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Abstract: Fluctuations in motor symptoms are mostly observed in Parkinson’s disease (PD) patients.
This characteristic is inevitable, and can affect the quality of life of the patients. However, it is
difficult to collect precise data on the fluctuation characteristics using self-reported data from PD
patients. Therefore, it is necessary to develop a suitable technology that can detect the medication
state, also termed the “On”/“Off” state, automatically using wearable devices; at the same time,
this could be used in the home environment. Recently, wearable devices, in combination with
powerful machine learning techniques, have shown the potential to be effectively used in critical
healthcare applications. In this study, an algorithm is proposed that can detect the medication state
automatically using wearable gait signals. A combination of features that include statistical features
and spatiotemporal gait features are used as inputs to four different classifiers such as random forest,
support vector machine, K nearest neighbour, and Naïve Bayes. In total, 20 PD subjects with definite
motor fluctuations have been evaluated by comparing the performance of the proposed algorithm in
association with the four aforementioned classifiers. It was found that random forest outperformed
the other classifiers with an accuracy of 96.72%, a recall of 97.35%, and a precision of 96.92%.

Keywords: Parkinson’s disease; medication state; machine learning; wearable device; “On” and “Off”

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease that presents
with motor symptoms such as bradykinesia, tremor, and rigidity. The prognosis of PD is composed
of several stages including the honeymoon period, the motor complication stage, and drug-resistant
stage. In the honeymoon period, the severity of motor symptoms is uniform/constant throughout the
day. However, in the motor complication stage, motor symptoms fluctuate as the effect of medication
remains for a small time duration. Therefore, most clinical and research studies focus on recognizing
and stabilizing fluctuating motor symptoms in the motor complication stage.

Dopaminergic medication improves motor symptoms in the early stages. However, motor
fluctuations appear when the disease progresses [1–3]. Motor fluctuation is defined based on the
reduction in “On” time and increase in “Off” time in PD patients. The “On” state is defined as the
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time duration over which the effect of dopaminergic medicine is present in PD patients. In the same
context, the “Off” state is defined as the time duration over which the effect of dopaminergic medicine
is absent in the patients. The reduced duration of the “On” time generates more Parkinsonism, which
has a significant negative impact on the quality of life in PD patients [4–6]. Therefore, even though it is
essential to evaluate motor fluctuation for the personalized management of PD patients, it is difficult to
estimate the fluctuation in the real-world environment due to the short interview time and fluctuating
characteristics of the motor symptoms in PD [7–9]. Usually, a self-report diary is used to mesaure the
fluctuation phenomenon [10]. However, it is difficult to fill up a diary every 1 or 2 h, especially during
the “Off” status because of severe Parkinsonism. Additionally, patients with advanced PD could have
severe cognitive declination. Therefore, this method is not able to provide accurate times for “On” and
“Off” status in advanced PD patients.

Clinically, most patients do not complain about their symptoms in terms of severity. On the
contrary, they categorize the symptoms as “On”/“Off”. It is very difficult for patients to express their
symptoms as percentage of severity. Thus, they usually report whether they are currently in “On”
status or “Off” status. Additionally, unlike appendicular symptoms, including rigidity or bradykinesia,
it is not possible to grade the gait symptoms. Therefore, it is very difficult for PD patients to describe
their gait symptoms in terms of severity.

A lot of studies in the literature focus on detecting the severity of motor symptoms in PD patients.
Comparing the severity of motor symptoms across multiple PD patients and across “On”/“Off” states
of a single PD patient, it could be observed that there is a high variability in gait features in the latter
case which makes the detection, nonlinear classification and prediction of “On”/“Off” states highly
challenging. Thus, the current study aims to detect the “On” and “Off” states in a PD patient using
gait features.

With the development of wearable technology, an objective assessment of various Parkinsonian
symptoms such as gait disorders, tremors, and bradykinesia was made practically feasible in recent
years [11]. Previous studies using the wearable device proved to be effective in detecting gait disorders,
tremors, and dyskinesia [12,13]. In this paper, the objective of this research is to develop an assessment
system using wearable accelerometer-based sensors which can detect the “On” state and “Off” state
of PD patients automatically from the raw accelerometer gait signals collected thorugh the wearable
accelerometer-based sensors. This kind of assessment system will play a major role in improving the
monitoring process of PD in natural environments. It will also provide information about the time
duration of the dopaminergic medication effect on PD patients in natural environments that helps to
decrease the cost associated with the tests that are done frequently in clinics.

In recent years, machine learning techniques have been applied to wearable sensor data
for detecting different symptoms in PD such as gait disorders, tremors, and mediation states.
These techniques are also used for the classification of PD groups from healthy control groups
as well as from other neurological diseases based on the extracted features from the wearable sensor
data [14–18]. In this research work, we propose an algorithm that can automatically detect the “On” and
“Off” state of PD using the wearable accelerometer data. To achieve our objective, we have collected
accelerometer data during “On” and “Off” status of PD patients who were recruited at Haeundae Paik
Hospital and Samsung Medical Center, Korea. Features extracted from those data have been used to
train the machine learning classifiers. Furthermore, these classifiers are used to automatically detect
the two different states on the new set of test data. Later, these states were validated based on the
report provided by the neurologist. The proposed system will be helpful in monitoring the effect of
dopaminergic medicine on PD patients in the home environment.

