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Abstract

Rationale: Disturbances in dynamic cerebral autoregulation after ischemic stroke may have important implications for

prognosis. Recent meta-analyses have been hampered by heterogeneity and small samples.

Aim and/or hypothesis: The aim of study is to undertake an individual patient data meta-analysis (IPD-MA) of dynamic

cerebral autoregulation changes post-ischemic stroke and to determine a predictive model for outcome in ischemic

stroke using information combined from dynamic cerebral autoregulation, clinical history, and neuroimaging.

Sample size estimates: To detect a change of 2% between categories in modified Rankin scale requires a sample size

of �1500 patients with moderate to severe stroke, and a change of 1 in autoregulation index requires a sample size of

45 healthy individuals (powered at 80%, a¼ 0.05). Pooled estimates of mean and standard deviation derived from this

study will be used to inform sample size calculations for adequately powered future dynamic cerebral autoregulation

studies in ischemic stroke.

Methods and design: This is an IPD-MA as part of an international, multi-center collaboration (INFOMATAS) with

three phases. Firstly, univariate analyses will be constructed for primary (modified Rankin scale) and secondary out-

comes, with key co-variates and dynamic cerebral autoregulation parameters. Participants clustering from within studies

will be accounted for with random effects. Secondly, dynamic cerebral autoregulation variables will be validated for

diagnostic and prognostic accuracy in ischemic stroke using summary receiver operating characteristic curve analysis.

Finally, the prognostic accuracy will be determined for four different models combining clinical history, neuroimaging, and

dynamic cerebral autoregulation parameters.

Study outcome(s): The outcomes for this study are to determine the relationship between clinical outcome, dynamic

cerebral autoregulation changes, and baseline patient demographics, to determine the diagnostic and prognostic accuracy

of dynamic cerebral autoregulation parameters, and to develop a prognostic model using dynamic cerebral autoregula-

tion in ischemic stroke.

Discussion: This is the first international collaboration to use IPD-MA to determine prognostic models of dynamic

cerebral autoregulation for patients with ischemic stroke.
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Background

Dynamic cerebral autoregulation (dCA) is a key
homeostatic mechanism to maintain a constant cere-
bral perfusion despite systemic fluctuations in blood
pressure (BP) and CO2.

1 dCA can be measured non-
invasively by transcranial Doppler ultrasonography
(TCD), most commonly using transfer function analy-
sis (TFA) of spontaneous fluctuations in BP.1,2

A number of excellent reviews have been published
on TFA,2,3 but in brief, TFA uses Fourier decompos-
ition to measure three main properties of autoregula-
tion: gain, phase, and coherence.2 In addition, the
autoregulation index (ARI) can also be calculated
using the gain and phase frequency responses. Gain
describes the frequency-dependent ratios in amplitude
of the input (BP) compared to the output (cerebral
blood flow velocity, CBFv), where higher gain repre-
sents less efficient autoregulation.2 Phase shift describes
the recovery of changes in CBFv relative to those in
ABP, where high phase shift represents more efficient
autoregulation.2 Coherence expresses the fraction of
output (CBFv) power that can be linearly explained
by the corresponding input (BP) power at each fre-
quency. Values of coherence approaching 1.0 result
from signals with very high signal-to-noise ratio
(SNR) and a strong univariate input–output linear
relationship. The 95% confidence limit of the distribu-
tion of coherence is normally used to reject estimates of
gain and phase where SNR is low, the relationship is
non-linear, or there are multiple inputs affecting the
CBFv output.2 Figure 1 summarises the derivation of
the key TFA metrics of gain, phase, and coherence.

Systemic and cerebral hemodynamic perturbations
in the acute/sub-acute phase of ischemic stroke (IS)
may affect clinical outcomes,3,4 with possible correl-
ations with stroke severity.5 Several single-center
TCD studies primarily investigating IS sub-types have
increased our understanding of dCA during the acute
and chronic phases.3 Unfortunately, prior attempts at
data synthesis have failed due to a lack of methodo-
logical homogeneity in TCD study design and analysis.3

However, large normative datasets,6 consensus guide-
lines,2 and multi-center studies to improve reproduci-
bility of CA estimates7 are examples of efforts designed
to minimize heterogeneity and increase statistical
power. There exist convergent findings demonstrating
impairment of CA up to two weeks post IS.
Importantly, these findings are demonstrated

irrespective of geographical location8 and the presence
of hypocapnia.4 Increased emphasis is being placed on
‘‘dynamic’’ studies of blood flow during the acute
stroke period in an effort to determine the impact
of autoregulation-guided management strategies on
clinical outcome. Concern has been raised about
‘‘intensive’’ strategies to lower BP, particularly in the
presence of presumed impaired autoregulation, as there
is the potential for ischemic harm through cerebral
hypoperfusion. The 2nd CARNet Bootstrap Project
has pooled data from five different centers,9 but at pre-
sent, there has been no pooled individual patient ana-
lyses with dCA data of IS patients.

