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Introduction

Bladder cancer is the 2nd most common malignancy of 
the urinary tract [1]. About 75% of bladder cancer cases are 
initially diagnosed as non-muscle-invasive bladder cancer; 
however, 50%-70% of patients experience recurrence within 
5 years [2]. For this reason, early detection and surveillance 
after treatment play important roles in the management of 
bladder cancer.

Current standard methods for diagnosis and surveillance 
of bladder tumors are based on cystoscopy [3,4]. Cystoscopy 
has low sensitivity [5] and it causes complications, such as 
dysuria (50%) and urinary tract infection (5.5%). For this rea-
son, there is always a clinical need for non-invasive, high-
performance biomarkers for bladder cancer diagnosis and 
surveillance.

Numerous biomarkers have been developed in the last 
decades; however, none of them could replace standard 
clinical practice [6]. Recent advancements in proteomics are 

promising in the field of biomarker discovery [7]. Urine pro-
teins and urinary exosomes are considered excellent sources 
of biomarkers for bladder cancer, owing to their direct con-
tact with the tumor and they reflect intra-tumoral environ-
ments with high accessibility [8].

In this study, we designed systematic and precise strate-
gies for biomarker discovery in patients with bladder mass, 
for source selection (urinary proteins and exosomes), mass 
screening, candidate biomarker selection, and clinical vali-
dation.

Materials and Methods

1. Patient selection and overall study flow
For biomarker discovery and verification, we used pro-

spectively collected urine samples from patients who under-
went transurethral resection of bladder tumor (TURB) from 
October 2016 to August 2017. Urine samples of three patients 
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were used to initially set up the protocol for urinary protein 
and exosome analysis. Healthy controls were selected from 
kidney donors who underwent donor nephrectomy before 
surgery during the same period.

We used the urine specimens of 12 subjects (six with blad-
der cancer and six for control) for the discovery phase and 24 
subjects (18 for bladder cancer and six for control) for the ver-
ification phase. For the validation phase, via enzyme-linked 
immunosorbent assay (ELISA), we used urine samples from 
120 patients from the prospective, bio-specimen linked  
cohort of Seoul National University Prospectively Enrolled 
Registry for Urothelial Cancer-TURB (SUPER-UC-TURB) [9]. 
In this validation cohort, 25 patients had a benign disease 
and 95 patients had urothelial carcinoma, determined by a 
urological pathologist. All the urine samples were prospec-
tively collected 1-2 days before surgery (20 mL each) and 
stored at –195°C in liquid nitrogen [9]. An overview of the 
study is shown in Fig. 1.

2. Liquid chromatography-tandem mass spectrometry 
We extracted urinary protein and exosome from collect-

ed participants urine. Detailed methods of urinary protein 
and exosome extraction and preparation described in Sup-
plementary Methods. Using prepared urinary peptides, we 
performed liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS) analysis. Both data-dependent acquisi-
tion (DDA) and data-independent acquisition (DIA) meth-
ods, were conducted with an Ultimate 3000 UHPLC system  
(Dionex, Sunnyvale, CA) coupled to a Q-Exactive Plus mass 
spectrometer (Thermo Fisher Scientific Inc., Waltham, MA) 
as previously described with some modifications [10]. Pep-
tide samples were separated on a two-column system with 
a trap column (300 µm×5 mm) and an analytic column (75 
µm×50 cm) with 120-minute gradient from 7% to 32% ace-
tonitrile at 300 mL/min. The column temperature was main-
tained at 60°C using a column heater. The column eluent was 
delivered to Q-Exactive Plus via nano-electrospray. For the 
DDA method for label-free quantification, a survey scan (350 
to 1,650 m/z) was acquired with a resolution of 70,000 at 
m/z 200. The top-20 method was used to select the precursor 
ion with an isolation window of 1.2 m/z. The tandem mass 
spectrometry (MS/MS) spectrum was acquired at an HCD-
normalized collision energy of 30 with a resolution of 17,500 
at m/z 200. The maximum ion injection times for the full and 
MS/MS scans were 20 and 100 ms, respectively. The HRM 
DIA method consisted of a survey scan at 35,000 resolution 
from 400 to 1,220 m/z (AGC target of 3×106 or 60 msec injec-
tion time). Then, 19 DIA windows were acquired at a resolu-
tion of 35,000 with an automatic gain control target of 3e6 
and auto-injection time [11].

