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Free autologous fat transplantation, which was 
first attempted by Neuber1 in 1893, has been 
used for soft-tissue augmentation in a diverse 

range of plastic, reconstructive, and aesthetic surger-
ies. Moreover, the advent of liposuction techniques 

in the 1980s led to widespread clinical utility of non-
vascularized fat grafts (nVFGs). Clinical outcomes of 
nonvascularized fat grafting are variable and depend 
on the technique of harvest and transplantation.

To obtain the satisfactory clinical result, it is es-
sential to understand the survival process of nVFG. 
Many researchers have examined the survival pro-
cess or the viability of nVFG with histological find-
ings based on hematoxylin and eosin staining2–7 and 
have supported the “cell survival theory.”8 However, 
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Background: Nonvascularized fat grafting has become one of the most popu-
lar options for breast contouring. However, the survival process of the grafts 
remains to be elucidated. In this study, we tracked the fate of nonvascular-
ized fat grafts with in vivo bioluminescence and immunohistochemistry.
Methods: Nonvascularized fat grafts or vascularized adiposal flaps from lu-
ciferase transgenic rats were transplanted to Lewis rats. The biolumines-
cent signals from the grafts were monitored longitudinally. In addition, 
nonvascularized fat grafts from Lewis rats were engrafted to Lewis rats and 
the viability of the adipocytes in the grafts was evaluated with immunohisto-
chemical staining for perilipin at postoperative week 1, 2, 3, 4, and 6.
Results: The bioluminescent signals from the nonvascularized fat grafts 
increased drastically from postoperative day 3 to 7, stayed flat from day 7 
to 12, and declined from day 12 to 17, whereas those from the vascularized 
fat flaps remained throughout the entire postoperative period. Immuno-
histochemistry revealed that the survival zones with large adipocytes were 
decreased within 2 weeks and the regenerating zones with small adipocytes 
appeared after 3 weeks.
Conclusions: Our study showed the process of survival and regeneration 
of nonvascularized fat grafts and suggested that graft-derived stromal cells 
proliferated within 7 days after transplantation and differentiated into adi-
pocytes after postoperative week 3. (Plast Reconstr Surg Glob Open 2013;1:e40;  
doi: 10.1097/GOX.0b013e3182a7e827; Published online 13 September 2013)
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living adipocytes are distinguishable from dead ones 
not with morphological observation but with immu-
nohistochemistry for perilipin,9 which is a protein 
that coats lipid droplets in adipocytes.10,11 Recently, 
Eto et al12 showed the fate of the nVFG using immu-
nohistochemical staining for perilipin in early phase 
after transplantation. They demonstrated that most 
adipocytes in the nVFG began to die on day 1 and 
the number of proliferating cells increased from day 
3. However, the long-term survival and regenerative 
process of nVFG remains to be elucidated.

In vivo bioluminescence imaging (BLI) is an in-
novative method that can quantify the real-time vi-
ability of the luciferase-expressing cells noninvasively 
and repeatedly.13 The luminescent intensity is in pro-
portion to cell numbers.14 Therefore, BLI has been 
used to track tumor, immune, and stem cells.14–17

In this study, we used in vivo BLI with luciferase 
transgenic rats and immunohistochemical staining 
for perilipin to clarify the fate of the nVFG within 6 
weeks after transplantation.

METHODS
Animals

Adult male Lewis rats weighing 240–260 g were ob-
tained from Charles River Japan (Yokohama, Japan) 
and used as recipients or donors. Inbred (Lewis)  
transgenic rats with firefly luciferase (Luc-Tg rats), 
which express the marker gene ubiquitously in all 
organs and tissues,18 were used as donors. All experi-
ments in this study were performed in accordance 
with the Jichi Medical University Guide for Labora-
tory Animals.