Individual patient data meta-analysis (IPDMA) con-
trasts with traditional methods for meta-analysis by
aggregating raw data at the individual patient level
rather than combining study-level data.10,11 IPDMA is
increasingly used in areas previously hampered by signifi-
cant heterogeneity at study-level, thus improving stand-
ardization of analysis across studies, reducing
heterogeneity, and improving reliability of pooled esti-
mates.10,11 IPDMA can be considered as a one- or two-
stage approach; the former uses statistical methods to
construct multivariate models, where patients are clus-
tered by study origin using mixed-effects modelling.10

In the two-stage approach, data are re-analyzed at the
individual level and traditional methods are employed to
aggregate the data at study level.10 There is an increasing
trend in the literature towards the use of one-stage IPD
analysis over the traditional two-stage method.12,13 The
one-stage approach has been demonstrated recently to
out-perform the two-stage approach, particularly when
investigating interaction effects. In the context of dCA
measurements in IS, many of the primary studies are
case-control, cross-sectional, or cohort in design, with
small patient numbers.3 Thus, adjustment for confoun-
ders in primary studies is frequently hampered by small
sample sizes. A one-stage approach would facilitate an
adjusted analysis of the role of dCA in IS and provide
important information on which baseline factors are
associated with better or worse dCA in IS, and how
this relates to prognosis and clinical outcomes.

This analysis has been separated into three distinct
phases with the following aims:

1. To explore the scope, severity, and temporal changes
of dCA impairments in IS, and the relationship with
baseline demographics, and neuroimaging and clin-
ical outcome variables
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2. To identify the diagnostic test accuracy (DTA) for
measures of dCA impairment in distinguishing IS
from non-IS and in predicting outcome

3. To develop a risk prediction model for outcome in
IS by combining clinical, neuroimaging, and dCA
information.

Methods

This protocol has been developed in line with reporting
guidelines for IPD analyses.14

Inclusion criteria

1. Adults aged >18 years
2. Diagnosis of IS (all sub-types)
3. Cerebrovascular parameters available, including indi-

ces of dCA (up to 12 months post-symptom onset).

Exclusion criteria

1. Center declines to participate
2. Significant missing data that will compromise study

validity determined by consensus agreement of the
INFOMATAS group

3. Low-quality studies as per criteria below.

Identification of participating centers

Participating centers’ contributing data analysis will be
identified through the Cerebral Autoregulation
Network, from recent systematic reviews, and through
systematic searching of the literature (search strategy in
Supplementary Information I).

Creation of IPD file and confidentiality

All individual patient data will be anonymized prior to
sharing between centers, and no patient identifiable
data will be included. Ethical approval for this study
was not sought as no new patient data are being col-
lected, and analyses are similar to those conducted in
the original individual trials.

Data exchange

A data use agreement will be in place prior to data
exchange. A list of the selected variables which will be
shared between centers is shown in Supplementary
Information II. A standardized data dictionary will be
used by all centers to ensure variables are collected and

coded in a consistent manner between centers. The
receiving center will amalgamate the data independ-
ently of the analyzing center.

Data quality assurance

Data will be checked at the contributing center level
for accuracy, completion, and integrity. The nomencla-
ture of the files will be standardized between centers
prior to analysis. Any data queries or missing
data will be resolved through contact with the trial
investigators.

Pooled IPD analysis sample

Studies included in the final analysis will be summar-
ized, in terms of inclusion and exclusion criteria and
baseline characteristics.

Primary study quality and risk of bias assessment

The primary studies included in the final analysis will be
appraised for quality using CONSORT15 (randomized),
STROBE16 (observational), QUADAS-2 (DTA) stu-
dies,17 and against the criteria in the CARNet white
paper for studies of dCA.2 Two centers will independ-
ently appraise studies and a third center will mediate
disagreements in quality assessment. Risk of bias will
be summarized in table and charts.

Baseline dCA variables

In addition to standard parameters used to describe
cerebral hemodynamics (mean CBFv, mean arterial
pressure, end-tidal CO2 (EtCO2), heart rate), the met-
rics adopted to assess dCA will be those obtained from
TFA of recordings at rest (coherence, gain, phase, both
at very low frequency and low frequency), as well as the
ARI (from TFA, thigh cuff or sit-to-stand). The meth-
ods used by primary studies to generate these measure-
ments will be summarized.

Baseline co-variates

Co-variates relating to participant characteristics,
interventions, and neuroimaging findings recorded at
baseline will be included in the analyses. A full list of
all co-variates and descriptors can be seen in
Supplementary Information II.

