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Abstract

Background: In biomedical applications where the size and complexity of SNOMED CT become problematic, using
a smaller subset that can act as a reasonable substitute is usually preferred. In a special class of use cases—like
ontology-based quality assurance, or when performing scaling experiments for real-time performance—it is essential
that modules show a similar shape than SNOMED CT in terms of concept distribution per sub-hierarchy. Exactly how
to extract such balanced modules remains unclear, as most previous work on ontology modularization has focused
on other problems. In this study, we investigate to what extent extracting balanced modules that preserve the original
shape of SNOMED CT is possible, by presenting and evaluating an iterative algorithm.

Methods: We used a graph-traversal modularization approach based on an input signature. To conform to our
definition of a balanced module, we implemented an iterative algorithm that carefully bootstraped and dynamically
adjusted the signature at each step. We measured the error for each sub-hierarchy and defined convergence as a
residual sum of squares < 1.

Results: Using 2000 concepts as an initial signature, our algorithm converged after seven iterations and extracted a
module 4.7 % the size of SNOMED CT. Seven sub-hierarhies were either over or under-represented within a range of
1–8 %.

Conclusions: Our study shows that balanced modules from large terminologies can be extracted using ontology
graph-traversal modularization techniques under certain conditions: that the process is repeated a number of times,
the input signature is dynamically adjusted in each iteration, and a moderate under/over-representation of some
hierarchies is tolerated. In the case of SNOMED CT, our results conclusively show that it can be squeezed to less than
5 % of its size without any sub-hierarchy losing its shape more than 8 %, which is likely sufficient in most use cases.
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Background
The large size and complexity of SNOMED CT [1] con-
stitute a problem in many biomedical applications and
studies have shown that using a much smaller subset of
interest is often sufficient [2]. Applications include prob-
lem lists [3], tagging medical images [4], and annotating
texts from cardiology [5], among others. A well-known
example of the benefits of using a subset of interest is
the CORE problem list subset of SNOMED CT, which
contains only 16 874 terms (roughly 1 % the terms of
SNOMED CT), while covering over 95 % of its usage [6].
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The theory of how to extract such subsets is studied by
the ontology modularization area of research [7]. Ontol-
ogy modularization techniques are generally focused on
obtaining a minimal subset (also called module or seg-
ment) that maximally covers a specific domain or that
is representative for a particular application. This is the
case of the problem lists or annotation cases mentioned
above, or the study by Seidenberg and Rector [8], where
they described how they extracted a representative seg-
ment of the GALEN ontology [9] for cardiology using the
seed concept ‘Heart’ as a signature.
A signature is an initial set of concepts (called seeds)

that bootstraps the modularization process, on which
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many ontology modularization techniques rely, includ-
ing graph-traversal [8, 10–12] and logic-based techniques
[13, 14].
Often, these modules are not balanced when it comes

to representing the original distribution or shape of sub-
hierarchies shown by the original ontology or termi-
nology. For example, in the CORE problem list subset
of SNOMED CT, most concepts belong to the Clini-
cal Finding, Procedure, Situation with Explicit Context,
and Event sub-hierarchies. The opposite case is also pos-
sible: in a previous study, we found that modules can
excessively and uncontrollably grow and spread across
sub-hierarchies, especially when using graph-traversal
techniques [5].
These results are not surprising, because most prior

work on ontology modularization has not focused on pre-
serving the representativity of the sub-hierarchies of the
original ontology, so the shape of the original ontology is
inevitably lost in the modules.
There is a special class of use cases, however, where it

is essential that modules are representative of the sub-
hierarchies of the original ontology and therefore show a
similar shape, such as:

• In ontology-based quality assurance, where small but
representative samples of a huge ontology are to be
inspected [15];

• for obtaining a demonstration version that is
understandable for users or facilitates visualization
[16, 17];

• for alignment with a highly constrained upper level
ontology, such as the Basic Formal Ontology (BFO)
[18], especially the upcoming BFO 2.0 OWL version,
which includes relations, DOLCE [19] or
BioTopLite [20], where reasoning has to be tested on
small subsets and in iterative debugging steps;

• for performing scaling experiments for real-time
performance of a large OWL DL ontology;

• for the description logics community, who welcomes
scalable testbeds for developing tools like editors and
reasoners.

