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ABSTRACT: Optimizing the spin coating of silver nanowires to form transparent conducting electrodes (TCE) is guided by
machine learning (ML). A good TCE has two competing characteristics: high transmittance and high conductance. Optimization
using a scalar figure of merit, as often done in the field, cannot satisfy the independent requirements for transmittance and
conductance imposed by specific applications. By performing a Pareto front analysis based on ML models, we show that the desired
outcomes of transmittance ≥ 75% and sheet resistance ≤ 15 Ω/sq are challenging but can be achieved using processing parameters
identified by ML analysis.
KEYWORDS: Transparent conducting electrodes, Silver nanowires, Machine learning, Gaussian process, Multiobjective optimization,
Pareto front, Figure of merit

Transparent conducting electrodes (TCEs) play a crucial
role in applications such as light-emitting diodes (LEDs),

photovoltaics (PVs), and touch screens.1,2 Additionally, flexible
TCEs made on plastic substrates such as poly(ethylene
terephthalate) (PET) are desired for the Internet of Things,
flexible electronics, and curved displays. Three common types
of flexible TCEs are transparent conducting oxide films such as
indium tin oxide (ITO), metal grids, and metal nanowires.2 A
good TCE should have a high transmittance and high
conductance simultaneously. Because high electrical conduc-
tivity implies strong optical reflectance and absorption,
achieving simultaneously high conductivity and high trans-
parency poses a major challenge in TCE development. For
example, a higher filling factor in metal grids increases the
conductance but lowers transmittance. Similarly, increasing the
ITO film thickness improves conductance but reduces
transmittance. In our effort, a layer of silver nanowires
(AgNWs) is combined with transparent indium zinc oxide
(IZO) sol−gel films to enhance IZO film conductance,3 with
the goal of meeting minimum sheet conductance requirements
for TCEs used in LEDs and PVs.
In TCE research, a scalar figure of merit (FOM) that

combines transmittance (T) and sheet conductance (Gsq) or

resistance (Rsq = 1/Gsq) is commonly used to quantify their
performance.4,5 The relative importance of T and Gsq depends
on how the FOM is defined. For example, the ratio between
DC and optical conductivities forms a unitless FOM:6
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where 188.5 Ω is half of the vacuum impedance. FOMunitless
gives greater weight to a higher Gsq. Another commonly used
FOM7 emphasizes transmittance by using T10:
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Comparing TCE performance among works using different
FOMs is difficult.4,5,8−11 Furthermore, many applications
impose independent requirements2 on T and Rsq which cannot
be captured by a single FOM value.
In our composite TCEs, T and Rsq of the TCE are primarily

determined by the AgNW layer;3 thus, we focus on optimizing
the spin-coating process of AgNWs using machine-learning
(ML) methods to guide the search through processing
parameter space. To be useful in most PV and LED
applications, we aim to find processing conditions giving
TCEs with T ≥ 75% and Rsq≤ 15 Ω/sq simultaneously.12

Here, the T value is referenced to air, i.e., transmittance
through the TCE layer and PET substrate, not the value
referenced to the substrate as often done in the literature.4,8−10

This total transmittance, which is less than 89% transmittance
of bare PET, is what is relevant for PV and LED applications.
As described in detail in the Supporting Information,

AgNWs (Figure S1) in ethanol were spin-coated onto PET
substrates. After spin coating, the AgNW layer is sintered by
photonic curing13,14 using conditions held constant for this
study. Processing involves three variables: AgNW concen-
tration (mg/mL), spin-coating speed (rpm), and dispense
volume (μL), which form a vector X = [concentration, spin
speed, volume] in a three-dimensional input parameter space.
The measured output objectives for each sample are T, total
transmittance averaged from 400 to 700 nm, and Rsq measured
by a four-point probe. We implement an ML framework with
multiobjective optimization for this problem, which involves
mapping the domain of X vectors onto a two-objective output.
Learning is done in four iterative rounds. Figure 1(a) shows
the workflow of the learning process.
With no prior information, the initial (1st) round

