (C-

terminus) at each position appear as decreased (green;<1), increased (orange/red;>1) or unchanged (yellow) compared to DMSO-treated samples.

Wilcoxon matched-pairs signed-rank t tests were performed on the matched DMSO- and LRA-treated samples. The boxed squares indicate statistical

significance (p < 0.05). D. Fold change in HLA-B57-KF11 epitope production in CD4 T cell extracts treated with Panobinostat- (blue), Bryostatin-

(green), Ingenol- (purple), Disulfiram- (orange) or aCD3/CD28-treated (grey) extracts over matched DMSO-treated extracts (n = 6–10 donors). One-

Way ANOVA Kruskal-Wallis tests on the 5 groups and the p-value is reported. E. Percentage of HLA-B57-restricted KF11 epitope produced in paired

DMSO- (open circles) and Bryostatin- (green, n = 9, left), Ingenol- (purple, n = 6, middle) or Disulfiram- (orange, n = 6, right). Wilcoxon matched-pairs

signed-rank t tests were performed. F. Fold change in HLA-B57 ISW9 (left, n = 4–9 donors), HLA-B57 FF9 (middle, n = 5–12 donors) and HLA-A25

QW11 (right, n = 2–6 donors) epitope production in paired Panobinostat- (blue), Bryostatin- (green), Ingenol- (purple), Disulfiram- (orange) or aCD3/

CD28-treated (grey) CD4 T cell over paired DMSO-treated extracts. G. Fold change in HLA-Cw01 VL8 (left, n = 2–6 donors) and HLA-E01 AA9 (right,

n = 5–9 donors) epitope and N-extended precursors production in Panobinostat- (blue), Bryostatin- (green), Ingenol- (purple), Disulfiram- (orange) or

aCD3/CD28-treated (grey) CD4 T cell extracts over paired DMSO-treated extracts. F and G: One-Way ANOVA Kruskal-Wallis tests were performed on

the 5 groups and the p-value is reported if statistically significant.

https://doi.org/10.1371/journal.ppat.1008442.g002
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Fig 3. LRA treatments alter the degradation patterns of HIV-1 p24-161-24m and epitope production. A. Sequence of HXB2 HIV-1 Gag p24-161-24m and

MHC-I HIV epitopes. B. Reading vertically the heat map shows changes in the amount of degradation fragments starting (N-terminus, top) or ending (C-

terminus, bottom) at each position upon LRA treatment over matched DMSO-treated sample in an average of n = 8–11 healthy donors. Wilcoxon matched-

pairs signed-rank t tests were performed on matched DMSO- and aCD3/CD28- or LRA-treated primary CD4 T cells extracts. The boxed squares indicate
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donors (n = 7–11) (Fig 4B). The coverage of the sequence by 8-11aa peptides in Panobinostat-

treated cells was similar to that of DMSO-treated cells with the exception of 3 residues with sig-

nificantly lower coverage. In extracts from aCD3/CD28 and from Ingenol-treated cells the cov-

erage of the sequence by 8-11aa was significantly higher throughout most of the 35-mer, in

accordance with increased peptidase activities leading to more frequent cleavage events.

In p24-161-24m, Panobinostat treatment reduced the production of 8-11aa peptides

throughout the sequence while Bryostatin and aCD3/CD28 increased it in the first half of the

sequence by 2- to 5-fold (Fig 4C). The ratio of 8-11aa produced in treated over DMSO treated

cells in n = 4–10 donors significantly increased in Bryostatin- and aCD3/CD28-treated cells

throughout most of the sequence and only in the first half of the sequence in Ingenol-treated

cells (Fig 4D). Throughout both p24 fragments PKCa treatments increased the density of 8-

11aa degradation peptides in areas most resistant to complete degradation [36,51], providing a

possible approach to increase production of nested peptide sets for MHC presentation.

Combination treatment of HDACi and PKCa modulate HIV antigen

processing

Since combinations of HDACi and PKCa improve HIV provirus reactivation [14,52,53], we

assessed the effects of Panobinostat and Bryostatin combination on antigen processing (Fig 5).

While treatment with Panobinostat or Bryostatin alone produced opposite effects on hydro-

lytic activities, the combination treatment did not significantly change -on average- aminopep-

tidase and proteasomal hydrolytic activities compared to DMSO-treated cells. However, we

observed large differences across donors in agreement with the variable effects of LRAs across

donors [14,52–55]. Interestingly the combination treatment did not reduce cellular activation

compared to Bryostatin treatment (Fig 5B left panel). Treatment of primary CD4 T cells with

either drug or even more for the HDACi+PKCa combination reduced CD3 expression (Fig 5B

right panel) as well as CD4 surface expression.

