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Abstract: In selective chromatography and electromigration methods, supramolecular recognition
of selectands and selectors is due to the fast and reversible formation of association complexes
governed by thermodynamics. Whereas the selectand molecules to be separated are always present
in the mobile phase, the selector employed for the separation of the selectands is either part of the
stationary phase or is added to the mobile phase. By the reciprocal principle, the roles of selector and
selectand can be reversed. In this contribution in honor of Professor Stig Allenmark, the evolution
of the reciprocal principle in chromatography is reviewed and its advantages and limitations are
outlined. Various reciprocal scenarios, including library approaches, are discussed in efforts to
optimize selectivity in separation science.
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1. Introduction

Separation approaches in highly selective supramolecular chromatography [1,2], with
their most refined expression of stereochemical resolution [3], rely on the fast and reversible
non-covalent association equilibrium between functionally and/or structurally complementary
partners. The designations selector and selectand were introduced by Mikeš into chromatography
to avoid ambiguities that may arise from the use of the notations solvent-solute, ligand-substrate,
or host-guest [4]. The new terms were coined in analogy to Ashby’s cybernetic operator-operand
terminology [5]. This terminology extends to all supramolecular interactions such as antibody-antigen,
receptor-substrate, metal ion-ligand etc. In chromatographic partitioning systems, selectors are
employed to separate mixtures of selectands which are added to the mobile phase. The selector
is either present as a stationary phase or as an additive to the liquid mobile phase. In order to find
an optimized selector for a pair of selectands, the role of selector/selectand can be reversed by the
reciprocal principle. One molecule of the selectand is now used as the stationary phase and an array
of potential structural related selectors are now employed as analytes in the mobile phase. The best
identified candidate is then used as the optimized lead stationary phase for the target selectands to
be separated. Thus the reciprocal recognition principle applies to selective separation system when
selectors and selectands change their role and belong to two or more forms of congeners, analogues,
isomers etc. In the special case of chiral recognition, both enantiomers of selectand and selector must
be available. This excludes proteins [6], carbohydrates [7] and antibodies [8], although they represent
versatile chiral stationary phases (CSPs). Pertinent examples will be described in the following Sections.
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2. Origin of the Reciprocal Principle in Chromatography

Following the enantioseparation of [5]–[14]helicenes on the optically active charge-transfer agent
R-2-(2,4,5,7-tetranitro-9-fluorenylideneamino-oxy)propionic acid (TAPA, Figure 1) or its 2-butyric acid
homologue (TABA) [9–11], Mikeš speculated that the function of the selector and the selectand could
be reversed, i.e., optically active helicenes could be used as resolving agents for racemic compounds [4].
Thus, in a reciprocal fashion, if the selectands A1 and A2 are chromatographically separated on the
selector B1 (or B2), the selectands B1 and B2 are separated on the selector A1 (or A2) as well, whereby
the respective pairs A1/A2 and B1/B2 refer to isomers (e.g., stereoisomers) or belong to members
of homologous series of compounds (Figure 2). Indeed, it was subsequently demonstrated that
P-(+)-hexahelicene-7,7′-dicarboxylic acid disodium salt could be used as the chiral stationary phase
(CSP) as π-donor selector for the enantioseparation of N-2,4-dinitrophenyl(DNP)-α-amino acid esters
as π-acceptor selectands by HPLC [12].
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Figure 2. The reciprocal supramolecular recognition principle. If the selector B separates the selectands
A1 and A2, than the selector A is expected to separate the selectands B1 and B2. Ai and Bi are
homologous compounds, congeners or isomers (including enantiomers).