Vascularized Adiposal Flap Transfer Using Luc-Tg 
Rats as Donors (Group 1)

As a control study, 5 vascularized adiposal flaps 
(VAFs) were harvested from the inguinal fat pads 
of Luc-Tg rats with the associated vascular pedicles 
(consisting of the femoral and superficial inferior 
epigastric arteries and veins) and transferred to the 
inguinal regions of 5 recipient rats. The pedicles 
were anastomosed to the femoral artery and veins 
with 11-0 nylon microsutures under an operating mi-
croscope. Each graft was trimmed to the same weight 
and volume, 1.35 g and 1.5 cm3, before transplanta-
tion. At the end of the study, the rats were anesthe-
tized, and the patency of the anastomosed vessels 
was confirmed under the microscope.

Nonvascularized Fat Transplantation Using Luc-Tg 
Rats as Donors (Group 2)

Nine nVFGs were harvested from the epididymal fat 
pads of Luc-Tg rats and were transplanted to the dorsal 
subcutaneous regions of 9 recipient rats using the core 

fat grafting technique as Guyuron and Majzoub19 have 
described previously. Briefly, a 5-mm incision was made 
at the dorsal region, and the graft was injected into the 
subcutaneous layer through the incision using a 1-cm3 
syringe whose tips were trimmed in an oblique fashion. 
Each graft was trimmed to the same weight and vol-
ume, 0.27 g and 0.3 cm3, before transplantation.

Nonvascularized Fat Transplantation Using Wild Lewis 
Rats as Donors (Group 3)

Fifteen nVFGs were harvested from the epididy-
mal fat pads of Luc-Tg rats and were grafted to the 
dorsal subcutaneous regions of 15 recipient rats in 
the same way as in group 2.

In Vivo BLI
In vivo optical imaging of the grafts was obtained 

using the noninvasive bioimaging system IVIS (Xe-
nogen, Alameda, CA) and was analyzed using the 
Igor (WaveMetrics, Lake Oswego, OR) and IVIS Liv-
ing Image (Xenogen) software packages. To detect 
photons from luciferase-labeled cells, we injected d-
luciferin (potassium salt; Biosynth, Postfach, Switzer-
land), the luciferase substrate, intravenously into the 
penile vein of the rats (7.5 mg) anesthetized with iso-
flurane. The integration time was fixed at 10 seconds 
duration for each image, and serial images were ac-
quired every 1 minute till 10 minutes in group 1 and 
30 minutes in group 2 after the administration of d-
luciferin with the field of view set at 25 cm. The signal 
intensity was quantified as photons flux in units of 
photons/s/cm2/steradian in the region of interest, 
and the maximum of signal intensity was recorded 
each time. Bioluminescent signals were measured in 
recipient rats for up to 6 weeks (group 1: postopera-
tive week 0, 1, 2, 3, 4, and 6 and group 2: daily for 
3 wk and postoperative week 4, 5, and 6).

Histological Study
At the end of the study, the grafts of the group 3 

were harvested, fixed in 10% buffered formalin, em-
bedded in paraffin, and were sectioned at 4 µm. Im-
munohistochemical staining was performed using 
anti-perilipin rabbit monoclonal antibody (Cell Signal-
ing: #9349) and polymer-based detection system (EnVi-
sion+ system, Dako). Moreover, we performed in situ 
end labeling using TUNEL (terminal deoxynucleotidyl 
transferase-mediated biotin nick end labeling) staining 
to detect cells undergoing apoptosis in the grafts.

RESULTS

In Vivo Tracking of the Grafts
To track the graft viability, we used luciferase 

transgenic rats as the donors of the grafts.
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Bioluminescent signals from all grafts were eas-
ily detectable and quantifiable over time (Fig. 1). In 
group 1, the VAF maintained their signal intensity 
throughout the entire period (Fig. 2A). The maxi-
mum intensity was obtained at 2 or 3 minutes after 
the administration of d-luciferin (Fig. 3A).