We compared the effect of single LRA or combination treatment on the degradation of

HIV p24-10-35m (Fig 5C). While the 3 main cleavage sites occurred at the same residues in all

conditions (A13, V15, V17), the relative abundance of peptides varied. Peptide abundance in

combination treatment sometime followed that of Bryostatin-treated cells (N11, V15, V17)

and less frequently that of Panobinostat-treated cells (I6). The combination treatment had

additive effect in decreasing peptide production (A13), increasing others (V2) or restored the

production of peptides (H3). Coverage of an antigenic fragment by 8-11aa degradation pep-

tides can be modulated and was intermediate between Bryostatin- or DMSO-treated extracts

after HDACi+PKCa combination treatments (Fig 5D).

LRA treatments affect endogenous processing and presentation of HIV

epitopes to CD8 T cells

To determine if LRA-induced changes in epitope production measured in vitro reflect changes

in endogenous processing and presentation, we measured epitope-specific CTL activation by

statistical significance (p< 0.05). C. Fold change in HLA-A02/B70 YL9 (left, n = 5–10 donors), HLA-A2402 DT9 (middle left, n = 5–12 donors) and HLA-A25

QW11 (right, n = 2–6 donors) epitope production in Panobinostat- (blue), Bryostatin- (green), Ingenol- (purple), or aCD3/CD28-treated (grey) CD4 T cell

extracts over paired DMSO-treated extracts. One-Way ANOVA Kruskal-Wallis tests were performed on the 4 groups and the associated p-value is reported,

Dunn’s Multi-comparison test was calculated and the pairs that statistically differed are indicated with a bar. D. The percentage of HLA-A02/B70 YL9,

HLA-A2402 DT9, HLA-A3303 DR11 and HLA-B35/B53/B57/B58 QW9 epitopes produced in paired DMSO- (open circles) and Bryostatin- (green, n = 8–10),

Ingenol- (purple, n = 4), Panobinostat- (blue, n = 9) or aCD3/CD28-treated (grey, n = 7) extracts. Wilcoxon matched-pairs signed-rank t tests were performed.
� p< 0.05, �� p< 0.01, ns: not significant.

https://doi.org/10.1371/journal.ppat.1008442.g003
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Fig 4. LRA treatments alter the degradation patterns of HIV-1 long peptides into peptides of 8-11aa beyond known HIV epitopes. A. Relative amount of

degradation peptides of 8-11aa detected at each residue of p24-10-35m during degradation in CD4 T cell extracts treated with DMSO (open circles),

Bryostatin (green), Panobinostat (blue) or aCD3/CD28 (grey). Results shown for a representative experiment. B. Heat map showing the changes in the

contribution of each residue to the production of 8-11aa peptides during the degradation of p24-10-35m in Panobinostat, Bryostatin, Ingenol or aCD3/CD28

over matched DMSO control. n = 7–11 donors. Stars show statistically significant changes (p<0.05). C. Same as A for p24-161-24m degradation peptides. D.

Heat map similar to B for p24-161-24mer. n = 4–10 donors.

https://doi.org/10.1371/journal.ppat.1008442.g004
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Fig 5. Combined Bryostatin and Panobinostat treatment of CD4 T cells changes HIV peptide degradation patterns. A. Aminopeptidase (left) and proteasomal

chymotryptic (right) hydrolytic activities in paired DMSO- (open circles) and Panobinostat+Bryostatin-treated (filled circles) primary CD4 T cells measured at 48 h

post-treatment. n = 12 healthy donors. Wilcoxon matched-pairs signed-rank t tests. ns: not significant. B. The surface expression of CD3 (right) and CD25 and CD69

(left) was monitored by flow cytometry in primary CD4 T cells at 48 h post treatment with DMSO (open circles), Panobinostat (blue squares), Bryostatin (green

triangles), a combination of Panobinostat+Bryostatin (black inverted triangles) (n = 7 healthy donors). One-Way ANOVA Kruskal-Wallis tests were performed on

the 4 groups and the overall p-value is reported, Dunn’s Multi-comparison test was calculated and the pairs that statistically differed are indicated with a bar. �

p< 0.05, �� p< 0.01, ��� p< 0.001. C. Cleavage patterns of p24-10-35m after degradation in extracts from DMSO- (open bars), Panobinostat- (blue), Bryostatin-

(green) and combination Panobinostat+Bryostatin-treated (black) primary CD4 T cells extracts at 120 min, showing the relative amount of fragments starting (N-

terminus cleavage site) at each residue. Results shown for a representative experiment. D. Heat map representing the relative amount of 8–11 aa peptides containing

each aa. Each row represents an LRA-treatment. One representative experiment is shown.

https://doi.org/10.1371/journal.ppat.1008442.g005
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HIV-infected CD4 T cells pretreated with LRAs (Fig 6). LRA-treated CD4 T cells were infected

with single round HIV-1Δenv expressing GFP and pseudotyped with VSVg envelope. HIV

infection, MHC-I levels and recognition by CTL specific for 3 HIV-1 Gag p24 epitopes were

assessed at 24, 48 and 72 hours post-infection.