Previous reports have tried to monitor motor fluctuation in PD patients and provided the
possibility of the objective measurement of motor complications in PD. However, studies and methods
which present technical validation in controlled environments are difficult to incorporate directly in
the clinical field. Keijser et al. [19] tried to investigate the accuracy of ambulatory motor assessment by
wearable sensors. They demonstrated that wearable sensors can detect motor dyskinesia with high
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accuracy using frequency based approach. This report aims to achieve the objective monitoring of
motor complications in a real-world environment. However, the participants in this report were asked
to perform a specific task which does not imitate a perfect real-world environment. We postulate that
the gold standard for a free-living environment is difficult to design, and a frequency-based approach
has many pitfalls in terms of accuracy due to various kinds of noise. Therefore, we assume that
the machine learning method for data analysis might provide an alternative solution for increasing
accuracy in real world environment. In the past decade, the machine learning method has been used
to detect other symptoms such as tremors and freezing of gait (FoG) in PD patients with acceptable
accuracy. This study is performed in a well-controlled laboratory environment with a specific task.
We use the machine learning method for the development of an algorithm for gait analysis during
“On”/“Off” states in PD patients. We assume that gait performance is the most crucial attribute
associated with quality of life, and therefore, we focus on gait disorders, rather than other Parkinsonian
symptoms in PD for monitoring “On”/“Off” states in order to satisfy a clinical need.

The organization of the paper is as follows: Section 2 discusses the previous work related to this
research. Section 3 focuses on data collection and methods used for analyzing the data in this research.
Section 4 shows the results of the proposed method. Section 5 presents the discussion. Section 6
presents the conclusion of this research work.

2. Related Work

In the last few years, wearable technology combined with machine learning techniques or
statistical techniques has been effective for PD patients because of the nature of the assessment
process. These systems have proved to be effective, powerful and also automated so that they can be
used in natural environments for improving the quality of life of PD patients. Jeon et al., 2017 [20]
proposed an approach to develop an automated system that can classify the severity of tremors using a
wearable device consisting of an accelerometer and a gyroscope. This automated system has been
developed using five machine learning techniques such as decision tree (DT), k-nearest neighbor
(kNN), random forest (RF), and support vector machine (SVM), and discriminant analysis, based on
the features extracted from the accelerometer and gyroscope signals. They found that the system
is effective with an accuracy of 85.5% and the automated system could be useful for the diagnosis
and monitoring of PD patients. The machine learning techniques were used for PD classification,
and were explored for the automatic scoring of tremor severity. Samà et al., 2017 [21] proposed a
method that can automatically detect gait related disorders in PD patients with bradykinesia using a
wearable accelerometer. They collected signals during activities of daily life in the “On” and “Off”
states. They used the “Leave One Subject Out (LOSO)” regression model by giving a threshold value
to this patient. They used a support vector machine regression model to estimate the severity of
bradykinesia with an accuracy of more than 90%. They suggested that the model has the potential to
rate bradykinesia in real-life situations. Aich et al., 2018 [22] proposed an approach that can detect
FoG in PD patients using wearable devices consisting of an accelerometer. The developed system was
an automated system that can classify “FoG” groups from “no FoG” groups based on the extracted
features from the accelerometer signals. These features were fed to four different machine learning
classifiers such as support vector machine (SVM), Naïve Bayes (NB), k-nearest neighborhood (k-NN),
and decision tree (DT) for the classification of “FoG” from “no FoG”. The highest classification accuracy
of 88% was obtained with the SVM classifier. It was shown that machine learning techniques combined
with wearable sensors could be used to detect falls and for the monitoring of patients in natural
environments. Steinmetzer et al., 2019 [23] proposed a method that can detect motor dysfunctions
(MD) in PD using a wearable device consisting of accelerometer, gyroscope, and magnetometer.
All the subjects were asked to perform the Timed Up and Go test. They used wavelet transformation,
Convolutional Neural Network(CNN), and weight voting for the classification of their data. They used
a single signal as well as a combination of signals for the classification of data. They found an accuracy
of 93.4% when classifying MD from other subjects, and recommended this system for the early detection
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of MD in real-time environments. Naghavi et al., 2019 [24] proposed a method that can predict “FoG”
among PD patients using a wearable device consisting of an accelerometer. The accelerometer signal is
labeled using the video captured during the experiment. They used classification algorithms such as
SVM, k-NN, and Multilayer Perceptron(MLP) for the prediction of gait events among the patients that
have experienced “FoG”. Their model was able to provide an accuracy of 97.4% for the identification
of events. They state that the model has the potential to predict gait events accurately with limited
event frequency. Baraka et al., 2019 [25] proposed a method that can automatically classify tremors
in PD based on the machine learning technique using accelerometer signals and electromyography
(EMG).The extracted features from these signals were used as inputs to six different classifiers such
as decision tree, k-nearest neighbor, linear discriminant analysis, support vector machine, boosted
tree classifiers, and bagged tree classifiers. They found highest accuracy of 99.6% using bagged tree
classifiers. Vos et al., 2020 [26] proposed a method that can classify the subjects belonging to PD
from Progressive Supranuclear Palsy (PSP) using wearable devices consisting of an accelerometer,
gyroscope, and magnetometers. Data were collected using an array of six wearable devices. Features
were extracted from the signal data, and used as inputs to the machine learning techniques such as
logistic regression (LR) and random forest (RF) applied in this research. It was found that the RF
classifier outperformed the LR classifiers while classifying PSP from PD with a sensitivity of 86% and
specificity of 90%, and PSP from PD with a sensitivity of 90% and specificity of 97%. They found that
the combination of wearable devices and machine learning techniques had the potential to accurately
classify PSP and PD, and could be used for detecting different diseases in real-life environments.
Ashour et al., 2020 [27] proposed a method that uses data from wearables placed at different locations
such as on the hip, knee, and ankles. They used the signals coming from the accelerometer for the
detection of “FoG”. They developed this model using a Long Short-Term Memory (LSTM) network,
and designed by looking towards patient dependency, then compared this model to a traditional
machine learning technique such as a support vector machine (SVM). They found that the LSTM
network performed better, with an accuracy of 98.89% compared to SVM, with an accuracy of 80%.
Senturk et al., 2020 [28] proposed a model based on feature selection methods and machine learning
techniques that can help in the diagnosis of PD at an early stage. They used two different types
of feature selection techniques such as recursive feature elimination (RFE) and feature importance.
The classification techniques that were used in this study are namely SVM, ANN, and Classifications
and Regression Trees. They found that the combination of SVM with RFE performed better, with an
accuracy of 93.84%, using a minimum number of voice features. None of the aforementioned studies
include the effect of dopaminergic medicine. A summary of the literature surveyed is shown in Table 1.