Outcome variables

The temporal changes in dCA parameters (gain, phase,
ARI) will be investigated relative to baseline measure-
ments from the acute phase, where data are available,
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up to 12 months post-IS. Where available, these dif-
ferences will be compared to control population data.
We will identify which baseline parameters are predict-
ive of poorer dCA in the longer term, and whether
this relates to clinical outcome (modified Rankin scale
(mRS)) using uni- and multivariable analyses as
described below.

The primary time point for analysis of primary
and secondary clinical and dCA outcomes will be
three months, but we anticipate that studies will have
reported outcomes at different time points and will thus
be grouped into time points from symptom onset,
where the pathophysiological changes are similar
to facilitate analyses: within the first 24 h, 24–72 h,
4–7 days, and 3, 6 and 12 months post-event. If pos-
sible, the first 24 h will be further sub-divided into 0–6 h
and 7–24 h.

The primary outcome for the analysis will be mRS.
Secondary clinical outcome measures include: mortal-
ity, mRS (dead or dependent (3–6)/independent (0–2)),
National Institute for Health stroke scale (NIHSS),
Glasgow Coma Scale (GCS), Barthel index, symptom-
atic hemorrhagic transformation, and infarct size/
volume will be collected from the last radiological ima-
ging (MRI or CT) undertaken during hospital stay.
A full list of all outcomes and descriptors can be seen
in Supplementary Information II.

Missing data

The investigators anticipate that the majority of data-
sets will be complete; however, datasets with missing
data will be considered for analysis if they meet the
quality criteria and will be determined by consensus
agreement of the INFOMATAS group.

IPD analysis

Phase 1: Univariable analysis. The primary outcome
(mRS) and all other binary or ordinal outcomes will
be analyzed using Generalized Estimating equations.
All continuous outcomes will be analyzed using
Generalized Linear Mixed Models. All models will
consider the study from which the patient originated
as a random effect. All models will consider the co-
variates outlined above. Model estimates, standard
errors, odds ratios, and 95% confidence intervals will
be presented where appropriate. Results will be con-
sidered statistically significant where p< 0.05.

Phase 2: DTA. In the first instance, data will be analyzed
at study level and extracted into binary two-by-two
tables (binary test results cross-classified with the
binary reference standard) to calculate sensitivities
and specificities with 95% confidence intervals for
each parameter of dCA. For each study, estimates of

Figure 1. TFA metrics of gain, phase, and coherence.20,2 MAP: mean arterial pressure; MCAv: cerebral blood flow-velocity in the

middle cerebral artery; CBF: cerebral blood flow.
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sensitivity and specificity will be plotted graphically in
forest plots and receiver operating characteristic (ROC)
curves (RevMan 5). Where there are more than three
studies available at the same test threshold and param-
eter, summary analyses will be performed using a bivari-
ate random effects analysis, to calculate pooled estimates
of sensitivity, specificity, positive and negative predictive
values, positive and negative likelihood ratios, with 95%
confidence intervals. The test thresholds will be identified
through systematic review and through consensus dis-
cussion with the INFOMATAS group.

Summary analysis will be performed using
MetaDTA.18

Phase 3: Multivariable modelling and DTA analysis. Using the
univariable analysis from phase 1, four models will be
constructed to investigate the test properties for each of
the dCA parameters when prognostic patient factors
are accounted for. The four models will be constructed
as follows:

Model 1: clinical history alone
Model 2: clinical historyþ dCA parameters
Model 3: clinical historyþ neuroimaging
Model 4: clinical historyþ neuroimagingþ dCA

parameters

Each of the above models for different dCA param-
eters will be represented graphically in a ROC curve,
and the accuracy of each model will then be compared
from the ROC analysis.

Heterogeneity analyses

Pre-specified heterogeneity, sub-group and sensitivity
analyses have been presented in Supplementary
Information III.

Sample size. Firstly, to detect a change of 1 in ARI, a
sample of at least 45 healthy individuals is required
(powered at 80%, a¼ 0.05). We anticipate a loss to
follow-up of approximately 10% of the cohort and
thus require a sample of at least 65 stroke patients.
Secondly, to detect a change of 2% between categories
in mRS, a sample size of approximately 1500 patients is
required in moderate to severe stroke (powered at 80%,
a¼ 0.05).19 To date, no study has calculated the
required sample size to detect clinically significant
change in dCA parameters in IS, and individual studies
have thus far been small; therefore, accurate mean and
standard deviation values are not known. We plan to
use the pooled mean and standard deviation from this
IPDMA to undertake sample size calculations for
future studies to facilitate adequately powered studies
using dCA parameters as outcome measures.
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