Fig. 1.  The overall workflow of urine protein biomarkers development. ELISA, enzyme-linked immunosorbent assay; LC-DIA/MS, liq-
uid-chromatography data independent acquisition mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry.
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3. Data processing for label-free quantification
All MS raw files were processed in MaxQuant (ver. 1.5.3.1) 

[12]. MS/MS spectra were searched against the Human 
Uniprot protein sequence database (December 2014, 88,657 
entries) using the Andromeda search engine [13]. Primary 
search was performed using a 6 ppm precursor ion tolerance 
for the total protein level analysis. The MS/MS ion tolerance 
was set at 20 ppm. Cysteine carbamido-methylation was set 
as a fixed modification. The N-acetylation of protein and 
oxidation of methionine were set as variable modifications. 
Enzyme specificity was set to full tryptic digestion. Peptides 
with a minimum length of six amino acids and up to two 
missed cleavages were considered. The required false dis-
covery rate (FDR) was set to 1% at the peptide, protein, and 
modification levels. To maximize the number of quantifica-
tion events across samples, we enabled the ‘Match between 
Runs’ options on the MaxQuant platform. For label-free 
quantification, the intensity-based absolute quantification 
(iBAQ) algorithm [14] was used as part of the MaxQuant 
platform. Briefly, the iBAQ values calculated by MaxQuant 
were the raw intensities divided by the number of theoretical 
peptides. Thus, iBAQ values were proportional to the molar 
quantities of the proteins.

4. Data processing for the data-independent analysis
To generate spectral libraries, 12 DDA measurements 

were performed with urine samples. The DDA spectra were 
searched using MaxQuant against the Uniprot Human  
Database (December 2014, 88,657 entries) and the iRT stand-
ard peptide sequence. A spectral library was generated  
using the spectral library generation feature of Spectronaut 
10. The DIA data from individual samples were analyzed 
with Spectronaut 10 (Biognosys, Schlieren, Switzerland). 
First, we converted the DIA raw files into htrm format using 
the GTRMS converter tool provided with Spectronaut. The 
FDR was estimated with the mProphet [15] approach and set 
to 1% at the peptide precursor and protein levels. Proteins 
were inferred using the software, and quantification infor-
mation was acquired at the protein level using the q-value  
< 0.01 criteria, which was used for subsequent analyses.

5. Statistical and bioinformatics analysis for proteomics
A schematic workflow for proteomics analysis in the dis-

covery, verification, and validation phases of this study is 
shown in Fig. 1. Both phases were conducted via LC-MS/
MS using extracted exosome and urine proteins. We selected 
significantly differentially expressed proteins (DEPs) over 
60% of patients for label-free quantification and over 70% of 
patients for DIA analysis. For pairwise comparison, a two-
sample Student’s t test was performed with a permutation-
based FDR < 5%.

For exosome analysis, we selected known exosome pro-
teins from the Exocarta database (http://www.exocarta.org) 
and conducted an enriched analysis. Combined with label-
free quantification and DIA DEPs with enrichment analy-
sis, we selected common upregulated and downregulated 
proteins with common biological processes. After matching 
the expression patterns using unclustered heatmap analysis, 
candidates of bladder cancer biomarkers among exosome 
and urinary proteins were selected.

6. Urinary ELISA for biomarker validation
Candidate biomarkers were selected under the sum of 

Fig. 2.  Results of label-free quantification in the discovery stage. 
(A) Proteomic workflow of label-free quantification. (Continued 
to the next page)
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five scoring systems, which reflected significant differences  
between cancerous and benign urine data. The first and sec-
ond scores were based on fold changes in the LC-MS/MS–
based DIA study (test and repeated test) between cancer and 
benign patient urine. The third score was based on the area 
under the curve of the receiver operating characteristic curve 
(AUROC) of each protein for diagnosis of bladder cancer; 
AUROC > 0.95 as ten, > 0.9 as eight, > 0.85 as six, > 0.8 as 

four, and > 0.75 as two points. Fourth and fifth scores were 
assigned using the multivariable logistic regression model 
in the repeated DIA study. Under five scoring systems, we 
selected top eight candidate proteins for ELISA study (S1  
Table).