Table 1. Related works.

Reference Input Signals Features Classifiers Outcomes Performance Indices

[20] Accelerometer, gyroscope Temporal, Spectral features DT,SVM,DA, RF,k-NN Accuracy 85.5% Accuracy, Precision,
Recall

[21] Accelerometer Spatiotemporal features Support Vector Regression Accurcay 90% Accuracy
[22] Accelerometer Spatiotemporal features SVM,NB,k-NN,DT Accuracy 88% Accuracy

[23] Accelerometer, Gyroscope,
Magnetometer

One Dimensional
CNN features CNN Accuracy 93.4% Accuracy

[24] Accelerometer Statistical Features SVM,k-NN,NLP Accuracy 97.4% Accuracy

[25] Accelerometer,
Electromyography Time Domain Features

DT,k-NN,LDA,SVM,
Boosted tree Classifier,
Bagged Tree Classifier

Accuracy 99.6% Accuracy

[26] Accelerometer, Gyroscope,
Magnetometer Spatiotemporal features Logistic Regression and RF Sensitivity 86%

Specificity 90% Sensitivity, Specificity

[27] Accelerometer Frequency Domain Features LSTM,SVM Accuracy 83.38% Accuracy
[28] Speech Signals Voice features SVM,ANN,CART Accuracy 93.84% Accuracy

Keijsers et al. [19] proposed a method that can differentiate between “On” and “Off” states based
on daily activities using wearable accelerometers. They used a frequency-based approach for the
classification of states by performing 35 functional activities and discussed the possibility of assessing
motor complications in real world environments. They found good results in terms of a sensitivity of
0.97 and specificity of 0.97 when distinguishing the two states. Although a frequency-based method



Diagnostics 2020, 10, 421 5 of 18

produces good results in the unsupervised condition, the effectiveness of this method has largely not
been tested in the clinical environment. Patel et al. [29] used a support vector machine to estimate
tremor, bradykinesia and dyskinesia based on data collected using accelerometers. The participants in
this study were asked to perform specific tasks seven times, and the clinical scores were compared.
Although they collected the acceleration data from the upper and lower extremities and were able to
monitor the severity of the symptoms, they did not consider gait analysis, which is more accurate and
easier for monitoring PD patients. Hoff et al. [30] proposed a method of analyzing the relation between
the subjective ratings and objective measures. They used a frequency-based approach for assessing
tremors, bradykinesia and dyskinesia by using a wearable accelerometer in different places throughout
the body. Since the gold standard method was not considered in this study, subjective rating was used
for validation. Although the method was able to distinguish the “On” and “Off” state, the sensitivity and
specificity are very low. This method is not feasible in the real-life environment. Rodriguez-Molinero
et al. [31] proposed a method that can map gait disturbances using wearable sensors. The participants
were asked to perform various tasks in controlled and uncontrolled environments while wearing the
sensor around the waist. They found good results in terms of a sensitivity of 0.96 and specificity of 0.94.
This study was able to distinguish states with high sensitivity and specificity. Our proposed study
is specifically designed for home environments. Furthermore, the proposed method is an automatic
process, and can detect the “On” and “Off” states from the raw acceleration signal.

The previous studies outlined above laid a strong foundation for the application of wearable
devices in monitoring and diagnosing PD, and the constructive use of classification techniques to
automatically detect different states of PD. The proposed method draws much inspiration from the
previous literature cited by various researchers. In this study, an algorithm-based method is developed,
and validated based on the accelerometer data related to gait by including the signal features as well
as spatiotemporal features. This is a unique study that includes features for classifying both the “On”
and “Off” states.

