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Abstract

Prey organisms often use multiple sensory cues to gain reliable information about imminent predation threat. In this study
we test if a freshwater fish increases the reliance on supplementary cues when the reliability of the primary cue is reduced.
Fish commonly use vision to evaluate predation threat, but may also use chemical cues from predators or injured
conspecifics. Environmental changes, such as increasing turbidity or water colour, may compromise the use of vision
through changes in the optical properties of water. In an experiment we tested if changes in optical conditions have any
effects on how crucian carp respond to chemical predator cues. In turbidity treatments we added either clay or algae, and in
a brown water colour treatment we added water with a high humic content. We found that carp reduced activity in
response to predator cues, but only in the turbidity treatments (clay, algae), whereas the response in the brown water
treatment was intermediate, and not significantly different from, clear and turbid water treatments. The increased reliance
on chemical cues indicates that crucian carp can compensate for the reduced information content from vision in waters
where optical conditions are degraded. The lower effect in brown water may be due to the reduction in light intensity,
changes in the spectral composition (reduction of UV light) or to a change in chemical properties of the cue in humic
waters.
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Introduction

Predation is an important structuring force in freshwater

ecosystems and acts as a strong selection pressure for anti-

predator adaptations in prey organisms. Prey may decrease risk

of predation by having e.g. chemical or morphological defences,

changing their habitat use, or by adjusting their activity pattern.

A reduced activity of a prey individual generally decreases

predator encounter rates [1,2] and this should affect the spatio-

temporal probability of predation. However, it is well known that

a behavioural response to predation threat also results in a cost

of lost opportunities to engage in other activities, e.g. foraging,

territorial defence or mating [3,4]. Thus, natural selection should

favour the evolution of prey ability to accurately identify and

quantify predation threat to avoid erroneous behavioural

decisions.

Freshwater fish have a well-developed visual system and it has

been argued that vision is their primary source of information

about the environment (e.g. [5,6]). However, fish may also use

other senses to detect predator presence, including the lateral line

system [7,8] or chemoreception [9,10,11,12]. Although fish may

primarily rely on one source of information, it is likely that they

integrate multiple cues to increase accuracy in predation risk

assessment, and several studies have shown additive effects of

visual and chemical cues on different threat-sensitive behaviours in

prey fish [13,14,15,16]. In a conceptual model, the sensory

compensation model, Hartman and Abrahams [17] assumed that

fish primarily use visual cues to evaluate predation threat and

suggested that the threshold of alarm cue concentration necessary

to elicit a behavioural response was dependent on predation risk

and the quality of the visual information. They predicted that the

threshold concentration should decrease in response to reduced

visual information when risk of predation was low, and in an

experiment with fathead minnows they were able to show that at

low risk minnows displayed fright behaviours in response to

chemical cues only when the information from visual cues was

reduced due to increasing turbidity (created by adding clay).

The optical environment of the water should affect the

importance of visual information for freshwater fish, and a number

of studies have shown that, for example, increasing turbidity

results in decreased reaction distance between predator and prey

[18,19,20,21]. The primary factors that affect the optical

properties of water include backscattering of light by suspended

particles, and absorption or attenuation of incident light by algae

and dissolved organic matter, and these factors are in turn affected

by environmental changes. Erosion, caused by e.g. altered land use

or precipitation patterns, increases the concentration of inorganic

particles, such as clay, that scatter light and deteriorate visibility

conditions. Eutrophication, that has historically been one of the

major threats to freshwater systems [22], benefits algal growth, and

algae both scatter light and absorb red and blue wavelengths.

Humic substances have in recent years been recognised as

a growing threat to freshwater systems [23,24], and although the

exact cause behind the increase in humic substance concentrations

is still debated (e.g. [24,25]), these dissolved organic substances
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attenuate shorter wavelengths and shift the spectral range of

available light towards red or even infrared, without scattering

light. Clay, algae and humic substances hence all drastically

deteriorate the visual conditions in water, but by different

mechanisms with different effects on optical conditions, and may

therefore have different effects on the ability of fish to use visual

cues, and thereby also affect their reliance on chemical cues in

a visually degraded environment.