Levels of eight proteins are as follows: alpha-2 mac-
roglobulin (A2M; Magnetic Luminex Assays, catalog No. 
LXSAHM, R&D Systems Systems Inc., Minneapolis, MN), 

Fig. 2.  (Continued from the previous page) (B) Number of Identification and quantification in urine and exosome. (C) Volcano plots. (D) Prin-
cipal component analysis plots. FASP, filter-aided sample preparation; LC-MS/MS, liquid chromatography-tandem mass spectrometry.
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cofilin-1 (CFL1; catalog No. MBS2886911, MyBioSource Inc., 
San Diego, CA), apolipoprotein A-I (APOA1; R-PLEX plat-
form, catalog No. F21PR-8, Meso Scale Diagnostics LLC, 
Rockville, MD), inter-alpha-trypsin inhibitor heavy chain H2 
(ITIH2; catalog No. MBS100133, MyBioSource Inc.), afamin 
(AFM; catalog No. DY8065-05, R&D Systems Inc., Minneapo-
lis, MN), fibrinogen beta chain (FGB; ProcartaPlex Multiplex 
Immunoassay, catalog No. MAN0016941, Thermo Fisher Sci-
entific Inc.), cell division cycle 5-like protein (CDC5L, cata-
log No. MBS7227993, MyBioSource Inc.), and CD5 antigen-
like protein (CD5L; catalog No. ELH-CD5L, RayBiotech, 
Peachtree Corners, GA) were analyzed in patient urine sam-
ples using commercial ELISA, following the manufacturer’s 
instructions. Calibration curves were prepared using puri-
fied standards before each protein was assessed. We normal-
ized the data if the protein expression was highly skewed 
(over +2 or less than –2 of skewness), using natural log [ln] 
transformation [16]. We compared the expression level of 
each protein between benign and cancerous samples, and 
between the T stages (benign, Tis, Ta, T1 and > T2).

7. Data analysis of ELISA results
Continuous variables were described as the median±stan-

dard deviation (interquartile range), and categorical vari-
ables were described as the frequency (%). The statistical 
significance of two AUROCs followed De Long’s non-para-
metric approach [17]. Comparison of two samples was per-
formed using Student’s t test and statistical significance was 
set at p < 0.05, and all reported p-values were 2-sided. All 
analyses were performed using Python 3.9.0, and statistical 
analysis was based on packages dependent on SciPy [18]. 
Detailed methods used for the comparison of the diagnostic 
performance of each protein for bladder cancer detection are 
described in Supplementary Methods.

Results

1. Patient characteristics
In the development and verification phases, the patients in 

the cancer group were older than those in the control group. 
Abnormal cytological findings (atypical and malignant cells) 
were significantly higher (p < 0.01) in the cancer group than 
in the benign group, in the verification phase. In the valida-
tion phase, age was not statistically different between the 
benign and cancerous samples. The percentage of cancerous 
samples were higher in the male population and positively 
correlated with abnormal cytology findings. All enrolled  
patient characteristics are shown in Table 1.

2. Biomarker discovery: label-free quantification
To identify urinary and exosome biomarker candidates, 

we performed a label-free quantitative proteomic analysis 
based on data-dependent acquisition (DDA) in a discovery 
cohort of bladder cancer urine samples (n=12) (Fig. 2A). Uri-
nary exosome was isolated using the precipitation-based 
Total Exosomes Isolation kit, which is was validated using 
NanoSight (S2 Fig.). After quality assessment, three samples 
from two patients in the control group (Donor 2, 6) and one 
in the bladder cancer group (TURBT 3) failed exosome pro-
tein extraction. The average number of identified proteins 

Fig. 3.  Results of label-free quantification in the discovery stage. 
(A) Proteomic workflow of label-free quantification. (Continued 
to the next page)
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was 606.2±138.4 for exosomes and 1,021.7±172.1 for urinary 
proteins (Fig. 2B). Pairwise comparison analysis revealed 
that there were 132 and 248 DEPs (permutation-based FDR < 
5%) between control and bladder cancer groups in exosome 
and urine samples, respectively (Fig. 2C). We identified 67 
upregulated and 65 downregulated exosome proteins, as 
well as 137 upregulated and 111 downregulated urinary 
proteins for urothelial carcinoma. From the heatmap with 
unsupervised hierarchy clustering of exosome and urinary 
proteins, we visualized differences in protein expression  
between cancer samples and exosomes in the discovery  
cohort (S3A and S3B Fig.). Principal component analysis 
(PCA) of the exosome and urine proteomes showed a clear 
separation of sample groups (Fig. 2D).