We first assessed whether LRA treatments affect HIV infection of primary CD4 T cells as it

contributes to the amount of antigen available for processing (Fig 6A showing 48 hpi). As pre-

viously observed HIV infection of resting CD4 T cells was lower than that of aCD3/CD28-acti-

vated CD4 T cells (3.1 vs. 6.6% GFP+p24+ positive cells, respectively) with expected variability

across donors. In contrast the infection rates of LRA-treated cells did not follow LRA-induced

activation levels. HDACi (no cellular activation) pre-treatment reduced infection by 3-fold

compared to resting CD4 T cells while PKCa-treated cells triggering intermediate or high acti-

vation levels had infection rates below or similar to resting CD4 T cells at 48 hpi, well below

CD3/CD28-activated cells. The kinetics of HIV infection between 24 to 72 hours remained

slower and lower in LRA-treated cells than in untreated or TCR-activated CD4 T cells (S2A

Fig). MHC-I levels were higher in the presence of PKCa or aCD3/CD28 on the day of infection

and decreased over 72 hours back to control levels (S2B Fig).

We measured CD107a degranulation of CD8 T cells specific for HLA-B57-restricted HIV-1

Gag p24 KF11, TW10 and ISW9 over 72 hours post-infection. CD107a degranulation by

KF11-specific CTL (Fig 6B) and ISW9-specific CTL (S2C Fig) were similar or lower in the

presence of Panobinostat-treated or Bryostatin-treated HIV-infected CD4 T cells than in

DMSO-treated cells. Only Ingenol-treated cells yielded CD107a similar to aCD3/CD28-stimu-

lated cells at 72 hpi. In contrast CD107a degranulation of TW10-specific CTL was the highest

of the 3 clones in the presence of infected cells treated with any LRA and became higher than

with aCD3/CD28-treated cells at 48-72hpi. HLA-B57 TW10 epitope which has the advantage

of being less degradable [37,51], presentable as both optimal and N-extended peptides [56],

and having high affinity for MHC and TCR efficiently activated CTL.

CD8 T cells activation depends on the functional avidity of the CTL and on the amount of

cognate peptide endogenously processed and presented by HIV-infected CD4 T cells. To

define CTL functional avidity, we measured CTL degranulation in the presence of CD4 T cells

exogenously pulsed with increasing amount of each peptide, ISW9, KF11 and TW10 (Fig 6C).

The peptide titration of the three CTL clones showed a lower avidity of ISW9-specific CTL,

intermediate for KF11 and higher for TW10 in accordance with the higher HLA-B57 binding

affinity of KF11 and TW10 compared to ISW9 [37,51,57] (Fig 6C). We estimated the relative

amount of each peptide presented by infected cells. We calculated an equivalent amount of

peptide displayed by HIV-infected CD4 T cells by comparing the percentage of degranulation

elicited by incubation of CTL with HIV-infected cells pre-treated with various LRAs to the %

obtained with CD4 T cells pulsed with increasing amounts of peptide (Fig 6D). KF11 peptide

equivalent displayed by HIV-infected CD4 T cells and ISW9 peptide presentation (S2D Fig)

showed similar pattern with a reduction of peptide presentation in Panobinostat-treated cells

at 48 hours and a time-dependent increase in Ingenol- and CD3/CD28-activated cells. TW10

peptide presentation was the highest of all 3 epitopes and moderately affected by treatments

(99 to 114 ng/ml compared to 97 ng/ml in DMSO-treated cells). These data emphasized the

uneven time-dependent processing and presentation of different peptides within the same

HIV protein in HIV-infected CD4 T cells [37] and showed a variable effect of LRAs on peptide

presentation according to epitopes as shown in the in vitro epitope processing experiments.

During viral infection peptide display by MHC-I is variable and dynamic [37,58–60] as it

may be altered by variations in amount of antigens, MHC-I or antigen processing activities.

Radar plots at 24, 48 and 72 hpi showed the equivalent TW10, ISW9 and KF11 peptides dis-

played by HIV-infected CD4 T cells along the infection rates (GFP+p24+) and MHC-I levels
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Fig 6. LRAs affect endogenous HIV epitope processing and presentation by HIV-infected CD4 T cells to CD8+ T cells. A. HIV-1ΔEnv-GFP-VSVg

infection rate of primary CD4 T cells pretreated with DMSO (black), aCD3/CD28 (grey) or Panobinostat (blue), Bryostatin (green), Ingenol (purple) was

assessed by flow cytometry using GFP and HIV-p24 expression at 48 h post-infection (n = 7 donors with distinct symbols). B. Percentage of CD107a+ CD8 T

cells specific for HLA-B57 KF11 (left) and HLA-B57 TW10 (right) after incubation with HLA-B57+ HIV-infected CD4 T cells treated with DMSO, LRA or
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of the same LRA-treated HIV-infected CD4 T cells scaled to the maximum value of each

parameter across time points (Fig 6E). At 24 hpi the equivalent peptide presented was the low-

est of all three time points for all 3 peptides despite presenting the highest level of MHC-I.