3. Materials and Methods

3.1. Study Design and Subjects

This study is a cross-sectional, multicenter, observational study. It was carried out at Haeundae
Paik Hospital and Samsung Medical Center, South Korea. This study was approved by the institutional
review board of each hospital (No. 2019-05-014 and 2019-05-104 for Haeundae Paik Hospital and
Samsung Medical Center, respectively), and all the participants have given their consent to participate
in this study. The inclusion criteria of PD patients are as follows; (1) patients diagnosed as PD according
to Queen’s bank criteria, (2) patients with definite fluctuation, (3) patients who can walk during
the “Off” state and, therefore, can perform the task. The exclusion criteria of PD patients are as
follows; (1) patients who cannot walk during “Off” state, and therefore, are unable to perform the task,
(2) patients who have a disease affecting gait including orthopedic and other neurological diseases,
vestibulopathy, and diabetes, (3) patients who have dementia (Korean mini-mental status exam ≤
24), (4) patients with a psychiatric problem requiring medications, (5) patients with structural brain
lesions including white matter changes (age-related white matter change score ≥ 2 on brain MRI),
and (5) patients with orthostatic hypotension. For estimating disease severity, we used the Unified
Parkinson’s Disease Rating Scale (UPDRS) part III and Hoehn and Yahr staging in “On” and “Off”
states. The demographics of PD patients are shown in Table 2.

3.2. Data Collection and Experimental Procedure

In this study, the data were collected from 20 different subjects suffering from PD. Table 2 (above)
shows details about the height, weight and age of all the subjects who were enrolled in the data
collection procedure. Prior written approval was taken from the above subjects before enrolling
them in the data extraction procedure. For the data collection, the patients were asked to perform
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two courses of “Walking”, one in the “On” state (presence of medication effect) and one in the “Off”
state (absence of any medication effect). In the “On” state, patients feel fully comfortable due to the
dopaminergic effect. In the “Off” state, patients show Parkinsonian symptoms, and feel uncomfortable,
without a dopaminergic effect. We performed the task during “On” state after 1–1.5 h of taking
dopaminergic medicine. Similarly, we performed the task during “Off” state after at least 12 h of taking
dopaminergic medicine. If the symptoms of patients could not reach the “Off” state after 12 h, patients
did not take medicine until they felt uncomfortable. During the data extraction procedure for both the
courses, the subjects were fastened with two knee-worn tri-axial accelerometer sensors. The tri-axial
accelerometer used in this study was small and lightweight, and had a dimension of 35 mm × 35 mm
× 13 mm, and weighed a mere 13.7g. The sensitivity of the accelerometer sensor used in the data
collection procedure was from −8 g to 8 g which was sufficient to measure the movement metric of the
subject in all the directions: anterior–posterior, mediolateral, and vertical.

Table 2. Demographics of Parkinson’s disease (PD) Patients.

Parameter Value

Age 60.25 ± 9.54
M/F 12/8

Disease duration (month) 144.91 ± 166.71
BMI 22.87 ± 3.04

Levodopa Equivalent Doses(LEDD) 985.69 ± 457.49
H&Y stage “On” State 1.70 ± 0.66
H&Y stage “Off” State 2.65 ± 0.71

UPDRS part III “On” State 15.80 ± 10.13
UPDRS part III “Off” State 36.20 ± 15.06

Figures 1 and 2 show the data of Subject 1 for 750 samples of all axes of accelerometer sensors
fastened on both the knees and also for both the “Off” and “On” data collection sequence, respectively.
As the data is a time series, it is very much required that the stationarity of the dataset needs to be
checked. Therefore, the below plots have been generated and, for both the sequences, it can be duly
observed that the data maintain proper stationarity with respect to time.Diagnostics 2020, 10, x FOR PEER REVIEW 7 of 18 
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Figure 2. Accelerometer signals of subject 1 for 750 samples during “On” state.

Figure 3 (below) shows the complete process for the development of the system to detect the “On”
and “Off” stages of a patient suffering from PD. The complete flow of the experiment is divided into
four different sections, namely the data collection procedure, feature engineering, machine learning
model training and validation, and performance evaluation. In the data collection step, the acceleration
data from both right and left knee is captured using the wearable sensors, and merged into the database.
In the feature engineering step, two different kinds of features are extracted from the accelerometer
data, namely statistical features and gait parameters. In the third step, machine learning models are
developed by using four different algorithms, namely random forest classifier, support vector machine,
k nearest neighbors, and Naïve Bayes classifier. Finally, in the last segment, a qualitative analysis
was performed on the predictive power of all four algorithms based on accuracy, precision, recall,
and confusion matrix to choose the best classifier for distinguishing the “On” and “Off” states of
patients suffering from PD.
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The data collection was performed on 20 subjects each, for two courses. During the data collection
procedure, the patients were fastened with wearable devices on both knees, which were used for
extracting the accelerometer data. Each course lasted for 3–4 min, approximately. Both the sensors that
were used in the study sampled data at the frequency of 32 Hz. The complete data of all the 20 subjects
had 237,760 samples for both the “On” and “Off” courses, respectively. Moreover, the data that was
received from the accelerometer sensors contained a lot of noise. Therefore, for removing the noise,
a fourth-order low pass Butterworth filter was used with a cutoff frequency of 15 Hz. The order of the
filter was chosen based on the requirement of blocking the maximum noise, and the cutoff frequency
was decided based on exploratory data analysis.

3.3. Feature Engineering

In the feature engineering step, two different sets of features were developed, namely statistical
features and gait parameter features. For the calculation of features, data of each course of each patient
was initially divided. Furthermore, data from each course were again grouped at the rate of 320 (10 s)
samples. The computation process was implemented in such a way that the features were calculated
for all the samples of a course for a particular data fold of 320 samples to maintain optimum variance
between the feature values.

Table 3 shows all the statistical features that have been used in the study for the detection of the
“On” and “Off” states in a patient suffering from PD. The implementation of statistical features in the
proposed study provides us with the ability to identify some discriminant features, even if they lack
obvious interpretability, but still seem to be important for determining intrinsic patterns for decision
making. Table 4 explains some gait parameter features that have been derived from the course data
based on the 320-sample data fold.