The principle of reciprocity by inverting the role of selectand and selector had first been
demonstrated via the differentiation of enantiomers by chiral solvating agents (CSA) in NMR
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spectroscopy [13]. Pirkle et al. stated: the enantiomers of secondary and tertiary alcohols may be caused to
have nonequivalent nmr spectra through the use of appropriate optically active amines as solvents. The converse
of this phenomenon also obtains; amine enantiomers may have nonequivalent nmr spectra in optically active
alcohols [14] and Pirkle and Hoover concluded that the roles of an enantiomeric solute and a CSA may
be interchangeable for a given pair of compounds [15]. The reciprocal principle was later extended by
Pirkle et al. to enantioselective liquid chromatography [16,17]. The researchers pointed out that one
can take one chiral stationary phase (CSP) to develop others: if a CSP derived from (+)-A retains (+)-B,
then a CSP comprised of immobilized (+)-B should, using the same interactions, selectively retain (+)-A [18,19].
Or put in other words by Pirkle and Pochapsky: This ‘bootstrapping’ method of designing reciprocal CSPs
from compounds that themselves resolve on existing CSPs is based on the premise that if two molecules show
mutual chiral recognition, then it does not matter which of the two is bound to a stationary support for that
recognition to occur. This is in practice not strictly correct, for the nature of attachment to the CSP often
affect chiral recognition. Within limits, however, reciprocity is a useful guide to CSP design [20]. The latter
important restrictions was repeatedly stressed by Pirkle et al.: The two situations are not ‘mirror images’
and the relationship is only approximate. The manner of immobilization, for example, has some bearing upon the
efficacy of the chiral recognition process [19]. Thus deviations from the reciprocal principle may arise from
the environment of the selector in the stationary phase, e.g., as the result of immobilization and the
presence of a spacer linking the selector to a chromatographic matrix [21].

A vivid example of the de novo design of a CSP for a particular target chiral selectand by the
reciprocal principle involved a series of CSPs developed for the separation of the enantiomers of the
non-steroidal anti-inflammatory drug (NSAID) naproxen [22,23]. By the so-called immobilized guest
method, a single enantiomer of naproxen (Figure 3a) was immobilized to form a naproxen-derived CSP
(Figure 3b) which was then used to identify a potential candidate from an array of test racemates as
a de novo enantioselective naproxen selector [23]. This reciprocal study also identified the structural
requirements for enantioselective recognition for the target racemate naproxen. The tailor-made
Whelk-O1 CSP (Figure 3c) not only showed the highest enantioseparation factor for naproxen
(α = 2.25) but also enantioseparated structurally related NSAIDs as well as a host of different
racemates by a combination of face-to-edge, and face-to-face π-π interaction as well as hydrogen
bonding [22,23]. The Whelk-O1 CSP offered a broad spectrum for enantioseparations of aromatic
selectands. The enantioseparation of bis-, tris- and hexakis-adducts of C60 has also been achieved by
HPLC on the Whelk-O1-CSP (Section 4).
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Some preliminary work on the use of the reciprocal principle has been reported for the design
of pyrethroid specific CSPs [24]. In a preliminary attempt to design novel CSPs for the resolution
of the stereoisomers of the insecticide cypermethrin, the principle of reciprocal interaction has been
considered via the following rationale: ‘If a CSP based on a pure enantiomer (+)-A resolves a racemate
(+/−)-B, then a single pure enantiomer (+)- or (−)-B should resolve (+/−)-A. This is true if no major point
of interaction is changed when attaching B to silica’. It should be mentioned that by employing the CSP
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(−)-A instead of (+)-A, a reversal of the elution order of (−/+)-B would obtain. Likewise by employing
the CSP (−)-B instead of (+)-B, again a reversal of the elution order of (−/+)-A would obtain.

The biologically most active (1R cis S) stereoisomer of cypermethrin has been structurally modified
by an allylic group, followed by free radical addition or hydrosilylation reaction on two different silanes
and linking (i) a short-chain monofunctional unit and (ii) a long-chain trifunctional unit, respectively,
to silica. As cypermethrin can be resolved on N-(3,5-dinitrobenzoyl)-phenylglycine CSP, the reciprocal
interaction of the cypermethrin CSP with racemic N-3,5-dinitrobenzoyl-phenylglycinepropylamide
was claimed [24]. The actual objective to use the cypermethrin-derived CSPs to identify and optimize
the interaction with racemic test compounds from which a single enantiomer will then be bound to
silica to afford a cypermethrin-specific CSP still awaits its realization [24].

2.1. Capillary Electromigration Methods (CE)

In enantioselective capillary electromigration methods, the non-racemic chiral selector is added
to the background electrolyte as part of the mobile phase. The method of enantioseparation of charged
selectands with neutral selectors is referred to capillary zone electrophoresis (CZE), whereas the
method of enantioseparation of neutral selectands with charged selectors, entailed with self-mobility,
is referred to electrokinetic chromatography (EKC) [25]. Chankvetadze argued that from a mechanistic
point of view there is no principle difference whether the selectand or the selector is charged in
electromigration methods [26]. The philosophy behind this concept has been stated as follows: if a
neutral chiral selector can resolve the enantiomers of a charged chiral analyte, then the enantioseparation of the
neutral chiral analyte should also be possible with the charged chiral selector [26]. Thus another type of the
reciprocal principle applies to electromigration methods. Whereas the enantioseparation of neutral
chiral selectands on charged chiral selectors were at first considered not possible in earlier studies
of EKC, it was later successfully realized based on the reciprocal concept. Thus positively charged
cyclodextrin derivatives [25,27] and negatively charged cyclodextrin derivatives [27–30] were used for
the enantioseparation of a multitude of neutral chiral compounds [31,32].