synthesizes 36 samples using a set of X randomly selected by
Latin hypercube sampling (LHS) over a three-dimensional
domain bounded by arbitrarily chosen (“best guess”) upper
and lower limits. Objective data measured on these samples are

used to construct two independent Gaussian process
regression15 (GPR) models, one for T and one for Gsq.
Separate models for T and Gsq are built because these different
physical quantities may have different kernel length scale and
amplitude dependencies on X. We then perform a multi-
objective regression analysis using these GPR models to
identify subspaces of the input parameter domain having a high
probability of improving T and Gsq. Three subsequent rounds
of sample synthesis and measurement are conducted. Each
round uses input parameters from promising subspaces
provided by the ML analysis, with data updated from prior
rounds. In total, 105 samples are synthesized (Table S1 of the
Supporting Information). This ML-guided experimental
iterative approach enables us to achieve the goal more quickly
and with greater confidence than intuitive or trial-and-error
approaches.
Experimental data are input to a MatLab program using

MatLab’s built-in “fitrgp” function to build the GPR models.
Details of the options used in fitrgp are given in the Supporting
Information. Three-dimensional heat map representations of
the GPR posterior mean functions using all 105 data points are
shown in Figure S2, and the associated measured vs modeled
parity plots computed for T and Gsq are shown in Figure 1(b)
and (c), respectively. Both parity plots exhibit near-unity slope
and goodness-of-fit r2 values, indicating the GPR models are
good representations of the underlying data. The modeled
global maximum T = (85.9 ± 1.6)% occurs at XT = [1.5 mg/
mL, 3200 rpm, 20 μL], while the modeled global maximum Gsq
= (0.109 ± 0.007) Ω−1/sq (or Rsq = (9.19 ± 0.055) Ω/sq)
occurs at XG = [3.0 mg/mL, 1200 rpm, 70 μL]. It is clear from
these results that maximizing T requires very different
processing conditions than maximizing Gsq. Achieving high T
requires low concentrations and volumes and high spin speeds,
while obtaining high Gsq requires high concentrations and
volumes and low spin speeds, demonstrating the competing
nature of these physical quantities.

Figure 1. (a) Schematic workflow of the experiment. Parity plot for the GPR model of (b) transmittance and (c) sheet conductance.
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The GPR models are then combined in a regression analysis
in two ways. The more conventional approach uses eq 1 or 2
to predict maximum values of FOMunitless

6 or FOMT10
7 and the

associated optimal input X. This approach replaces the two
competing objectives with a scalar objective, so that standard
Bayesian optimization approaches can be applied. The second
approach uses the two models to construct a Pareto front, i.e.,
the boundary in a modeled T vs Rsq plot on which neither
objective can be improved without degrading the other, a
construction commonly used to analyze trade-offs.16 We find
that simply optimizing FOM cannot achieve the independent
requirements on minimum T and maximum Rsq, but the Pareto
analysis is able to identify the input parameter(s) that achieves
the individual objective goals of T ≥ 75% and Rsq ≤ 15 Ω/sq.

Table 1 summarizes the values of X, T, and Rsq at the
modeled maximum of each FOM. Figures S3 and S4 in the
Supporting Information show heat maps of projected
maximum values and standard deviations of both FOMs.
The X value for maximum FOMunitless occurs at higher
concentration and volume and lower spin speed compared to
that for maximum FOMT10, reflecting the different emphasis of
each scalar FOM. From Table 1, if we were to optimize
processing conditions based on maximizing FOM, the
individual objective goals for T and Rsq would not be satisfied.
The T value that maximizes FOMunitless is substantially below
75%, and the Rsq value that maximizes FOMT10 significantly
exceeds 15 Ω/sq.
To determine whether the individual objective criteria can

be simultaneously satisfied and, if so, at what input X, we use

Table 1. Predicted Parameters Maximizing Different FOMs Based on GP Models

AgNW concentration (mg/mL) Spin speed (rpm) Dispense volume (μL) T (%) Rsq (Ω/sq) Max FOM value