Despite low levels of HIV p24 and MHC-I, Panobinostat-treated cells (blue line) had the high-

est KF11 and ISW9 peptide presentations at 24 hours. In contrast despite having the second

highest levels of MHC-I and HIV infection the amount of ISW9, KF11 and TW10 presented

by Bryostatin-treated cells (green line) and aCD3/CD28-activated cells (grey line) were among

the lowest. At 48 hours aCD3/CD28-activated cells (grey line) had the highest equivalent pep-

tide display for all 3 epitopes. At 72 hours when HIV infection rates were the highest, Ingenol-

treated cells had the highest ISW9 and TW10 peptide equivalent presentation despite display-

ing the lowest levels of MHC-I. Altogether the data show that the equivalent HIV peptide pre-

sentation varied over time and was variably affected by LRAs but was not directly correlated

with MHC-I levels or infection rates.

Considering the impact of LRAs on the kinetics of HIV antigen expression (S2A Fig) we

calculated a score of efficiency of HIV peptide presentation defined as the ratio of peptide

equivalent displayed by CD4 T cells over the HIV infection rates (GFP+p24+), an indirect mea-

surement of the amount of HIV antigens present inside cells (Fig 6F). At 24 hours Ingenol-

treated cells had the highest score of peptide presentation efficiency for all 3 epitopes. DMSO-

treated and Panobinostat-treated cells were the second highest. The efficiency of presentation

was the lowest for aCD3/CD28- and Bryostatin-treated cells. Overtime the efficiency of peptide

presentation by Ingenol-treated or DMSO-treated cells decreased while that of aCD3/CD28-

and Bryostatin-treated cells increased. The data showed a dynamic peptide presentation not

solely driven by variations in MHC-I or antigen levels. Additionally, they unexpectedly

revealed that LRAs such as Ingenol can increase at early time points the efficiency of HIV pep-

tide presentation despite low levels of antigens.

Discussion

The underlying principle of shock and kill strategies is to unlock HIV transcriptional blocks

with latency reversal agents, induce HIV expression and cell death by apoptosis [3] or immune

clearance [2,3]. LRAs tested so far induced HIV RNA expression to various extents but led to

relatively small changes in the size of reservoirs in vivo [9,61]. Beside the efficacy of LRAs, the

capacity of pre-existing immune responses to clear reservoirs is uncertain and additional vac-

cine-induced immune responses are likely needed [10,11,13,62,63].

Most LRAs selected so far to relieve transcriptional blocks act on signaling pathways and

histone acetylation [5,64] but are not specific to HIV LTR promoters or targeted to the reser-

voirs, thus their effect should be considered globally on genes and cellular machineries of cell

populations [48–50,65]. The LRA-induced changes in cellular peptidase activities took 48

aCD3/CD28 at 24, 48 and 72h post-infection at a 4:1 CTL:CD4 ratio. For each treatment (DMSO, LRA or aCD3/CD28 beads) control uninfected LRA- or

beads-treated CD4 T cells were included in the experiment and used to calculate and subtract CD107a background. C. Percentage of CD107a+ CD8 T cells

specific for HLA-B57 ISW9- (cyan), KF11- (orange) and TW10- specific (red) after incubation with peptide-pulsed DMSO-treated HLA-B57+ CD4 T cells

measured at a 4:1 CTL:CD4 ratio. A-C: n = 6 experiments with mean values and standard deviations. D. Peptide equivalent (KF11 (right) and TW10 (left),

displayed at the surface of HIV-infected HLA-B57+ CD4 T cells treated with DMSO (open blank symbols), Panobinostat (blue squares), Bryostatin (green

triangles), Ingenol (inverted purple triangles) and CD3/CD28-stimulated (grey diamonds). The results of n = 5 (TW10) and n = 4 (KF11) infection and

degranulation experiments are shown at 24, 48 and 72 hpi. E. Spider plots showing the peptide equivalent (TW10, KF11, ISW9 in ng/ml), HIV infection rates

(% GFP+p24+), MHC-I surface levels (mfi) displayed by HIV-infected CD4 T cells pre-treated with DMSO (yellow), aCD3/CD28 (grey), Panobinostat (blue),

Bryostatin (green), Ingenol (purple). Axes for any given parameter were scaled uniformly across timepoints to take into account the full dynamic range (i.e.,

minimum to maximum value for that parameter across the 3 timepoints). Spider plots at 24, 48 and 72 h (left to right) after HIV infection of pre-treated CD4