Another reciprocal principle in the achiral electromigration domain has not yet been realized, but
may be anticipated. Native α-, β-, γ-cyclodextrin [33] and, more recently, δ-cyclodextrin [34] have been
used as an added mobile phase selector for molecular association with various positively or negatively
charged selectands in CZE. By inverting their role, a charged selector may be able to separate various
cyclodextrin congeners preceding δ-CD (α-, β-, γ-) and, more importantly, congeners following up
δ-CD (>δ).

In enantioselective capillary electrochromatography (enantio-CEC), a non-racemic chiral selector is
used as CSP coated on the inner capillary wall. As the first examples, racemic 1-phenylethanol [35,36]
and some non-steroidal anti-inflammatory drugs (NSAIDs, Figure 4) were enantioseparated on
Chirasil-Dex (permethylated β-cyclodextrin chemically linked to polydimethylsiloxane and thermally
immobilized on the inner wall of a 80 cm (effective) × 50 µm I.D. capillary column).

In order to find the best cyclodextrin selector for a given racemic analyte by the reciprocal approach,
the target molecule may now be used as CSP, whereas the modified cyclodextrin is added to the mobile
phase. However, as the cyclodextrins are only available in one enantiomeric form (comprised of
D-glucose building blocks) two columns coated with the L- and D-target molecule, respectively, are
required. As shown in Figure 5 the highest enantioselectivity for phenylalanilol was observed with
hydroxypropyl-β-cyclodextrin due to a large retention time difference on the two mirror image CSPs [37].

Although not related to the reciprocal principle, the following approach is of interest in its own
right. A dual chiral recognition system can be obtained when one cyclodextrin selector is used
as the CSP whereas another one is added to the mobile phase (combination of CEC and EKC).
As the enantioselectivities of the bonded and free CDs were opposite, the incremental addition
of the sulfonated β-cyclodextrin to a Chirasil-Dex-coated capillary led to an inversion of the elution
order of racemic 1,1’-bi-2,2’-naphthol-hydrogenphosphate (20 mM borate/phosphate (pH 7) buffer,
at 30 kV) [29].
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ammonium acetate, pH 6.5, 15 kV, column: 68 cm eff. × 50 μm I.D.) [37]. 
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mono-2.6-dimethylphenylcarbamate) on silica-bound D- and L-phenylalaninol by the CEC-experiment
(50 mM ammonium acetate, pH 6.5, 15 kV, column: 68 cm eff. × 50 µm I.D.) [37].

2.2. Combinatorial Library Approaches in Achiral Supramolecular Chromatographic Systems

The reciprocal principle has been used for the rational design of an optimized selector for molecular
recognition. Another optimization principle is based on the use of combinatorial selector libraries
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aimed at identifying the prime selector for a given enantioselective separation system. This approach
can also be combined with the reciprocal principle [38,39]. It has generally been accepted that the
screening of libraries of selectors anchored to solid supports allows the identification of key structural
elements responsible for host/guest interaction and molecular recognition through binding assays
with soluble selectands. Combinatorial methods have been classified into two major categories. One is
based on the synthesis of mixtures and another is based on the parallel synthesis of pure library
components (also called the high-throughput approach). In the former approach, a mixture of library
components is synthesized and screened simultaneously for the desired property. In the parallel
library approach, each library component is synthesized and screened individually. The advantage of
the parallel approach is that the library is generally better characterized, whereas the random library
technique is advantageous in that a large number of components can be synthesized and screened
more efficiently. A classification of the various combinatorial approaches for the preparation and use
of CSPs for enantioseparations has been summarized [40].