Table 3. Statistical features.

Feature Equation Description

Mean X = 1
n

n∑
i=0

(Xi)
The mean of the feature was calculated for each subject for all

the samples in each fold, i.e., 320 samples.

Standard Deviation σ =

√
1
N

N∑
i=1

(
Xi −X

)2 The standard deviation of the signal is calculated for each
subject for all the samples in each fold, i.e., 320 samples.

Median Absolute Deviation MAD = median
(∣∣∣Xi − X̃

∣∣∣) where, X̃
is the median of X

The median absolute deviation was calculated each subject for
all the samples in each fold, i.e., 320 samples.

Minimum min(X) The minimum of the signal was for calculated each subject for
all the samples in each fold, i.e., 320 samples.

Maximum max(X) The maximum of the signal was for calculated each subject for
all the samples in each fold, i.e., 320 samples.

Energy Measure Ex = 1
n

n∑
i=0

∣∣∣x[i]∣∣∣2 The energy measure of the signal was calculated for each
subject based on all the samples in each fold, i.e., 320 samples.

Inter Quartile Range IQR = median(Q3) −median(Q1)
The interquartile range was calculated on each subject by

considering each fold that is 320 samples of data as the
complete set.

Signal Magnitude Area SMA = 1
n

n∑
i=0

(|Xi|+ |Yi|+
∣∣∣Zi

∣∣∣) The signal magnitude area is been calculated by considering all
the axis of the accelerometer and gyroscope and is calculated

for each subject by considering the samples in each fold.

Skewness Skew(X) = n
(n−1)(n−2)

n∑
i=0

(
Xi−X

s

) The skewness for all the samples of a fold for a particular
subject was calculated based on the Fisher-Pearson

standardized moment coefficient

Kurtosis Kurt(X) =
E
[
(X−X)

4
]

std(X)2 − 3 The kurtosis (peakedness) is calculated for individual signals.

3.4. Machine Learning Algorithm and Evaluation Metrics

The development of the machine learning algorithms for the detection of “On” and “Off” states
is very important to understand the patterns in the gait data of patients. Moreover, the algorithms
leveraged in the work will also allow us to extract the semantic information from the data collected
from the tri-axial accelerometer devices. In this work, multiple machine learning algorithms
(Scikit-Learn) [32] were developed, and a comparative analysis was performed to determine the
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best possible algorithm based on the evaluation metrics. The initial hypothesis for the detection of the
“On” and “Off” states from the gait data stated that the recall of both the classes must be higher than
85% and the misprediction rate in both the classes must be statistically equivalent. Table 5 shows all
the hyperparameters that were used for the development of the machine learning model.

Table 4. Gait Parameter Based Feature.

Feature Description

Step Length The distance between the heel of one foot to the heel of the other foot.
Stride Length The distance covered between two steps, one with each foot

Step Time The time taken by a person for completing one step
Stride Time The time taken by a person to complete one stride length

Step Velocity The speed at which a step length is covered.
Stride Velocity The speed at which a stride length is covered.

Table 5. State detection: classifiers and specifications.

Classifier Specifications

Random Forest n_estimators: 500, criterion = ‘gini’, max_depth:8, min_samples_split = 8, min_samples_leaf = 10
Support Vector Machine kernel = ‘rbf’, degree = 3, gamma = ‘auto_deprecated’, C = 1.0, tol = 0.001, cache_size = 200

K–Nearest Neighbors n_neighbors = 50, weights = ‘uniform’, algorithm = ‘auto’, leaf_size = 40, p = 2, metric = ‘minkowski’
Naïve Bayes Gaussian

The hyperparameters that were used for the machine learning model are critical to optimize the
cost function and to increase the performance of the model. Therefore, initially, to choose the right
set of hyperparameters, multiple iterations were performed by selecting specific hyperparameters
using a trial and error technique. However, in the later segment, for the development of the final
model for our web application’s production environment, we used a Bayesian Sequential Model-Based
Optimization (SMBO) [33] method to choose the hyperparameters. Bayesian SMBO is an algorithm
used for hyperparameter optimization that works on minimizing an objective function by creating
a surrogate model (probability function) based on the evaluation results of the previous objective
function. The basic objective function of the Bayesian SMBO is given by:

P(score
∣∣∣hyperparameters) =

P(hyperparameters
∣∣∣score )P(score)

P(hyperparameters)

The surrogate model that is developed by the Bayesian SMBO is considered to be less expensive
when than the main optimizer function [34]. Furthermore, the next set of evaluation results are selected
by using the expected improvement criterion [35]. The criterion is defined as:

EI(x) = E(max( f (x) − f ∗, 0)),

where x is the set of hyperparameter values and considered to have caused an improvement in the
objective score of f (x) and f * is the maximum value of the objective score found in the process.

The basis of the development of all the machine learning algorithms is different, and therefore the
feature selection for each machine learning algorithm is an important aspect that needs to be addressed.
In the study, a Recursive Feature Elimination was performed on each machine learning algorithm to
fetch the best set of features for discriminating between the “Off” class and “On” class. Table 6 shows
the features that were used for the development of each machine learning algorithm by keeping the
hyperparameters constant, as described in Table 5.
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Table 6. Feature selection for all the classifiers.