In this study, we focus on how water colour (humic substances)

and turbidity (clay and algae) affect fright responses in a freshwater

fish, the crucian carp Carassius carassius. From earlier studies we

know that crucian carp react to chemical cues from piscivorous

pike (Esox lucius) in clear water by changing morphology and

behaviour [9]. According to the sensory compensation model, an

increased reliance on chemical cues with deteriorated optical

properties should increase their behavioural responses. Further-

more, if different environmentally induced optical degradations

(algae, clay, brown water) differ in how they affect vision in crucian

carp, we predict differences in the behavioural responses to

chemical cues in different media. Although the relative effects of

absorbance and scattering of light on fish visual accuracy and

reliability are poorly investigated in this context, we hypothesized

that scattering light, which diffuses the visual image, should

decrease the reliability of vision more than changes in the spectral

range due to absorption of specific wavelengths. Therefore, we

predicted that crucian carp should show a larger behavioural

response to alarm cues in turbid water than in clear or brown

water.

Materials and Methods

Fish
Crucian carp Carassius carassius (total length: 11.561 cm,

mean6S.D.) were caught in a pond in Lund, Southern Sweden,

using a trap, and acclimatised to laboratory conditions for at least

two weeks prior to the experiment. Fish were kept in five 350 litre

aquaria at 17uC and a light regime of 12:12 h. The cue donor was

a pike Esox lucius (43 cm total length) from Lake Krankesjön,

20 km east of Lund. The pike was acclimatised in a 150 litre

aquarium and fed crucian carp twice a week prior to the

experiments.

Water
The optical properties of the water (tap water) in the

experimental arenas were manipulated by adding either bentonite

clay, algae (Scenedesmus sp.; from a laboratory culture) or brown

water, all with pH ranging between 6.6–6.9. The brown humic

water was collected from a fish-free pond close to Lund and was

filtered (0.1 mm) before being used in the experiment. The effect of

clay, algae and brown substances on optical conditions in water is

normally measured in different ways, but here we used visual

range as a measure of the change in optical condition in the water.

Visual range was measured in a glass cylinder (Ø: 6.5 cm H:

43 cm), with a white bottom with a black cross. We added clay,

algae or brown water to dechlorinated tap water until the human

eye could no longer separate the black cross from the white

background in a 40 cm water column. The 40 cm visual range

corresponded to turbidity levels of 9 NTU for the clay and 4 NTU

for the algal treatment (measured with a LaMotte TC3000

turbidity sensor). The selected visual range and turbidity are

comparable to natural condition in lakes exposed to eutrophica-

tion or brownification. The chlorophyll a concentration in the

algal suspension was 346 mg/l, and the absorbance of dissolved

organic carbon (DOC) in the brown water was 0.21. Both

chlorophyll a and brown water were measured in a spectrometer

(Beckman DU 800) at 665/750 (chl a) and 420 nm (DOC). Effects

of treatments on light intensity were measured with a light meter

(International Light) at a water depth of 5.5 cm (clear water: 11.5;

Clay: 9.8, algae: 8.9 and brown: 5.3 mmol m22s21). The light

intensity in clear, clay and algae water equals daytime conditions,

whereas the lower light intensity in brown water more represents

the conditions towards twilight [26]. The spectral properties for

the three treatment waters were measured with an Ocean Optics

USB2000 spectrometer (HR4000 with a 50 mm slit; measures

wavelengths between 200–1100 nm with a precision of 1.8 nm).