FOMunitless 3.0 800 40 68 ± 2 11 ± 1 82 ± 8
FOMT10 (1/Ω) 2.3 1200 28 79 ± 2 22 ± 3 (4.2 ± 1.0) × 10−3

Figure 2. Sheet resistance vs transmission Pareto front. (a) Data from all four experimental rounds (purple dots), the modeled Pareto front (open
black triangles), and the modeled points that maximize FOMunitless (red diamond) and FOMT10 (red square). The yellow shaded region indicates
the target range of the objectives. (b) Expanded view of the region indicated in (a) showing the modeled Pareto front after the initial (open green
diamonds) and fourth and final (black triangles) experimental rounds. For the final Pareto front, the seven points closest to the target objective
range are highlighted as filled black triangles. The gray shaded region indicates the uncertainty about the modeled Pareto front, i.e., the area defined
by ± one standard deviation of all points on the Pareto front, with one example shown as black error bars. Purple diamonds are the experimental
data points closest to the target objective range. The red star indicates the measurement in the target objective range with error bars showing
experimental uncertainties in T and Rsq.

Figure 3. X inputs of data and modeled Pareto front points closest to target objective range in experimental Rounds 1−4. X coordinates are
projected onto three coordinate planes: (a) spin speed vs concentration, (b) volume vs spin speed, and (c) concentration vs volume. In each plane,
the experimental domains of Rounds 1, 2, 3, and 4 are shaded green, purple, blue, and gray, respectively, and labeled with the round number.
Domains of different rounds often overlap. The black triangles labeled “Pareto-4” are the X inputs corresponding to the filled black triangles on the
final Pareto front model in Figure 2(b). The X inputs corresponding to the best experimental result in Figure 2(b) are indicated by a red star.
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the GPR models to calculate a two-objective Pareto front.16

The input X values associated with those points on the Pareto
front closest to the target objective range identify the subspace
of processing conditions most likely to strike the desired trade-
off between sufficiently high T and sufficiently low Rsq.
Figure 2(a) plots Rsq vs T data points and a modeled Pareto

front after the fourth and final experimental round (105 data
points). A definitive Pareto front with all data to its upper left
clearly shows the trade-off between increasing T and
decreasing Rsq. As T increases above 80%, Rsq increases
drastically; on the other hand, Rsq never decreases much below
10 Ω/sq even at great sacrifice to T. The target objective range
(T ≥ 75% and Rsq ≤ 15 Ω/sq) is shown as the yellow shaded
region. The modeled T, Rsq values that maximize FOMunitless
(red diamond) and FOMT10 (red square) are plotted; these are
well outside the target objective range. Figure 2(b) zooms in
on the region where the Pareto front comes closest to the
upper left corner of the target range and the experimental
results (purple diamonds) that are closest to the target
objective range. The difficulty of this materials synthesis
problem is clearly evident by the fact that the final Pareto front
itself does not overlap the target objective range but is within
one standard deviation of the target range. This indicates that
achieving both target objective criteria is at the edge of what is
possible.
Figure 2(b) also shows the modeled Pareto front after the

initial experimental round (open green diamonds). This initial
Pareto model is far from the target objective range because the
X inputs for Round 1 were essentially guesses. The final Pareto
front is substantially optimized and is much closer to the target
objective range. The optimization process conducted over four
experimental rounds is graphically depicted in Figure 3, which
projects X vectors onto three coordinate domain planes. The
projected X vectors for the data are marked by × symbols. The
projected X vectors corresponding to modeled Pareto points
closest to the target range after each experimental round (for
example the solid black triangles in Figure 2(b) after the final
Round 4) are shown as solid symbols.
The X values for the closest Round 1 modeled Pareto points