Features RFC SVM KNN NB

Mean (Left Knee) Used Removed Removed Used
Standard Deviation (Left Knee) Used Used Removed Used

Median Absolute Deviation (Left Knee) Removed Used Used Used
Minimum (Left Knee) Used Used Used Used
Maximum (Left Knee) Used Removed Used Removed

Energy Measure (Left Knee) Used Used Used Used
Inter Quartile Range (Left Knee) Used Used Used Removed

Signal Magnitude Area (Left Knee) Used Used Removed Removed
Skewness (Left Knee) Removed Removed Used Used
Kurtosis (Left Knee) Used Used Used Removed

Step Length (Left Knee) Used Used Removed Used
Stride Length (Left Knee) Removed Removed Used Used

Step Time (Left Knee) Used Removed Removed Used
Stride Time (Left Knee) Removed Used Used Used

Step Velocity (Left Knee) Used Used Removed Used
Stride Velocity (Left Knee) Used Removed Used Used

Mean (Right Knee) Used Used Removed Removed
Standard Deviation (Right Knee) Used Used Used Used

Median Absolute Deviation (Right Knee) Used Used Used Used
Minimum (Right Knee) Removed Removed Used Used
Maximum (Right Knee) Used Used Used Removed

Energy Measure (Right Knee) Used Removed Used Used
Inter Quartile Range (Right Knee) Removed Used Removed Removed

Signal Magnitude Area (Right Knee) Used Removed Used Used
Skewness (Right Knee) Used Used Used Used
Kurtosis (Right Knee) Removed Used Used Used

Step Length (Right Knee) Used Used Removed Removed
Stride Length (Right Knee) Removed Used Used Used

Step Time (Right Knee) Used Removed Removed Removed
Stride Time (Right Knee) Removed Used Used Removed

Step Velocity (Right Knee) Used Removed Removed Used
Stride Velocity (Right Knee) Removed Used Used Removed

The evaluation of the machine learning algorithms was carried out by considering accuracy,
average recall, average precision, and average f1 score as the evaluation metrics. Accuracy in this
particular task is used to understand the overall accuracy in both the “On” state and the “Off” state.
In the current scope of the work, the recall is calculated for each class, where it provides information
regarding the number of data samples that the model has correctly identified for a particular class.
In this study, the average recall has been calculated to determine the average percentage of correct
predictions (True Positive and True Negative) in each class. Moreover, the precision of the predictions
has been calculated which determines the confidence of a particular prediction to belong to a particular
class. Furthermore, for evaluation purposes, average precision was computed, which allowed us
to identify the average of all the precision scores for each class. Finally, f1-score was computed,
which provides a weighted average between both precision and recall of each class, and therefore
penalizes the score for all the wrongly predicted samples of a particular class. Furthermore, during the
learning procedure, the complete data of 20 subjects, i.e., 40 courses were divided into the ratio of 70:30
where data from 14 subjects were used for the training and data of six subjects for the validation/testing.
As the developed model was used for the production environment, another concern that needs to
be addressed is the generalizability of the model for incoming unseen data. Therefore, in this study,
a “Leave One Subject Out (LOSO)”-based cross-validation was performed for all the 20 subjects for the
best performing classifier to understand the generalizability of the model.
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3.5. Web Application for the “On”/“Off” State Detection System

To productionize the machine learning models developed in the study, a web application was
designed to detect the “On” and “Off” states. This application was developed using the Dash Framework
(Plotly’s Python-based micro Web Framework using Flask as a Server). The application’s pipeline
was designed to accommodate the raw data generated from the wearable device. This data is passed
through the pre-processing step, and the system’s feature engineering routine. The preprocessing and
feature engineering routine instantly clean, process and extract important features. In continuation,
the extracted features were passed to the machine learning module, which performed the analysis and
presented the predictions for each data segment. Figure 4 shows the web application for the detection
of “On” and “Off” states.Diagnostics 2020, 10, x FOR PEER REVIEW 12 of 18 

 

 
Figure 4. State Detection Web Application (https://parkinson-on-off.herokuapp.com/). 

4. Results 

The machine learning algorithms developed in the work provided some effective results in terms 
of determining the correct state of a patient suffering from PD. Table 7 provides a comparative 
analysis between all four machine learning algorithms that were used for the learning process and 
the evaluation metrics based on the randomized 70:30 split of the whole dataset using the 
hyperparameters mentioned in Table 5 and the features mentioned in Table 6. It can be observed that 
the random forest classifier performed the best in terms of classifying the “On” and “Off” states of 
PD patients. Figure 5 shows the ROC–AUC curve of the random forest classifier. For understanding 
the generalizability of the random forest classifier, a “Leave One Subject Out (LOSO)”-based cross-
validation was performed for all the 20 subjects by keeping the same hyperparameters and features. 
It was observed that the model demonstrated an optimum generalizability in terms of predicting the 
data according to multiple test sets. The results are listed in Table 8. 

 
Figure 5. ROC–AUC of random forest classifier mentioned in Table 7. 

Figure 4. State Detection Web Application (https://parkinson-on-off.herokuapp.com/).

4. Results

The machine learning algorithms developed in the work provided some effective results in terms
of determining the correct state of a patient suffering from PD. Table 7 provides a comparative analysis
between all four machine learning algorithms that were used for the learning process and the evaluation
metrics based on the randomized 70:30 split of the whole dataset using the hyperparameters mentioned
in Table 5 and the features mentioned in Table 6. It can be observed that the random forest classifier
performed the best in terms of classifying the “On” and “Off” states of PD patients. Figure 5 shows
the ROC–AUC curve of the random forest classifier. For understanding the generalizability of the
random forest classifier, a “Leave One Subject Out (LOSO)”-based cross-validation was performed for
all the 20 subjects by keeping the same hyperparameters and features. It was observed that the model
demonstrated an optimum generalizability in terms of predicting the data according to multiple test
sets. The results are listed in Table 8.