The slit opening was tilted in a 15 degree angle perpendicular to

the water surface, which allows scattered light to enter the slit

opening and gives a more representative measure of the

wavelength spectrum of light entering the fish eye, compared to

if the slit opening was directed towards the light source and the

scattering effect was neglected [27]. A halogen lamp (500 W) was

used as a light source when we measured the optical properties of

the water as well as for lighting the experimental arena during the

experiments. In the experiments, a clear water treatment

(dechlorinated tapwater, ,0.1 NTU) acted as a control for the

clay, algae and brown water treatments. To prepare the pike cue

water the pike aquarium was cleaned, water exchanged and pike

fed with crucian carp for two days. The experiment was performed

on day three and four when cue water was taken from the pike

aquarium, filtered (500 mm net) and used in the trials.

Experimental Design
The experiment was performed in a cylindrical arena (di-

ameter 60 cm) with a water depth of 5.5 cm. The shallow water

allowed recording of fish behaviours in the turbid/brown

treatments using a video camera placed above the arena,

whereas fish experienced a reduction in visual range in the

horizontal plane. The arena was aerated during the trial. At the

start of an experiment we placed a crucian carp in the arena and

allowed it to acclimatise for 30 minutes, as a preliminary

experiment had shown that carp activity had stabilised by then.

After the fish had been acclimatised we started to film its activity

and recorded it on video. The activity was recorded for 10

minutes before (pre-stimulus period) and 2 minutes after (post-

stimulus period) addition of predator cue water as a pilot

experiment showed that the initial response to predator cue

started to decrease after 2 minutes. The stimulus of 50 ml

predator cue water was added through a plastic tube during two

minutes in between the pre- and post-stimulus periods. The

water was exchanged and the arena cleaned before each trial.

Treatments were replicated 10 times, resulting in a total of 40

carp individuals used, each participating only once in experi-

ments. The study complies with the current laws in Sweden;

ethical concerns on care and use of experimental animals were

followed under the permission approved for this study (M165-07)

from the Malmö/Lund Ethical Committee.

Video and Statistical Analysis
The video tapes were analysed for swimming activity (total

distance moved during a two minutes period) during the pre- and

post-stimulus periods, using the behavioural analysis software

Ethovision 1.90 (Noldus Information Technology, Wageningen,

The Netherlands). A mean of the five two minutes periods from

the ten minutes pre-recording were used in the analysis. Relative

changes in individual activities between the pre- and post-stimulus

periods were calculated as (post - pre)/pre stimulus swimming

activity, and these relative changes were tested for differences from

no (zero) change with one-sample t-tests for each treatment.

Optical Conditions and Chemical Cues
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Differences in relative change in activity between treatments were

analysed with ANOVA and post-hoc Tukey tests. All data adhered

to the homogeneity and normality assumptions. An analysis of

crucian carp swimming activity during the pre-stimulus period

showed no significant difference in base-line activity between

treatments (ANOVA, F3, 36 = 2.576; p.0.05).

Results

The clay, algae and brown water treatments reduced light

intensity by 15, 23, and 54%, respectively, at a water depth of

5.5 cm. The spectral reflectance analyses showed that the addition

of algae and clay resulted in increased scattering, whereas there

were no major changes in spectral ranges except an increased

absorption of light around 665 nm in the algae treatment,

corresponding to the absorbance peak of algal chlorophyll

(Fig. 1). In brown water there was reduction of shortwave light

in the UV and blue range and an increase of light in the red-

infrared area.

Addition of predator cue resulted in a significant reduction in

crucian carp swimming activity in clay (t9 =23.090, p = 0.013),

algae (t9 =29.395, p,0.001) and brown water (t9 =22.495,

p = 0.034), while no change in activity was detected in the clear-

water control (t9 =20.261, p = 0.800, Fig. 2). There were also

differences between clay, algae, brown and clear treatments in the

relative activity change (F3, 36 = 4.721; p = 0.007, Fig. 2). The

relative change in swimming activity was significantly different

between the clear water control and the clay and algae treatments

(Tukey HSD, p = 0.021 and p = 0.010, respectively). There were

no significant differences between the brown water treatment and

the clear water control, or between any of the treatments with

deteriorated optical properties (p$0.300 in all cases).

Discussion

In this study we found a significant reduction in the activity of

crucian carp in response to chemical cues from a pike predator.