(green diamonds in Figure 3) cluster at the highest
concentration (2 mg/mL) and lowest spin speed (3000
rpm) in the initial domain, suggesting significant potential
improvement by both increasing concentration and reducing
spin speed (see Table 2). As stated previously, because the
Pareto front after Round 1 is very far from the target range,
only the three closest Pareto points are shown in Figure 3.
Round 2 adds 15 data points with the maximum concentration
increased to 3 mg/mL, and the minimum spin speed decreased
to 2000 rpm. From the purple squares in Figure 3(a) and (c),
the model indicates after Round 2 the optimal concentration is
near 2.5 mg/mL, but the Pareto points closest to the target
objective still cluster at the lowest spin speed, suggesting
further improvements with even lower spin speed. Round 3
adds 16 data points with a minimum spin speed dropped to

1000 rpm. The blue circles in Figure 3(a) and (c) confirm
optimal concentration near 2.5 mg/mL but again mostly
cluster at the lowest spin speed used.
The model’s suggestion for the best solution volume is less

clear. After Rounds 1 and 2, Figure 3(b) and (c) shows the
volumes generating Pareto points closest to the target objective
are spread over a fairly wide interval of 60−80 μL. After Round
3, the best suggested volume interval is still spread out but
appears to shift down to ∼40−60 μL. One possibility for the
larger spread of volumes is that Pareto points near the target
objective range are much less sensitive to volume compared to
concentration and spin speed.
Round 4 (final round) of the experiment runs into real-

world limitations. We find that making consistent, uniform
films requires spin speed ≥ 800 rpm and dispense volume > 20
μL. Respecting these limitations and using the GPR/Pareto
model as a guide, we perform final optimization experiments
and make 38 samples with X in the subspace [2.3−2.8 mg/mL,
800−2500 rpm, 25−50 μL], represented by the gray shaded
rectangle in Figure 3. Results closest to the target objective
range (T between 74% and 76% and Rsq between 14 and 17
Ω/sq) are plotted as purple diamonds in Figure 2(b). One
sample (red star in Figure 2(b)) meets both criteria
simultaneously, having T = 75.5% and Rsq = 15.0 Ω/sq. The
X vector ([2.5 mg/mL, 800 rpm, 25 μL]) for this “best” data
point is marked with a red star in Figure 3. The learning
progression through Rounds 1−4 is summarized in Table 2.
In conclusion, we apply an ML-based Pareto front analysis

to optimize the spin-coating of AgNWs for flexible TCEs.
While scalar FOMs are commonly used in the TCE field, we
show optimizing an FOM is inadequate because transmittance
and sheet resistance compete with each other, and separate
criteria for each must be satisfied. In this case, performing a
multiobjective optimization by constructing a Pareto front is
necessary. Guided by the ML/Pareto analysis, we successfully
identified the input parameter space that satisfies the goal of T
≥ 75% and Rsq ≤ 15 Ω/sq. Further improvement can result
from including more input variables, e.g., different AgNWs,
coating methods, or photonic curing conditions. More broadly,
a ML/Pareto analysis is applicable to other optimization
problems when two or more independent criteria must be
simultaneously satisfied.
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Table 2. Input Parameter Domains as Learning Progressesa

AgNW concentration (mg/mL) Spin speed (rpm) Dispense volume (μL) # of Data points Total # of data

Initial LHS (Round 1) 1−2 (Δ = 0.25) 3000−5000 (Δ = 500) 20−80 (Δ = 20) 36 36
Round 2 1−3 (Δ = 0.5) 2000−5000 (Δ = 1000) 20−80 (Δ = 20) 15 51
Round 3 1−3 (Δ = 0.5) 1000−2000 (Δ = 1000) 20−80 (Δ = 20) 16 67
Zoom-in (Round 4) 2.3−2.8 (Δ = 0.1) 800−2500 (Δ = 200) 25−50 (Δ = 5) 38 105

aΔ is the experimental step size.
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representation of GPR model, and mean and standard
deviation values of FOMunitless and FOMT10 (PDF)
Experimental data points (MP4)
3D animation of T model (MP4)
3D animation of Gsh models (MP4)
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