In group 2, signal intensity of the nVFG increased 
drastically from day 3 through day 7, remained from 

day 7 through day 12, and decreased from day 12 
through day 17 after transplantation. Afterward, rel-
atively stable bioluminescent signals were observed 
through the following periods (Fig. 2B). Until post-
operative day 3, the signal intensity increased gradu-
ally after the administration of d-luciferin, suggesting 
insufficient blood flow. After postoperative day 4, the 
signal intensity peaked at 2 or 3 minutes, suggesting 

Fig. 1. in vivo optical bioluminescence imaging of representative rats on day 7. the transplanted VaF (a) and nVFG (B) were 
detectable and quantifiable.

Fig. 2. the maximum signal intensity from VaF (a) and nVFG (B). VaF maintained their signal intensity throughout the entire 
period. On the other hand, the maximum signal intensity of nVFG increased drastically from postoperative day 3 to 7 and de-
clined from day 12 to 17. Data presented as means ± SEm.
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the restoration of blood flow (Fig. 3B). There was no 
significant difference in the signal intensity per the 
initial volume at postoperative week 1 and 2 between 
the 2 groups (Fig. 4).

Histological Findings of the nVFGs
To evaluate the viability of adipocytes after grafting, 

we used immunohistochemical staining for perilipin, 

which could distinguish living adipocytes from dead 
adipocytes. At week 1 and 2, perilipin-positive adipo-
cytes were detected only at the margins of the grafts, 
and the cells in the center appeared to be living adi-
pocytes morphologically but were perilipin-negative. 
After week 3, perilipin-positive small adipocytes ap-
peared at the margins of the perilipin-negative areas 
and the perivascular regions. At week 6, the 3 zones, 

Fig. 3. the time course of bioluminescent signal in VaF (a) and nVFG (B) after administration of d-luciferin. the maximum 
intensity of VaF was obtained at 2 or 3 min after administration at all testing points. On the other hand, the signal intensity of 
nVFG showed gradual increase after administration until postoperative day 3, but after postoperative day 4, it showed a peak 
at 2 or 3 min after administration.

Fig. 4. the bioluminescent signal intensity per transplanted volume of VaF and nVFG (*P < 0.05).



 

5

Sunaga et al. • The Fate of Nonvascularized Fat Grafts

which Eto et al12 have described, namely, the surviv-
ing area with large perilipin-positive adipocytes, the 
regenerating area with small perilipin-positive adipo-
cytes, and the necrotic area with no perilipin-positive 
cells were easily detectable (Fig. 5).

To detect the cells that decreased from day 12 
through day 17, TUNEL staining was performed at 
week 2. TUNEL-positive cells were detected at the 
stroma (Fig. 6).

DISCUSSION
In this study, we used in vivo BLI and immuno-

histochemistry to examine the time course of the vi-
ability of the transplanted nVFG longitudinally. Our 
approach revealed the dynamic process of survival 
and regeneration in the nVFG.

The bioluminescent signal intensity is in propor-
tion to cell numbers according to previous studies14; 

however, the light may not be emitted in proportion 
to the amount of luciferase expressed in the anaero-
bic environment because luciferase are oxygenases.13 
Therefore, during the early postoperative period 
when the blood flow is insufficient, it is thought that 
the signal intensity of nVFG mainly reflects blood 
flow, and after enough revascularization, it repre-
sents the viability of the grafts.

In group 1, the maximum signal intensity from 
the VAF was maintained throughout the entire post-
operative period, which suggested that immediate 
vascular reconstruction maintained the viability of 
transplanted adipose tissues. These findings corre-
spond to the previous reports based on histologi-
cal analysis.20,21 On the other hand, in group 2, the 
maximum signal intensity from the nVFG increased 
drastically from postoperative day 3 through day 7. 
Moreover, the interval till the signals reached the 