The response was however context-dependent, with significantly

decreased activity in waters with deteriorated visibility, whereas

there was no response in activity to predator cues in clear water. A

large number of studies have shown that aquatic prey organisms

respond to chemical cues associated with predation threat by

changing their behaviour (e.g. [12,28,29]). In many fish, including

crucian carp, specific alarm substances that can be released upon

danger, direct injury or indirectly by piscivores being chemically

labelled with alarm substances via their diet, elicit predator-

avoidance behaviours (e.g. [9,29,30,31]). As the pike in our

experiments was fed crucian carp, we believe such alarm

substances are involved in the observed activity responses. The

cue concentration we used has in earlier experiments failed to elicit

threat responses in clear water [9], while in this experiment

crucian carp changed their activity in waters with detoriated

optical conditions even at these low cue concentrations. Prey fish

are able to detect alarm signals at concentrations lower than the

threshold concentration needed to elicit a behavioural response

[32,33], and our results indicate that the response threshold

changes with visibility conditions. Further, although most studies

on the effects of alarm cues have been performed under laboratory

conditions a number of recent studies now demonstrate that alarm

substances operate also under a wide range of natural conditions

[34].

Prey fish may use both visual and chemical cues to detect the

presence of predators. It has been argued that chemical and visual

cues provide information at different resolution levels, where

chemical cues signal the general but spatio-temporally imprecise

presence of a predator, whereas visual cues are used at shorter

range with high spatial and temporal accuracy [17,28]. Other

studies argue that fish can use chemical cues to make fine-tuned

decisions regarding behavioural modifications to predation threat

[12]. The large selection pressure for correctly assessing predation

risk suggests that using multiple cues to assess local predation risk

should be favourable.

The sensory compensation model [17] suggests that vision is the

primary source of information about predation threat, and that

other cues are used only when the optical conditions in water

reduces the reliability of visual information, e.g. poor performance

by vision is compensated for by enhanced performance of

chemosensory abilities. A basic prediction from the sensory

compensation model is that predator chemical cues only initiate

a fright response when the information from visual cues is reduced

in degraded optical conditions [17]. Our result of no response in

crucian carp to predator chemical cues in clear water, but

significantly reduced activity in reduced visibility, is in line with the

predictions from the sensory compensation model. Sensory

Figure 1. Spectral distribution of downwelling light in clear,
algae, clay and humic brown water at 5.5 cm depth.
doi:10.1371/journal.pone.0038411.g001

Figure 2. Relative change in swimming activity (mean 6
standard error) in crucian carp upon experiencing chemical
cues from a pike. Clay, algae and brown water treatments represent
a visual range of 40 cm created by the different substances, whereas
clear water is a control with no visual deterioration.
doi:10.1371/journal.pone.0038411.g002

Optical Conditions and Chemical Cues

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38411



compensation has, apart from the minnows studied by Hartman

and Abrahams [17], also been demonstrated in diving beetles that

did not respond to predator chemical cues in daylight conditions,

but showed a strong response to predator cues in reduced light

[35]. Diving beetles have well developed eyes and it was suggested

that vision is their primary source of information regarding

predation threat.

The behavioural response to predator cues differed among

treatments with a significant reduction in clay and algae water

only. Suspended clay particles and phytoplankton largely affect

the optical conditions by scattering incoming light and affecting

background contrast, with less of an effect on light intensity.

Further, light of specific wavelengths (around 665 nm) is also

absorbed by algae, which thus may affect the spectral compo-

sition of available light. Studies on the spectral sensitivity of

goldfish (Carassius auratus), a species that is closely related to

crucian carp, have shown a wide spectral sensitivity range (340–

720 nm) with three sensitivity peaks; in the UV, shortwave

(480 nm) and the longwave (around 650 nm) regions [36].