3. Biomarker verification: DIA
To verify the DEPs in the discovery cohort, we adopted a 

data-independent acquisition strategy (DIA), both because it 
can achieve high data completeness [19] (Fig. 3A). First, we 
constructed spectral library for DIA analysis. A DIA library 
of about 1,209 proteins was computationally merged from 
pooled urine. Among the identified DEPs in the discovery 
phase, 190 candidates for urinary and 104 for exosome pro-
teins were observed from the spectral library (Fig. 3B). For 
individual sample analysis, we performed DIA measuring 
of urinary and exosome proteins from 24 participants (Fig. 
3A). Exosome protein data of three patients (TURBT 5, 14, 
15) were excluded owing to low-quality quantification. The 
average number of extracted proteins was 796.6±141.0 for 
exosomes and 1,279.4±159.7 for urinary proteins (S4A Fig.). 
PCA plot for exosome and urinary proteins are demonstrat-

Fig. 3.  (Continued from the previous page) (B) Flowchart of verification process using data-independent acquisition approach. (C) Correlation 
of protein control/urothelial carcinoma fold changes between the discovery and verification cohorts. DEP, differentially expressed protein; 
FASP, filter-aided sample preparation; LC-DIA/MS, liquid-chromatography data independent acquisition mass spectrometry.
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ed in S3B Fig. From the volcano plot and the heatmap with 
unsupervised hierarchy clustering of exosome and urinary 
proteins, we visualized differences in protein expression  
between cancer samples and exosomes in the verification  
cohort (S4C and S5 Fig.).

Comparing the discovery and verification cohorts, 44% 
(109/248 urinary DEPs) and 38% (50/132 exosomal DEPs) 
are consistent at significance levels of 5% of FDR, respective-
ly (Fig. 3B). We next assessed the consistency of urothelial 
carcinoma-associated protein changes between discovery 
and verification stages. In exosome samples, 48 proteins dif-
fered consistently in abundance by cancer status. Among 
these proteins, 28 and 20 proteins were up- and downregu-
lated in urothelial carcinoma, respectively. In urine samples, 
83 out of 109 proteins (76%) differed consistently in abun-
dance by cancer status, 27 of which had an elevated abun-
dance in urothelial carcinoma and 56 an elevated abundance 
in control. 

Furthermore, quantitative alterations of protein levels  
between control and urothelial carcinoma were very consist-
ent between the discovery and verification cohorts. Control/
Urothelial Carcinoma fold changes of proteins were highly 
correlated with Pearson’s correlation coefficients at r=0.945 
and r=0.92 for the comparisons of exosome and urine, res-
pectively (Fig. 3C).

4. Selection of candidate biomarkers
Owing to limitations in the isolation of some specimens 

in the discovery and verification phases, we used urinary 
proteins for biomarker candidate selection. From 27 and 28 
upregulated urinary proteins and exosome proteins, nine 
proteins are abundant in both samples in cancer patients. We 
selected upregulated urinary proteins in cancer patients as 
potential biomarkers; however, four proteins were removed 
because there was no available ELISA antibody. FGB was 
upregulated seven folds, whereas A2M, CD5L, fibrinogen 
gamma chain (FGG), complement factor H (CFH), and Rho 
GDP dissociation inhibitor beta (ARHGDIB) were upregu-
lated five folds in the discovery set. In the verification set, 
A2M was upregulated six folds, FGB and FGG were upre-
gulated five folds, and APOA1, complement C3 (C3), CFH 
and apolipoprotein C-III were upregulated four folds. For  
AUROC, A2M scored ten points, whereas AFM, FGB, FGG, 
C3, CFH, protein S isoform 1, apolipoprotein M, heparin  
cofactor 2 (SERPIND1), and plasminogen scored eight 
points. By multivariable regression modeling, A2M, CFL1, 
APOA1, CDC5L, and CD5L were selected in the first model, 
and A2M, CFL1, ITIH2, and AFM were selected for the sec-
ond model (S1 Table). Finally, we selected high scored eight 
proteins (A2M, CFL1, APOA1, ITIH2, AFM, FGB, CDC5L, 
and CD5L) for ELISA study. Among eight selected proteins, 
three proteins (APOA1, ITIH2, and FGB) also abundant in 
exosome samples. 