Table 7. Comparative analysis of multiple classifiers.

Classifier Accuracy Average
Recall

Average
Precision

Average
F1 Score

ROC–AUC
Score

95% CI
Lower Limit

95% CI
Upper Limit

Average
Training Time

RF 0.96 0.97 0.96 0.97 0.99 0.95 1.0 5.46 s

SVM 0.93 0.92 0.93 0.93 0.94 0.92 0.98 7.14 s

KNN 0.86 0.84 0.85 0.85 0.87 0.81 0.89 0.21 s

Naïve
Bayes 0.88 0.86 0.85 0.86 0.87 0.82 0.91 0.15 s

https://parkinson-on-off.herokuapp.com/
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Table 8. Confusion catrix values for each subject as tests of best performing classifier (RF).

Test Set True Positive
“On”-“On”

False Positive
“On”-“Off”

False Negative
“Off”-“On”

True Negative
“Off”-“Off”

Total Samples
“On”/”Off”

Aggregated Samples (10 s)
“On”/“Off”

Subject 1 15 2 1 15 5370/5217 17/16

Subject 2 17 1 1 16 5774/5471 18/17

Subject 3 14 2 1 17 5138/5883 16/18

Subject 4 17 3 2 17 6264/6214 20/19

Subject 5 15 2 2 19 5508/6749 17/21

Subject 6 16 1 1 21 5438/6883 17/22

Subject 7 19 1 2 17 6282/5972 20/19

Subject 8 17 4 1 16 6640/5347 21/17

Subject 9 17 1 2 17 5845/5987 18/19

Subject 10 19 1 2 15 6321/5465 20/17

Subject 11 18 0 1 19 5792/6321 18/20

Subject 12 17 1 2 19 5795/6784 18/21

Subject 13 19 2 1 15 6795/5039 21/16

Subject 14 13 1 2 19 4499/6742 14/21

Subject 15 19 1 0 17 6461/5398 20/17

Subject 16 21 2 0 17 7293/5418 23/17

Subject 17 14 2 2 18 5007/6472 16/20

Subject 18 20 1 1 18 6608/6128 21/19

Subject 19 16 1 2 16 5510/5890 17/18

Subject 20 20 2 1 15 6912/5128 22/16

Total 342 31 27 343 119,252/118,508 373/370

Figure 6, above, shows the confusion matrix that has been derived using the classification results
of the test of the random forest data that has been developed with a training and testing split of
70:30. Moreover, Figure 7 shows the cross-validation confusion matrix of the random forest classifier
which was obtained using the LOSO method. The confusion matrix that has been derived from the
classification results on the test data and shows full accordance with the initial hypothesis that the
number of correct predictions in each class needs to be above 85%—that iss the recall of each class
needs to be above 85% and maintain a fixed classification rate across each class.
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5. Discussion

This study developed a framework for detecting the “On” and “Off” states for monitoring PD
patients by leveraging the wearable accelerometer data, instead of the conventional method of collecting
the data from a patient diary either written by the caregiver or by the patient, which is used by the
physicians for regulating medication therapy [35]. A variety of features that were obtained from
the accelerometer signals were fed as inputs to differentiate between two different states with a low
rate of misclassification. In the past, researchers have used accelerometer signal-based models for
quantifying the gait parameters, and those data were used for classifying different motor symptoms
such as freezing of gait and shuffling of gait [14,22]. However, the wearable accelerometer signal-based
model, including spatiotemporal gait features, has not been studied in detail for detecting medication
effects. The spatiotemporal gait features that were quantified based on our earlier study [22], and which
are considered in this study, were treated as the most important parameters based on the results of our
past study [22], as well as past studies performed by other researchers [36–40]. Four machine learning
techniques have been used for classifying the “On” state and the “Off” state. Among them, random
forest performed the best, and provided an accuracy of 96.72%. The developed model was validated
by the report provided by the neurologist recorded in real time. Our model performance was good,
with an average recall of 97.35% and average precision of 96.92%, although we trained our model with
a small number of data. This above observation laid out a strong recommendation that the developed
model could be a candidate to be used in home environments for detecting the “On” and “Off” states.

In this research, we have investigated the feasibility of using wearable accelerometers in both the
knees for the classification of “On” and “Off” states. Although past studies cited that the placement
of the sensor has a huge role to play in the performance of the results, in this study, we placed the
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sensor at the knee because our past research on detecting “FoG” [22] was successful when using
knee-based signals.

There have been studies that have tried to monitor motor complications in PD [1–3]. Despite
these innovatory studies, a wearable sensor for motor complications has not yet been applied in
the clinical field due to a lack of acceptable clinical validation. Most studies use a frequency-based
approach from the accelerometer, and therefore there may be technical bias in reflecting real-world
environments. Parkinsonian symptoms vary between individuals and show inconsistent clinical
presentations. The machine learning techniques have been emerging in recent years, and they provide
the possibility of overcoming this limitation. Moreover, we postulated that the specification of
Parkinsonian symptoms such as tremors, gait disorder, and bradykinesia is necessary to increase the
accuracy. Our study is the first step in developing an algorithm for discriminating gait symptoms in
“On”/“Off” states using a machine learning technique based on the data collected through a wearable
sensor. We assume that our algorithm could be a potential candidate as a clinical monitoring tool to
assess free-living environments.