Fig. 5. immunohistochemical staining for perilipin in the nonvascularized fat grafts. perilipin-positive adipocytes in the bor-
der of the grafts at week 1 (a) and week 2 (C). adipocyte-like but perilipin-negative cells in the center of the grafts at week 2 
(B). perilipin-positive small adipocytes in the border of the perilipin-negative area at week 3 (D) and the perivascular region 
at week 4 (E). the perilipin-positive areas were easy to distinguish from the perilipin-negative areas at week 4 (F) and week 6 
(G and H).
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maximum shortened from day 3 through day 7. 
These findings suggest that the blood flow in nVFG 
had been restored from postoperative day 3 to 7 and 
are mostly in accordance with the reports based on 
histological findings of small grafts such as fat grafts,8 
islet grafts,22 and parathyroid grafts.23

The maximum signal intensity in nVFG was main-
tained stably from day 7 to 12, and the signal inten-
sity per the initial volume of the nVFG was almost 
equal to that of VAF at postoperative week 1 and 2. 
However, immunohistochemical findings demon-
strated that perilipin-positive adipocytes had dras-
tically decreased at week 1 and 2. These findings 

suggested that many adipocytes were dead and the 
donor-derived stromal cells were proliferated com-
pensatorily during the period.

From day 12 through day 17 after transplantation, 
the maximum signal intensity from nVFG declined. 
Moreover, TUNEL-positive cells were detected in 
the stroma at week 2. These findings suggested that 
a part of the proliferated stromal cells, probably 
adipose-derived stem/stromal cells (ADSCs), under-
went apoptosis. Further investigations are required 
to reveal the mechanism of apoptosis in fat grafts.

After day 17, relatively stable bioluminescent 
signals were observed. Moreover, perilipin-positive 
small adipocytes were detected in perivascular re-
gions or at the margins of necrotic zones after week 
3. These results suggested that the survived stromal 
cells began to differentiate into adipocytes; the re-
generating phase started.

Recently, Eto et al12 reported the fate of nVFG 
in early phase (2 wk) and proposed the 3 zones: the 
surviving area (adipocytes survived), the regenerat-
ing area (adipocytes died, ADSCs survived, and dead 
adipocytes were replaced with new ones), and the 
necrotic area (both adipocytes and ADSCs died) 
(Fig. 7). Our long-term study supported their “3 
zones” almost completely. Moreover, our approach 
with combination of in vivo BLI and immunohisto-
chemistry revealed the dynamic process of survival 
and regeneration of the nVFG.

In our study, although most adipocytes in nVFG 
died within 1 week, the bioluminescent signal in-

Fig. 7. the schematic diagram of the “3-zone theory.” Surviving zones and necrotic zones located at the periphery and the 
center in the grafts, respectively. regenerating zones locate at the intermediate areas between surviving zones and necrotic 
zones and at the perivascular regions.

Fig. 6. tUnEl staining in the nonvascularized fat grafts at 
week 2. tUnEl-positive cells were detected in the stroma.
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tensity per transplanted volume was almost equal to 
VAF. These findings suggested that the ADSCs prolif-
erated just as much as the adipocytes died to restore 
the adipose tissue to its former state. However, the 
proliferated ADSCs underwent apoptosis from day 
12 through day 17, and the survived ADSCs were dif-
ferentiated into adipocytes from week 3, resulting in 
incomplete regeneration of the adipose tissue and 
replacement with fibrotic tissue (Fig. 8). To improve 
clinical results of fat grafting, it is essential to clarify 
the mechanism of the late apoptosis of ADSCs.

In this study, we did not approach the contribution 
of the recipient-derived cells such as bone marrow–
derived cells to regeneration of the grafts. Further 
study using transgenic rats with the marker genes, 
such as GFP rats24 or LacZ rats,25 would be valuable.

Recently, several clinical studies reported the 
high survival rate of nVFG in a large amount using 
an excellent technique with multiple injective passes 
of small pieces,26 concurrent transplantation of AD-
SCs,27 or an external soft-tissue expansion system.28 
Their clinical results warrant further studies on the 
fat graft survival.

CONCLUSION
This study demonstrated the long-term fate of the 

nVFGs. ADSCs proliferated within 1 week and differ-
entiated into adipocytes after 3 weeks. 
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