Changes in spectral composition in the long-wave region in the

algae water had no effect on the behavioural response compared

to the response in clay water, suggesting that spectral changes are

of no importance here. However, the spectral composition was

more strongly affected by the addition of brown water with

a clear reduction of light in the UV and blue wavelengths. Fish

are known to use UV vision in foraging, mate recognition and

navigation [37], but no studies have examined the importance of

UV vision for detecting predators. Besides changing the spectral

composition, the humic substance in brown water also absorbs

light, and our measurements showed a 50% decrease in light

intensity to 5 mmol m22s21 already at a water depth of 5 cm, i.e.

a larger reduction of light intensity than in clay and algae waters.

Jachner [38] found that bleak (Alburnus alburnus) responded

behaviourally to chemical cues from piscivorous pike during

daylight conditions only. During night there was no effect of

chemical cues, indicating that piscivore-related cues may be

perceived as less dangerous during night. The light intensity in

the brown water was higher than at night, more resembling light

intensities towards twilight conditions. However, both experi-

mental [26] and theoretical [39] studies suggest that a reduction

of light intensity to 5–10 mmol m22s21 have significant effect on

the reaction distance of a fish, i.e. the brown water to reduce the

visual information available for crucian carp compared to the

turbid treatments. Thus, the different behavioural response in the

brown-water treatment, intermediate and not significantly

different from either clear or turbid water treatments, may be

due to light intensity. However, humic substances in brown water

may also change the chemical properties of predator chemical

cues, and thereby affect the ability of prey fish to detect and

respond to them. Increased levels of humic acids have been

shown to reduce or completely obliterate recognition of

conspecific pheromones in goldfish Carassius auratus [40] and

other fish species [41,42]. Thus, changes in the chemical

environment may also contribute to intermediate behavioural

responses to chemical cues in humic, brown-stained water.

In conclusion, the alarm response in crucian carp was affected

by the optical conditions in the water. Turbid conditions resulted

in a strong behavioural response to chemical cues from pike,

compared to clear water conditions where there was no effect.

This supports the sensory compensation model [17] that suggests

that when one sense is impaired, an organism will compensate by

relying on another. The brown water treatment had an in-

termediate effect on behaviour, which could be either due to

changes in light intensity and spectral composition and/or to

a disturbance of the chemical senses. The optical condition used in

our experiment are already found in many aquatic systems, and

with the expected increase from brownification and also eutro-

phication we can expect even more lakes with short visual ranges.

Thus, changing optical conditions in freshwater systems, may

affect interactions between predator and prey fish through effects

on the chemical communication systems.
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35. Åbjörnsson K, Wagner BMA, Axelsson A, Bjerselius R, Olsén KH (1997)

Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch

(Perca fluviatilis). Oecologia 111: 166–171.

36. Hawryshyn CW, Beauchamp R (1985) Ultraviolet photosensitivity in goldfish -

an independent UV retinal mechanism. Vision Research 25: 11–20.

37. Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, et al. (1999) The

UV visual world of fishes: A review. Journal of Fish Biology 54: 921–943.

38. Jachner A (1996) Alarm reaction in bleak (Alburnus alburnus (L.), Cyprinidae) in

response to chemical stimuli from injured conspecifics. Hydrobiologia 325: 151–

155.

39. Aksnes DL, Utne ACW (1997) A revised model of visual range in fish. Sarsia 82:

137–147.

40. Hubbard PC, Barata EN, Canario AVM (2002) Possible disruption of

pheromonal communication by humic acid in the goldfish, Carassius auratus.

Aquatic Toxicology 60: 169–183.

41. Fisher HS, Wong BBM, Rosenthal GG (2006) Alteration of the chemical

environment disrupts communication in a freshwater fish. Proceedings of the

Royal Society B-Biological Sciences 273: 1187–1193.

42. Fabian NJ, Albright LB, Gerlach G, Fisher HS, Rosenthal GG (2007) Humic

acid interferes with species recognition in zebrafish (Danio rerio). Journal of

Chemical Ecology 33: 2090–2096.

Optical Conditions and Chemical Cues

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e38411