T cells. F. Spider plots similar to E showing the efficiency of peptide presentation (TW10, KF11, ISW9) defined at the peptide equivalent (TW10, KF11, ISW9)

displayed by HIV-infected CD4 T cells divided by the infection rate (% GFP+p24+, an indirect measurement of HIV antigens in cells).

https://doi.org/10.1371/journal.ppat.1008442.g006

PLOS PATHOGENS Latency reversal agents alter HIV antigen presentation

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008442 March 20, 2020 14 / 24

https://doi.org/10.1371/journal.ppat.1008442.g006
https://doi.org/10.1371/journal.ppat.1008442


hours to reach maximum effect both for HDACi and PKCa, suggesting a transcriptional effect

either on the expression of the antigen processing machinery or on proteins regulating its

activity rather than a direct binding to peptidases’ catalytic sites. Bryostatin can enhance pro-

teasome activities in fibroblasts [43] while disulfiram effect on NF-κB inhibited proteasome

activities in cell lines [42]. The RNA expression of some proteasome subunits was modulated

in an in vitro latency model upon LRA treatment [55] but neither proteasome expression and

hydrolytic activities, nor the impact on antigen processing were assessed.

LRA-induced changes in peptidase activities of CD4 T cells altered degradation patterns of

long HIV peptides and epitope production in a sequence- and time-dependent manner. To

explain the heterogenous effect of LRA on peptide production and presentation, one needs to

consider two interconnected parameters: 1) the intracellular hydrolytic activity levels that are

defined by the cell type and the treatment applied to cells, and 2) the degradability of a given

antigenic sequence. We and others showed that various CD4+ cell types [35,36,39,40,66] and

resting and TCR-activated CD4 T cells [37] present different levels of cellular peptidase activi-

ties that influence HIV degradation patterns. Additionally HIV sequences within a protein are

variably sensitive to cytosolic degradation, as illustrated by the higher degradability of the first

half of the p24-10-35mer containing ISW9 epitope compared to the second half of the 35mer

containing HLA-B57 KF11. We showed that even peptides of 8-11aa present a cytosolic half-

life varying from a few seconds to hours [51]. This variable sensitivity of HIV sequences to

cytosolic degradation is driven by motifs associated with sensitivity/resistance to degradation

and shapes the amount of peptides available for MHC loading [51]. When peptidase activities

are reduced as seen with HDACi treatment, sequences highly sensitive to degradation are less

degraded and better presented as seen for ISW9 at early time points. Conversely poorly

degradable sequences are processed and trimmed slower, leading to a lesser and/or slower pre-

sentation of degradation-resistant peptides and indirectly favoring the early presentation of

the most degradable areas of HIV. Upon increased peptidase activities (as seen with PKCa

treatment) cutting events and peptide trimming or degradation increase which could acceler-

ate the production of the less degradable peptides such as intracellularly highly stable

HLA-B57 TW10 or HLA-B57 KF11 but conversely increase the degradation of the most sensi-

tive sequences such as HLA-B57 ISW9. Since the sensitivity or resistance to degradation is

driven by motifs it will eventually be possible to identify and predict areas of HIV antigens that

may yield 8-11aa peptides, or conversely define hydrolytic activities yielding the largest num-

ber of 8-11aa. The increased coverage of long HIV peptides by degradation products of 8-11aa

in the presence of PKCa provides an initial way to increase the variety and/or number of pep-

tides available for MHC presentation.

The endogenous processing and MHC presentation of HIV peptides to immune cells

encapsulates not only the kinetics and amount of peptide production but also MHC levels and

binding affinity of peptides (optimal epitopes or extended versions) for MHC and the TCR.

When accounting for the amount of HIV antigen available inside cells and MHC levels, Inge-

nol was remarkably efficient at increasing the presentation of all 3 HLA-B57 peptides at early

times (when antigen amount was low) while Bryostatin was efficient at late time points.

Whether this relative enhanced peptide presentation remains true for other HIV epitopes

remains to be determined. However, the increased production of 8-11aa long peptides and the

enhanced efficiency of peptide presentation at low levels of antigens induced by certain LRAs

offer new opportunities to broaden the MHC-peptide repertoire for immune detection and

define novel targets for immune clearance after latency reversal. As many HIV-specific pre-

existing T cell responses may express inhibitory markers [8–10,28], additional novel vaccine-

induced latency reversal-specific immune responses may be needed to clear reservoirs [67].