The novelties of this study are as follows. (1) This is the first study that used statistical features
and spatiotemporal gait features for the classification of “On” and “Off” states. (2) This is the first study
that used knee-based wearable acceleration signals for detecting “On” and “Off” states. (3) This is the
first study in which a robust machine learning model has been developed using the raw accelerometer
signals for classifying “On” and “Off” states. (4) This study also contained a web application in which
the complete process could be experienced, starting from the input of the data to the data distribution,
and resulting in a single web page within a few seconds.

Our study has been compared with various state-of-the-art models that used wearable
accelerometer signals for differentiating “FoG” from “no FoG”, shuffling of gait from no shuffling of
gait, PD group from healthy group, mediation state (“On” and “Off”), and PD and other neurological
diseases. The developed system in this study was found to outperform all the previous studies that
use PD-related classification. A comparative performance analysis of these studies is shown in Table 9.

Table 9. A comparison of our results with state-of-the-art models’ work for activity detection.

Author Objective Location of Sensors Accuracy (%)

Our Work “On”/“Off” detection Knee 96.72

Aich et al. [22] “FoG”/“No FoG” detection Knee 88.00

Aich et al. [41] PD/HOG classification Knee 88.46

Hssayeni et al. [42] “On”/“Off” detection Wrist and Ankle 90.50

Rehman et al. [18] PD/HC classification Lower back 87.83

Moreover, for analyzing the performance of the model for productionizing it in a clinical setting,
the review of Type I (false negatives: the person is in the “On” stage but the model predicted it as
“Off”) and Type II (false positives: the person is in the “Off” stage but the model predicted it as “On”)
errors are of paramount importance. Normally, in trivial machine learning projects, a certain type of
error can be rejected during the hypothesis testing. However, in the present study, both the errors are
of paramount importance because of the following cases:

1. If the patient is in the “On” state but the model predicts it as the “Off” state (Type I error),
then the doctor might conclude that the patient is in the “Off” state and his gait paramters are
fine, and it might result in wrongly reducing the medicinal dosage.

2. If the patient is in the “Off” state but the model predicts it as the “On” state (Type II error),
then the doctor might conclude that the patients is in the “On” state and his gait parameters are
still very low, and it might result in wrongly increasing the medicinal dosage.
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Therefore, both the errors (Type I and II) must be considered when analyzing the models. Moreover,
concerning the model developed in the present study and the results depicted in Table 8 and Figure 6,
respectively, it can be found that the error rates are low. We can observe in each sample depicted in
Table 8 and Figure 6, accounting for 10 s of data, i.e., 320 samples, that the mispredictions for the “On”
data cycle occur in the very beginning of the acquired data samples. For the “Off” data cycle, it occurs
at the middle of or in between the processes. Therefore, for the “On” state, it can be considered that
the first 10–15 s is typically a heads up time where the subject gears up for the process. For the “Off”
state, mispredictions are typically in the samples acquired halfway into the process, which means that
the subject becomes stable (High Gait Values) after conducting the exercise for some time, but gets
tired at the end. However, the specificity, sensitivity (recall), precision (positive predicted value) and
diagnostic odds ratio (DOR) are considered to be the major metrics to determine the reliability of a
clinical software system. Therefore, based on the confusion matrix depicted in Figure 6, it was found
that the specificity of the system is 0.96, the sensitivity is 0.982, PPV is 0.972 and the DOR is 1027.
Looking at the aforementioned results, it can be duly observed that the system developed in the work
is very much reliable for its implementation in clinical settings. However, as a limitation of the work,
it also must be noted that only the gait parameters are not sufficient for the detection of “On” and “Off”
states in Parkinson’s disease.

6. Conclusions

In this study, the detection of “On” and “Off” states based on gait signals and using a wearable
accelerometer were proposed, and machine learning-based techniques have been used to automate the
classification of two states using the wearable accelerometer signals. The methodology proposed in
this research signifies the efficacies of using wearable accelerometer-based data in combination with
machine learning techniques for the auto-detection of different medication states in PD. The algorithm
that was developed in this study used the data of 20 subjects suffering from PD. The developed
algorithm was able to detect the “On” and “Off” states, and was also validated by the report of the
neurologist. This research contained a unique combination of statistical features and gait features that
are fed as inputs to the machine learning classifiers. Among the four machine learning techniques used
in this study, random forest outweighs all the other classifiers, detecting the two states with an accuracy
of 96.72%, recall of 97.35%, and precision of 96.92%. Some of the new findings observed in this study
are as follows: (1) only accelerometer signals were able to detect the medication state in combination
with machine learning techniques. (2) The knee-based placement of wearable devices mentioned
in this research was able to perform better compared to the combination of wrist- and ankle-based
wearable sensors [42]. This study has the following limitations: (1) all data were obtained using a
wearable accelerometer while the subject was performing tasks only in the laboratory environment.
(2) This study is mainly intended for detecting the “On” and “Off” states, and is not intended to assess
other motor symptoms such as “FoG” and shuffling of gait.

Possible directions for future work include the development of a more robust model with more
data. The performance of the model in the home environment is yet to be verified. From the current
observations mentioned in this study, it is recommended that the developed algorithm could perform
well in home environments in real-life situations.
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