To the knowledge of the authors, little research on
ontology modularization has focused on extracting bal-
anced modules for such applications, where keeping the
original shape of a large ontology such as SNOMEDCT in
terms of its sub-hierarchies is a requirement.
In this paper, we study the concept distribution of

SNOMEDCT’s sub-hierarchies, and we propose and eval-
uate an iterative algorithm for extracting balanced mod-
ules. Our main goal is to investigate to what extent it
is possible to obtain modules that preserve the origi-
nal shape of SNOMED CT in order to be used in our
identified class of use cases.

Methods
As input for our experiments, we used the July 2014
International Release of SNOMED CT [21]. We first gen-
erated its corresponding OWL-EL version using the Perl
script included in SNOMEDCT’s official distribution. We
then removed the SNOMED CT Model Components sub-
hierarchy, which contains metadata concepts only. For the
remainder of this text, we refer to SNOMED CT and our
input version (containing 229 330 classes) termed SCT
interchangeably.

SNOMED CT concept distribution
Table 1 shows the main 18 sub-hierarchies of SNOMED
CT and their concept distribution. Four sub-hierarchies
(Clinical Finding, Procedure, Organism, and Body Struc-
ture) contain over 10 % of SNOMED CT’s concepts each,
accounting for over 70 % of the concepts when considered
altogether. As a useful way of visualizing concept distribu-
tion and for comparative purposes (see Section “Results”),
the same information is displayed in the form of a treemap
in Fig. 1. The treemap represents SNOMED CT’s hierar-
chical information as a set of colored rectangles, where
the area (and color) of each rectangle is proportional
(and darker/lighter) to the number of concepts in the
sub-hierarchy.

Table 1 Main sub-hierarchies of SNOMED CT. The metadata
concepts sub-hierarchy (SNOMED CTModel Components) was not
considered

Subhierarchy (Abbreviation) Concepts Distribution

Clinical Finding (CF) 100 893 33.57 %

Procedure (PR) 53 914 17.94 %

Organism (OR) 33 273 11.07 %

Body Structure (BS) 30 685 10.21 %

Substance (SU) 24 021 7.99 %

Pharmaceutical/Biologic Product 16 881 5.62 %

Qualifier Value (QV) 9 055 3.01 %

Observable Entity (OE) 8 307 2.76 %

Social Context (SO) 4 703 1.56 %

Physical Object (PO) 4 522 1.50 %

Situation with Explicit Context (SI) 3 695 1.23 %

Event (EV) 3 673 1.22 %

Environment or Geogr. Location (EG) 1 814 0.60 %

Specimen (SN) 1 447 0.48 %

Staging and Scales (ST) 1 309 0.44 %

Special concept (SP) 649 0.44 %

Record Artifact (RA) 227 0.22 %

Physical Force (PF) 171 0.08 %
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Fig. 1 SNOMED CT’s shape represented with a treemap. Sub-hierarchies containing less than 10 % of SNOMED CT concepts are shown in acronyms
(see Table 1)

Balanced SNOMED CTmodules
In a comprehensive study, d’Aquin et al. [22] concluded
that there is no universal way to extract ontology mod-
ules and that the chosen approach should be guided by
each domain or application. It is therefore important to
clearly define what constitutes a module. For our pur-
poses, presented in the introduction, we define a bal-
anced SNOMED CT module (M) as a minimal collec-
tion of classes from SCT that conform to the following
requirements:

(a) All classes in M are hierarchically connected to
SNOMED CT’s root concept in the same way as in
SCT.

(b) All classes in M share the same axiomatical class
definition as in SCT.

(c) Sub-hierarchies in M are distributed (approximately)
in the same proportion as in SCT. In practical terms,
when visualized using a treemap, M should look
similar to the treemap of SNOMED CT shown in
Fig. 1.

(d) Our model is restricted to classes. SNOMED CT
metadata concepts are excluded and not subject to
modularization.