Eliciting immune responses against areas of HIV proteome whose processing and presentation
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is enhanced by LRAs even at low levels of antigens may provide an additional way to improve

immune detection of reservoirs. It will be critical to assess whether HIV epitope presentation

is modulated by LRAs after latency reversal ex vivo in latently infected CD4 T cells from

patients or in reservoirs in vivo. Improved ex vivo latency models [55,68], streamlined ways to

generate or expand epitope-specific CTL [69] and the promising use of immunodeficient mice

repopulated with HIV-infected patients’ PBMCs [70] or of humanized BLT (bone-marrow-

liver-thymus) mice in recent latency reversal studies [30] may allow to test how the modulation

of peptide presentation by LRAs affects immune responses and could be exploited for reservoir

clearance.

While this study was focused on the presentation of peptides restricted by conventional

HLAs and mostly HLA-A or -B, the modulation of peptide processing might also affect presen-

tation by HLA-C or non-conventional HLA-E that can activate HIV-specific cytolytic NK cell

functions [71,72]. Although a MHC-dependent role of cytolytic NK cells after latency reversal

remains to be established, the effect of LRA on HIV peptide presentation could also be consid-

ered and exploited for these immune responses [73].

The HDACi and PKCa tested so far in clinical trials and used in this study are not very effi-

cient at reactivating HIV expression from reservoirs. The most efficient LRAs usually induce

cellular activation and the addition of immunomodulatory agents (IMA) such as Ruxolitinib

[74,75] have been tested ex vivo but even the combination of LRA and IMA modulates HIV

antigen processing. New LRAs such as those triggering the non-canonical NF-κB pathway [30]

or new LRAs combined with inclusion of TLR ligands [24] or PD-1 blockade [25] will be

needed to specifically and efficiently reactivate CD4 cell subsets harboring latent proviruses

[55,76]. The present study provides a proof of principle that LRAs, current and future more

efficacious drugs, should be assessed not only for their capacity to reactivate HIV transcription

or to produce HIV particles in ex vivo assays, but also for their impact on antigen processing

and their capacity to promote HIV peptide presentation. Ultimately to eliminate HIV reser-

voirs once provirus transcription is reactivated, a high expression of antigens is probably not

necessary as only a few to a few hundreds of MHC-peptides are needed for T cell-mediated

immune recognition. However, enhancing peptide presentation despite low levels of antigens

after LRA treatment (rather than aiming for high levels of antigens) and possibly broadening

the repertoire of surface peptides provides an initial yet unexplored way toward improved res-

ervoir detection. Predicting, ensuring and even improving the presentation of diverse HIV

peptides against which functional pre-existing or new vaccine-induced immune responses will

support efficient immune clearance of reservoirs. Beyond HIV reservoir clearance, the capacity

of LRAs to modulate the relative presentation of various antigenic fragments and to enhance

peptide presentation at low levels of antigens could be exploited and integrated in novel immu-

notherapy strategies (provided adequate targeting) to clear diseased cells in tumors or other

chronic disorders [77].

Material and methods

Ethics statement

Cells were isolated from buffy coats of anonymous healthy blood donors obtained from the

Massachusetts General Hospital blood center (Boston, MA) after approval by the Partners

Human Research Committee under protocol 2005P001218.

Latency reversing agents

Romidepsin, Bryostatin, Disulfiram (Sigma), Ingenol-3-angelate (Santa Cruz Biotechnologies),

Panobinostat (Selleckchem) were dissolved in DMSO (Fisher Scientific) to make stock
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solutions. Fresh aliquots were used for each experiment. The final concentrations for each

LRA in cell culture were as follows: Panobinostat (30 nM), Romidepsin (40 nM), Disulfiram

(500 nM), Bryostatin (10 nM), Ingenol-3-angelate (50 nM). Maximum in vitro stimulation was

achieved by addition of anti-CD3/CD28 magnetic beads (Fisher Scientific) at a ratio of 1:1

bead to T cell as in [37]. For combination treatment, both drugs were added at the same time.

Primary cells

CD4 T cells were isolated by negative selection from fresh PBMCs purified from buffy coats

using a CD4+ T cell enrichment magnetic isolation kit (Stemcell Technologies). CD4 T cells

were cultured in the presence of 50 Units/mL of Interleukin-2 (NIH AIDS Research and Refer-

ence Reagents Program or R&D systems). Cytotoxic CD8 T cell clones and CD4 T cell clones

were isolated by limited dilution, maintained in R10+ medium supplemented with IL-2 and

stimulated for proliferation with irradiated PBMCs and OKT3 and CD28.2 or OKT3 antibod-

ies (eBioscience), respectively.