Table 2.  Differences between cancer and benign patient’s urine protein expression in ELISA study of transurethral resection of bladder 
tumor patients
 Benign Cancer p-value

No. of participants 25 95
Raw data   
    A2M 76,897.4 (4,579.0 to 35,307.0) 159,609.5 (1,429.5 to 224,686.5) 0.045
    CFL1 16,766.87 (2,242.5 to 14,108.0) 33,026.01 (3,692.0 to 65,795.5) 0.017
    APOA1 6,779,594.0 (175,659.0 to 1,158,217.0) 19,927,277.3 (703,284.5 to 18,851,324.0) 0.061
    ITIH2 8.07 (3.42 to 3.68) 7.29 (0.33 to 3.45) 0.875
    AFM 12,894.0 (716.0 to 13,301.0) 48,942.7 (1,997.5 to 46,017.0) 0.002
    FGB 256,907.1 (6,421.0 to 160,181.0) 673,964.6 (26,786.75 to 731,388.5) 0.039
    CDC5L 2.45 (1.98 to 2.74) 2.85 (2.08 to 3.45) 0.034
    CD5L  272.0 (88.70 to 189.72) 508.5 (130.90 to 511.93) 0.038
After logarithmic transformation   
    ln_ITIH2 1.28 (1.22 to 1.30) 0.11 (–1.11 to 1.24) < 0.001
    ln_AFM 7.85 (6.57 to 9.50) 9.26 (7.60 to 10.74) 0.003
    ln_CD5L 5.06 (4.49 to 5.25) 5.57 (4.87 to 6.24) 0.023
    ln_APOA1 13.22 (12.08 to 13.96) 15.05 (13.46 to 16.75) 0.001
    ln_FGB 10.64 (8.77 to 10.20) 11.6 (10.20 to 13.49) 0.049
A2M, alpha-2 macroglobulin; AFM, afamin; APOA1, apolipoprotein A-I; CD5L, CD5 antigen-like protein; CDC5L, cell division cycle 5-like 
protein; CFL1, cofilin-1; ELISA, enzyme-linked immunosorbent assay; FGB, fibrinogen beta chain; ITIH2, inter-alpha-trypsin inhibitor 
heavy chain H2.
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5. Biomarker validation using ELISA
Before analysis, we normalized the expression levels of 

AFM, CD5L, APOA1, ITIH2, and FGB via natural logarith-
mic transformation (S6A and S6B Fig.). The expression of 
CDC5L, ITIH2, AFM, CFL1, APOA1, A2M, FGB, and CD5L 
was significantly different between cancerous and benign 
samples (Table 2). A2M, CFL1, APOA1, AFM, FGB, and 
CD5L showed a statistical difference between benign and T1 
or T2 tumors. Only ITIH2 showed statistical differences in 
protein expression levels between benign and Ta tumors (S7 
Fig.).

The AUROC of the eight biomarkers ranged from 0.629-
0.759, and the AUROC of urine cytology was 0.718 (Fig. 4A). 
Using the multivariable analysis, ITIH2, AFM, CFL1 were  
selected for model 1. Model 2 was created by entering all 
eight biomarkers. The AUROC of model 1 was 0.845 (95% 
confidence interval [CI], 0.764 to 0.906) and that of model 
2 was 0.842 (95% CI, 0.761 to 0.905). Model 1 (p=0.036) and 
model 2 (p=0.039) showed statistically significant differenc-
es in the AUROC of urine cytology (0.718; 95% CI, 0.625 to 
0.800) (Fig. 4B).

The optimal cutoff values of model 1 and 2 were 0.735 
and 0.870, respectively. The sensitivity, specificity, positive 
predictive value, and negative predictive value of model 1 
were 0.880, 0.813, 0.485, and 0.949, respectively, and those of 
model 2 were 0.850, 0.747, 0.425, and 0.958, respectively. With 

a combination of urine cytology and the predicted value of 
model 1, AUROC for cancer prediction was 0.851 (95% CI, 
0.770 to 0.912), and that of the combination of urine cytology 
and model 2 was 0.827 (95% CI, 0.743 to 0.893) (S7 Fig.).

Discussion

In this study, we aimed to develop multiplex urinary bio-
markers for bladder cancer diagnosis. Using a combined  
approach of urine and exosome proteins to identify candi-
date biomarkers using LC/MS-MS, we selected several can-
didate proteins, in the discovery and verification phases. 
After narrowing down the candidate proteins using statisti-
cal methods, we finalized eight of the most promising bio-
markers. Using ELISA result, we developed two diagnostic 
models, which were more accurate than urine cytology. With 
the combination of urine cytology and the developed model 
with cutoff value application, the AUROC of model 1 with 
urine cytology was 0.851 and that of model 2 with urine  
cytology was 0.827.