Module construction from seeds
To extract our module M, we followed a graph-traversal
ontology modularization approach, adapted from Seidenberg
and Rector [8]. Using their terminology, concepts (in
our case, classes) are represented as nodes in a graph,
and seed concepts are called target nodes. The strategy
takes seeds that conform an initial signature as input,
and then iteratively adds classes that appear in the right-
hand expressions of their definitions (i.e., are connected

by attribute links) and their links up the hierarchy, then
becoming new target nodes. Figure 2 shows an example
of a resulting module, where it can be seen that (a) all
classes are hierarchically connected to the root concept in
the same way as in the original ontology (Fig. 3), and (b)
all classes share the same axiomatical class definition as
the original ontology (i.e., show the same structure when
displayed as a graph).

Seed adjustment: an iterative algorithm
The strategy to build a module using seeds presented
above guarantees requirements (a) and (b) from our def-
inition of M, but does not guarantee requirement (c), i.e.,
that sub-hierarchies in M will be distributed (approxi-
mately) in the same proportion as in SCT. The reason for
not guaranteeing requirement (c) is that there is no control
over classes from other sub-hierarchies that are added and
become new target nodes when following the right-hand
expressions of the seeds.
Therefore, in order not to conflict with requirements

(a) and (b) when creating M, the only possibility is to
carefully select the initial signature that bootstraps the
modularization algorithm. For that purpose, we investi-
gated an iterative algorithm that dynamically adjusts the
distribution of classes used as seeds in the initial signa-
ture. Before presenting the algorithm, we introduce the
following notation:

• As introduced before, SCT represents the OWL EL
version of SNOMED CT used as input.
Sub-hierarchies are termed SHk .

• M represents the output module, whose
sub-hierarchy distribution should match SCT’s as
closely as possible (Table 1).
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Fig. 2 Ontology modularization strategy to build our moduleM, starting from the seed concept (target node) labeled as ’10’. Figure 3 shows the
original ontology from which it was extracted

• SIGN is the input signature, consisting of classes
from SCT, that is used to bootstrap the
modularization process described in
Subsection ‘Module construction from seeds’.

• Error(SHk) = Size(MSHk ) − Size(SCTSHk ) indicates
the error on a per sub-hierarchy basis. Errors are
calculated in percentage terms (see distribution in
Table 1).

• RSS = 1
18

∑18
k=1 Error(SHk)

2, where RSS represents
the residual sum of squares. Convergence of the
algorithm is defined when RSS < 1.

The algorithm, at each iteration i is the following:

1. A random signature SIGNi consisting of 2000 classes
from SCT is selected, following the same class

sub-hierarchy distribution as SCT, and ensuring that
all sub-hierarchies in the signature contains at least
one class.

2. A moduleMi is computed following the principles
described in Subsection ‘Module construction from
seeds’. Its sub-hierarchy distribution is calculated.

3. Convergence is checked. If RSS >= 1, Steps 1 to 3
are repeated after adjusting the scaling factor for the
sub-hierarchy distribution of the signatures in the
next iteration i + 1:

f
(
SIGNi+1SHk

)
= f

(
SIGNiSHk

)
× f

(
SCTSHk

)

f
(
MiSHk

) with

f
(
MiSHk

)
being the relative frequency of sub-hierarchy

SH k measured in the resulting module in iteration i,
Mi.

Fig. 3 Sample ontology, with an initial signature containing the seed concept (target node) labeled as ’10’
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Results
A moduleM with 10 834 classes was extracted from 2000
seeds, the module being in 4.7 % the size of the original
SCT (229 330 classes). Figure 4 shows how the algorithm
converged after 7 iterations, the error for sub-hierarchies
exceeding an error of 1 %, and the residual sum of squares.
As can be seen in the table below the graph, the sub-

hierarchies Clinical Finding, Procedure, and Organism
were under-represented in M, while Body Structure and
Substancewere over-represented. The same results can be
confirmed graphically in the treemaps shown in Fig. 5, at
iterations 1, 3, and 7.
These results were partly expected, due to the nature

of the modularization approach that uncontrollably adds
extra classes that appear in right-hand expressions to
preserve SNOMED CT’s class definitions. The most rep-
resentative example is the sub-hierarchy Body Structure,
whose concepts appear often in definitions in Clinical
Findings, e.g. ‘Finding site: Bone structure of femur (body
structure)’ for ‘Fracture of femur (clinical finding)’.
Our experience indicates that there is a point (around