Peptidase activities in live CD4 T cells

The proteasome hydrolytic activities caspase-like (50 μM Z-LLE-AMC; EMD Millipore), tryp-

tic (50 μM Boc-LRR-AMC; Bachem), chymotryptic (50 μM Suc-LLVY-AMC; Bachem), post-

proteasomal aminopeptidases (50 μM H-Leu-AMC; Bachem) were measured in 25x103 live

CD4 T cells at given time points after drug treatment with peptidase-specific fluorogenic sub-

strates as in [37,40]. The specificity of each catalytic reaction was checked by pre-incubating

cells for 30 min with inhibitors of proteasome (10 μM MG132; Enzo Life Sciences), aminopep-

tidases (120 μM Bestatin; Sigma-Aldrich), before the addition of substrate. The rate of fluores-

cence emission, which is proportional to the proteolytic activity, was measured every 600 s at

37˚C in a Victor-3 Plate Reader (Perkin Elmer), as in [37].

In vitro degradation experiments and mass spectrometry

2 nmol of pure peptide (MGH peptide core facility or Biosynthesis, Texas) was degraded with

15 ug of CD4 T cell extracts at 37˚C in pH7.4 degradation buffer as in [37,40]. Aliquots were

taken at various time points and the reaction was stopped by addition of 5% (v/v) of Formic

acid (Thermo Scientific) and the degradation products were purified by trichloroacetic acid

(Sigma) precipitation (final concentration 5% (v/v)) and identified by in-house mass spec-

trometry as previously described [37]. Briefly, equal amounts of the purified degradation prod-

ucts were injected into a NanoLC Ultra-HPLC (Eksigent) for salt removal and separation, then

online nanosprayed into an LTQ Orbitrap Discovery mass spectrometer (Thermo) for identifi-

cation. Peptides were separated in a NanoLC column (ChromXP C18, 3 um 120Å; Eksigent)

over a gradient of 2–60% buffer B (buffer A: 0.1% (v/v) formic acid in MS-grade water (Fisher

Scientific)); buffer B: 0.1% (v/v) formic acid in MS-grade acetonitrile (Fisher Scientific) in 95

min with a conserved flow rate of 250 nl/min. Mass spectra were recorded in the 370–2000

Daltons range. In the tandem mass spectrometry mode, the eight most intense peaks were

selected with a window of 1 Dalton and fragmented using helium as collision gas and a voltage

of 35 V. Peaks in the mass spectra were searched against the source peptide databases with Pro-

teome Discoverer (version 1.3; Thermo) and quantitatively analyzed. For a given peptide, the

integrated area under the peak is proportional to the relative abundance of the peptide in the

sample. Each sample was run on the mass spectrometer at least twice.
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Endogenous processing and presentation assay to CD8 T cells

HLA-B57+ primary CD4 T cells were either treated with LRA, stimulated with anti-CD3/

CD28 or kept in culture with no stimulation for 48 hours. The cells were thoroughly washed

and magnetic anti-CD3/CD28 beads were removed. For each condition, 2 million of CD4 T

cells were infected with 20 ug HIV Gag p24 equivalent of NL4-3-Δenv-GFP virus pseudotyped

with Vesicular Stomatitis Virus glycoprotein (VSV-g) in the presence of 5ug/mL polybrene

(Sigma) by spinfection for 1.5 h at 2000x g as in [37]. At 24, 48 and 72 h post-infection, CD4 T

cells were plated with epitope-specific CD8 T cells at a ratio of 1:4 (CD4:CD8) and an aliquot

of CD4 T cells was also harvested to measure HIV-1 infection through GFP and HIV-1 p24

intracellular expression, as well as cellular activation and HLA class I surface expression by

flow cytometry. After 30 min of co-culture, CD107a-Pe-Cy7 (BD Biosciences) and CD28/

CD49d antibodies (BD Biosciences) were added to each well to measure CTL degranulation.

After 6 h cells were harvested for surface staining.

The avidity of the CTL clones was assessed by performing a concentration-course titration.

Target HLA-B57 CD4 T cells were incubated with increasing concentration of the cognate

peptides (0.000002–2 ug/mL) before co-culture with the corresponding CD8 T cells as

described above.

Flow cytometry

Untreated or LRA-treated CD4 T cells were stained with CD4-BV605, CD3-Pacific Blue (BD

Biosciences) and HLA-ABC-AlexaFluor700 (Biolegend) to assess purity (95–99%) and

CD38-FITC, CD69-PE, CD25-PerCpCy5.5 and HLA-DR-APC (BD Biosciences) to measure

surface activation marker levels. Cellular activation levels were calculated by first gating on the

double negative population of CD25 and CD69 of the non-treated sample on live, CD4- and

CD3-positive cells and applying the same gates to the LRA-treated and CD3/CD28-stimulated

samples as done in [37]. A similar gating strategy was applied to determine the proportion of

CD38- and HLA-DR-positive CD4 T cells.