In recent decades, numerous urinary biomarkers have 
been discovered and some of them have been approved 
for clinical use, however, the diagnostic performance is still 
limited in patients with haematuria [6]. The combination of 
biomarkers shows higher accuracy than a single biomarker 

Fig. 4.  Receiver operating characteristic for diagnosis of bladder cancer by each candidate proteins (A) and developed multiplex bio-
marker models (B). Model 1 for selected proteins and model 2 for all protein-based model. A2M, alpha-2 macroglobulin; AFM, afamin; 
APOA1, apolipoprotein A-I; AUROC, area under the receiver operating characteristic curve; CD5L, CD5 antigen-like protein; CDC5L, 
cell division cycle 5-like protein; CFL1, cofilin-1; CI, confidence interval; FGA, fibrinogen alpha chain; ITIH2, inter-alpha-trypsin inhibitor 
heavy chain H2.
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alone, as shown in previous studies [20,21]. In the present 
study, we developed a multiplex biomarker panel using the 
eight candidate proteins selected from the high-through-
put LC-MS/MS-based biomarker discovery and verifica-
tion phase. The AUROC of each protein for bladder cancer  
diagnosis was 0.612-0.759, which was similar to that of urine 
cytology (0.718). The AUROC of multiplex model of three 
proteins (0.845) and model of all proteins (0.842) were higher 
than that of single proteins (0.612-0.759) and outperformed 
that of urine cytology (0.718), which showed acceptable per-
formance for clinical application.

Urine is an easily accessible body fluid and a large amount 
of protein in it is considered a good candidate for biomarker 
discovery. However, the problem with using urinary pro-
tein as a biomarker is that we do not know which protein is  
delivered from cancer cells. Urinary exosome has benefit in it 
containing intracellular molecules of cancer cells [22], how-
ever for gathering urine exosome needs additional extraction 
procedure. In this study, using qualified urine preprocessing 
methods, we found that there were no differences between 
urinary and exosome protein yields using a commercial 
exosome extraction kit (Fig. 2B, S4C Fig.). Besides, there are 
risks of quality check failures when using exosome proteins 
as biomarkers (S4C Fig.). Unlike other cancers, bladder cells 
are in direct contact with cancer cells, which are retained in 
the bladder for a long time before being excreted, thus urine 
contains many cancer and peritumoral environment-derived 
proteins [23]. For this reason, we used urine proteins, and 
not exosome proteins, for multiplex biomarker panel com-
position.

In present study, we selected CDC5L, ITIH2, AFM, CFL1, 
APOA1, A2M, FGB, and CD5L for final urine biomarkers. 
Most of them shows differential expression of bladder cancer 
and benign population in previous studies, however clini-
cal application of these proteins is still under discovering. 
APOA1 and FGB were relatively well-known biomarker for 
bladder cancer detection and prognosis [24,25]. CDC5L pro-
tein related with cell cycle regulation and related with path-
ologic grade, distant metastasis in bladder cancer in recent 
study [26]. Downregulation of another ITIHs family, ITIH5 
associated with poor prognosis in bladder cancer [27]. In pre-
sent study, ITIH2 level was lower in cancer patients, and we 
carefully guess biologic activity of ITIH2 maybe similar with 
ITIH5. The prognostic effect or biological role of AFM, A2M, 
and CD5L is still unclear, however some bioinformatics stud-
ies shows potential relationship of AFM and A2M for blad-
der cancer detection [28,29]. 

This study has several limitations. Only urine from a select-
ed number of participants could be used for high-through-
put LC-MS/MS owing to technical limitations. We only per-
formed annalistic validation of the biomarkers. Despite these 

limitations, this study has strength with developed multi-
plex prediction model in a clinically indistinguishable setting 
of TURB. We plan to conduct a large prospective validation 
study for bladder cancer diagnosis, surveillance.

In conclusion, we successfully developed a multiplex 
urinary biomarker-based model using next-generation pro-
teomics in patients with bladder mass. Multiple urinary 
biomarker-based panels overcome the predictive ability of 
urine cytology alone. With the combination of urine cytol-
ogy and the developed model, diagnostic performance fur-
ther increased. A large-scale prospective validation study is 
required for future studies.
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