7 iterations) where the algorithm starts oscillating, and
the residual sum of squares can not diminish any longer.
In practice, this means that when the algorithm tries to
compensate the under-representation of Clinical Finding
by adding more Clinical Finding seed concepts to the

signature in the next iteration, the result of the new bal-
anced module inevitably includes also more Body Struc-
ture concepts. This is better understood using Fig. 3 as
an example. Assuming concept 10 is a Clinical Find-
ing seed added to compensate their under-representation,
the graph-traversal modularization algorithm would also
add Body Structure concepts 17, 16, 15, and 9 to the
balanced module, because concept 17 appears in a right-
hand expression of concept 10, and 16, 15, and 9 are its
ancestors (Fig. 2).

Discussion
Our results suggest that it is difficult for ontology mod-
ules to meet all of our modularization criteria without
relaxing the constraints of how concepts in the mod-
ules are distributed by sub-hierarchies: this is because
modularization criteria are conflicting. In our experi-
ments, all obtained modules over-represented or under-
represented some of SNOMED CT’s sub-hierarchies to
varying degrees.
The error figures that we obtained after convergence,

however, never reached 8 % for any sub-hierarchy and all
our modules contained a fair representation of every sub-
hierarchy. Furthermore, convergence was reached after
only 7 iterations and the resulting module was 4.7 % the
size SNOMED CT. Such modules might be sufficient in

Fig. 4 Execution of the algorithm, showing convergence in iteration 7. Each line represents the difference in distribution for a particular
sub-hierarchy of a balanced module at a given iteration, when compared to SNOMED CT. For example, in the balanced module at iteration 1, Body
Structure is proportionally 11.26 % bigger than in SNOMED CT (it is over-represented), while Clinical Finding is 6.86 % (it is under-represented). The
dashed line represents the residual sum of squares of all sub-hierarchies, 0 meaning that the sub-hierarchies in the balanced module are distributed
in exactly the same way as in SNOMED CT (perfectly balanced module)
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Fig. 5 Visual comparison of the shape between modulesM and SNOMED CT (d) in iterations 1 (a), 3 (b), and 7 (convergence, c). Clinical Finding,
Procedure, and Organism were under-represented, while Body Structure and Substance were over-represented

many of the use cases that motivated their creation, i.e.,
extracting modules that show an (approximate) concept
distribution to the one shown in SNOMED CT.
In this study, we focused on extracting balanced mod-

ules in SNOMED CT only, both for practical purposes
(useful input for related SNOMED CT research) and
because its size and complexity make SNOMED CT an
excellent case study. Our approach, however, should work
similarly with for any ontology where graph-traversal
modularization techniques based on an input signature
apply. The literature currently reports positive exper-
iments with NCI, GALEN, GO, SUMO, SWEET, and
DOLCE-Lite [8, 13].

Conclusions
Modules that preserve the concept distribution by sub-
hierarchy of the original ontology have been generally
neglected in the field of ontology modularization. How-
ever, balanced modules are extremely useful in applica-
tions such as ontology-based quality assurance, scaling
experiments for real-time performance, or when develop-
ing scalable testbeds for software tools.

In this study, we have proposed and evaluated an iter-
ative algorithm to investigate to what extent extracting
such balanced modules in SNOMED CT is possible. Our
results show that graph-traversal ontology modulariza-
tion techniques relying on an input signature can indeed
be used, if: the process is repeated a number of times;
the input signature is dynamically adjusted in each itera-
tion; and a moderate under/over-representation of some
hierarchies is tolerated.
Several questions are still open and need to be addressed

as future work: how to select a minimal signature; how
signature size influences the final size of the modules;
and how a change in the randomization process of the
signature selection (e.g., by stratifying the randomization
by node depth) influences the concept distribution of the
module. In addition, a validation of our experiments using
other ontologies and comparing the results would provide
a more comprehensive overview.
Our results, however, conclusively show that SNOMED

CT can be squeezed to less than 5 % its size without any
sub-hierarchy losing its shape more than 8 %, which is
likely to be sufficient in most use cases.
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