Peptide libraries have been used to optimize selectors that bind specifically to a desired target
protein in the area of protein purification. Solid phase ‘one-bead-one-peptide’ (OBOP) parallel
combinatorial libraries have been successfully employed to search for affinity ligands for large
proteins. Thus the immobilized linear hexapeptide Try-Asn-Phe-Glu-Val-Leu was identified as a
potential host for the purification of S-protein by affinity chromatography [41]. Also an affinity resin
containing the peptide ligand Phe-Leu-Leu-Val-Pro-Leu has been developed for the purification of
fibrinogen. The selector was identified by screening the solid-phase combinatorial peptide library
using an immunostaining technique [42]. In a reversed reciprocal fashion, affinity chromatography
employing the immobilized S-protein was used for the screening of affinity peptide selectands from a
soluble peptide library consisting of octamers with glycine (Gly) at both termini of each peptide, i.e.,
Gly-X-X-X-X-X-X-Gly. The six variable centre positions were constructed using random sequences of
the six L-amino acids Tyr, Asn, Phe, Glu, Val and Leu. Peptides that were retained specifically on the
immobilized S-protein column were eluted by 2% acetic acid. The peptides in the acid eluate were further
separated using reversed-phase HPLC. Each separated peptide fraction was collected and the peptide
sequences deconvoluted by mass spectrometry (MS/MS). The screenings of the peptide library resulted
in twelve affinity peptides and eight out of them contained the essential sequence Asn-Phe-Glu-Val [43].

2.3. Combinatorial Cyclopeptide Library Approaches in Chiral Capillary Electrophoresis

Combinatorial cyclohexapeptide libraries were used as novel multicomponent chiral additives
for enantioseparation in capillary electrophoresis (CE) by Jung and Schurig et al. in 1996 [44]. It was
inferred that the time-consuming screening of a multitude of individual potential chiral selectors can
be avoided by employing a whole selector library. The random library approach is then followed by
deconvolution steps. The sub-libraries with reduced heterogeneity can then be employed to identify
the most enantioselective selectors. In general, cyclopeptide libraries of high molecular diversity
can be obtained by including structural variations. By using the nearly 200 commercially available
amino acids of defined chirality, 2006 = 64 × 1012 individual cyclohexapeptides are in principle
accessible. The number of cyclopeptides can further be increased by varying the ring size and by
including non-peptidic components, derivatives with side chain and backbone modifications, and
selected building blocks with inverted chirality [44]. Three libraries consisting of 183 = 5832 individual
cyclohexapeptides were synthesized as a random mixture and were characterized by electrospray
mass spectrometry [44]. Each library had the composition cyclo(O-O-X-X-X-O) and consisted
of three defined positions (O) and three randomized positions (X) which represented a mixture
of 18 of the common L-α-amino acids except cysteine and tryptophan. To aid ring closure,
one position (O) consisted of unnatural D-alanine (ala). When added to the mobile phase in
CE, the libraries cyclo(Asp-Phe-X-X-X-ala), cyclo(Arg-Lys-X-X-X-ala) and cyclo(Arg-Met-X-X-X-ala),
respectively, enantioseparated Tröger’s base and N-2,4-dinitrophenyl (DNP)- or Fmoc-D,L-glutamic
acid (α = 1.04–1.13) (Figure 6) [44].
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Figure 6. Enantioseparation of racemic Tröger’s base and DNP-D,L-glutamic acid with combinatorial
cyclohexapeptides by CE. Conditions: 10 mmol cyclopeptide library cyclo(OOXXXO) in phosphate
buffer pH 7.4 (20 mmol). Capillary: 50 cm (effective) × 50 µm I.D., 20 kV (left, middle) and 10 kV
(right), detection at 260 nm (left) and 340 nm (middle and right) [44].

The result raised the question whether all 183 individual components (which are present in the
library at high dilution and probably in a non-equimolar ratio) possess the same or, more likely,
different enantioselectivities with individual ‘losers and winners’. It may even be conceived that some
members exert an opposite elution order of the selectand thus reducing the overall enantioselectivity.
Cooperative effects between the individual selectors were believed to be absent [44]. To identify the
prime selector in the library, Chiari et al. used an interesting deconvolution strategy [45].

This approach was performed in two steps: (i) the synthesis of sublibraries with a progressively
increased number of defined positions and (ii) the evaluation of their ability to act as chiral
selectors in CE for a set of DNP-D,L-amino acids. First of all, Chiari et al. deconvoluted the library
cyclo(Arg-Lys-X-X-X-β-Ala) by substituting D-Ala (ala) of the library cyclo(Arg-Lys-X-X-X-ala) of Jung
and Schurig et al. [44] by achiral β-alanine (Table 1, S.1.1) [45]. Then a number the sublibraries S.2.1,
S.2.2 and S.2.3 were prepared, whereby proline was deliberately selected for one of the positions X as
it facilitates hexapeptide cyclization. However, only proline in position four (Table 1, S.2.2) exerted
a high enantioselectivity of the sublibrary.