For degranulation experiments using HLA-B57-expressing CD4 T cell clone with CD8 T

cell clones, the co-cultured cells were stained with CD4-BV605, CD8-APC-Cy7, CD3-Pacific

Blue and CD107a-Pe-Cy7 (BD Biosciences). CD107a-positive cells were gated from the live,

CD4-negative, CD3- and CD8-positive cells. Non-HIV-infected CD4 T cells pre-treated with

DMSO, LRA or aCD3/CD28 with were used to calculate background degranulation at each

time point for each experiment. The target CD4 T cells were stained with CD4-BV605,

CD3-Pacific Blue, CD25-PerCpCy5.5, CD69-APC (BD Biosciences), and HLA-ABC-Alexa-

Fluor 700 (Biolegend). HIV-1 infection was assessed by GFP expression and HIV-1 p24 intra-

cellular protein staining using KC57-RD1 HIV p24 antibody (Beckman-Coulter). HIV-

infected CD4 T cells were gated as live, CD3- and CD4-positive cells that were both expressing

GFP and HIV-1 p24. Non-infected CD4 T cells similarly pre-treated were used to calculate

background staining. All mean fluorescence intensity (mfi) values were calculated using geo-

metric mean. Samples were run on a BD 4 Laser LSRII flow cytometer and analyzed using

FlowJo software (FlowJo, LLC).

Statistical analysis and data visualization

Experimental data were analyzed using Microsoft Excel and GraphPad Prism version 5.0f

(GraphPad Software). Spearman’s rank correlation was used to examine bivariate associations

and Wilcoxon signed rank test was used to compare measurements between paired non-

treated and LRA-stimulated samples. All p values are two-sided and p values lower than 5%

were considered statistically significant.
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Dimensionality reduction was performed on multi-parametric datasets using the t-Distributed

Stochastic Neighbor Embedding (t-SNE) algorithm on scaled data [78]. t-SNE was run on cen-

tered and scaled (i.e., z-scored) data. Parameters critical for antigen presentation were visualized

using spider/radar plots. A different radar plot was generated for each timepoint. However, axes

for any given parameter were scaled uniformly across timepoints to take into account the full

dynamic range (i.e., minimum to maximum value for that parameter) across the 3 timepoints.

Supporting information

S1 Fig. Different classes of LRA alter cytosolic peptidase activities. Aminopeptidase, protea-

somal chymotryptic, tryptic-like and caspase-like hydrolytic activities in paired DMSO- (open

circles) and LRA-treated (filled circles) primary CD4 T cells measured at 48 h post-treatment.

Panobinostat, Romidepsin, Disulfiram, Bryostatin and Ingenol; results are shown for n = 7–15

healthy donors. Wilcoxon matched-pairs signed-rank t tests were performed. � p< 0.05, ��

p< 0.01, ��� p< 0.001, ns: not significant.

(TIF)

S2 Fig. LRA treatment affects endogenous processing and presentation of HIV epitopes by

HIV-infected CD4 T cells to CD8+ T cells. A. Primary CD4 T cells were treated with DMSO

(open circles), aCD3/CD28 (grey diamonds), Panobinostat (blue squares), Bryostatin (green

triangles), Ingenol (purple inverted triangles) 48 h prior to HIV-1 infection with HIV-1 NL4-

3-Denv-GFP pseudotyped with VSVg. The HIV infection rate of primary CD4 T cells was

assessed by flow cytometry (GFP and HIV-p24 expression) at 24, 48 and 72 h post-infection.

B. HLA class I levels were assessed by flow cytometry at 0, 24, 48 and 72 h post-infection in

DMSO, aCD3/CD28 and LRA-treated primary CD4 T cells. Changes upon treatment was

expressed as a ratio of HLA-ABC expression of LRA- or aCD3/CD28-treated cells by their

matching DMSO counterparts. Red line at ratio value = 1. C. The percentage of CD107a

+ HLA-B57 ISW9-specific CD8 T after incubation with DMSO (open circles), aCD3/CD28

(grey diamonds), Panobinostat (blue squares), Bryostatin (green triangles), Ingenol (purple

inverted triangles) HLA-B57+ CD4 T cells infected with HIV-1 NL4-3-ΔEnv-GFP pseudo-

typed with VSVg was measured at 24, 48 and 72 h post-infection at a 4:1 CTL:CD4 ratio. For

each treatment (DMSO, LRA or aCD3/CD28 beads) control uninfected LRA- or aCD3/CD28

beads-treated CD4 T cells were included in the experiment and used to calculate and subtract

CD107a background. D. The ISW9 peptide equivalent displayed by CD4 T cells pre-treated

with DMSO, LRA or aCD3/CD28 was shown at 24, 48, 72 hpi E. The efficiency of HIV peptide

presentation score at 24, 48 and 72 hpi was calculated for HLA-B57 ISW9 by dividing the rela-

tive amount of peptide presented at the cell surface by the % GFP+p24+ as indirect measure-

ment of HIV antigen content for each treatment condition at 24, 48 and 72 h post-infection.

n = 6 experiments as mean values with standard deviation.

(TIF)
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