Table 1. List of sublibraries of cyclohexapeptides used in the deconvolution process. X stands for one
of the 18 of the common L-α-amino acids except cysteine and tryptophan. Reprinted with permission
from [45]. Copyright (1998) American Chemical Society.

Numbering Cyclohexapeptide Library

S.1.1: cyclo(Arg-Lys-X-X-X-β-Ala)

S.2.1: cyclo(Arg-Lys-Pro-X-X-β-Ala)
S.2.2: cyclo(Arg-Lys-X-Pro-X-β-Ala)
S.2.3: cyclo(Arg-Lys-X-X-Pro-β-Ala)

S.3.1: cyclo(Arg-Lys-Val-Pro-X-β-Ala)
S.3.2: cyclo(Arg-Lys-Met-Pro-X-β-Ala)
S.3.3: cyclo(Arg-Lys-Ile-Pro-X-β-Ala)
S.3.4: cyclo(Arg-Lys-Leu-Pro-X-β-Ala)
S.3.5: cyclo(Arg-Lys-Tyr-Pro-X-β-Ala)
S.3.6: cyclo(Arg-Lys-Phe-Pro-X-β-Ala)

S.4.1: cyclo(Arg-Lys-Tyr-Pro-Val-β-Ala)
S.4.2: cyclo(Arg-Lys-Tyr-Pro-Met-β-Ala)
S.4.3: cyclo(Arg-Lys-Tyr-Pro-Ile-β-Ala)
S.4.4: cyclo(Arg-Lys-Tyr-Pro-Leu-β-Ala)
S.4.5: cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala)
S.4.6: cyclo(Arg-Lys-Tyr-Pro-Phe-β-Ala)
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The optimized library cyclo(Arg-Lys-X-Pro-X-β-Ala) (S.2.2) was then semipreparatively resolved
into three fractions by reversed-phase HPLC. The second fraction exerted the highest enantioselectivity
and amino acid analysis revealed that this fraction contained the hydrophobic amino acids Val,
Met, Ile, Leu and Phe. This gave rise to the synthesis of the six sublibraries S.3.1–S.3.6. (Table 1).
The sublibrary cyclo(Arg-Lys-Tyr-Pro-X-β-Ala) (S.3.5) was selected for the further deconvolution, since
Tyr contains an aromatic system useful for detection purposes. Now the six sublibraries S.4.1–S.4.6
were synthesized (Table 1). In a similar fashion position 5 was optimized by a preceding HPLC
separation into three fractions and again identifying hydrophobic amino acids as being essential
for enantioselectivity. Phe and Tyr in position 5 provided the highest enantioselectivity and hence
the final defined cyclohexapeptide selector (Figure 7) has been selected for the enantioseparation of
DNP-D,L-glutamic acid (α = 1.24) (Figure 8) [45].
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Figure 8. Enantioseparation of D,L-DNP-amino acids in a running electrolyte containing
cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) (10 mM in 20 mM sodium phosphate buffer, pH 7.0) as chiral mobile
phase additive (CMPA) in CE. Column: 57 cm (effective) × 50 µm I.D.; −20 kV, 15 ◦C. Reprinted with
permission from [45]. Copyright (1998) American Chemical Society.

The overall deconvolution process required the synthesis and the evaluation of 15 sublibraries
instead of the 54 syntheses considered by a classical procedure of serial deconvolution [46].

In a follow up study, several cyclohexapeptide and cylcoheptapeptide analogues of the identified
library members were studied as chiral selectors in countercurrent capillary electrophoresis [47].
At the operating pH of 7.0, all of the selectors bear a positive charge, while the analyte bears
a negative charge. A poly(acrylamide-co-allyl amide of D-gluconic acid-co-allylglycidyl ether)
was coated onto the capillary to suppress the EOF to ensure that the analyte and selector would
migrate in opposite directions by counter-current CE. The following changes were made in the
deconvoluted cyclohexapeptide cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala). (i) Tyr in position five was
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substituted by Tyr(3-NO2), Phe, Phe(4-NO2) and Trp; (ii) Tyr in position three was substituted
by positively charged Lys, negatively charged Glu and neutral Leu; (iii) Ala was inserted into
cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) in the subsequent positions 1–6 to yield conformationally flexible
cycloheptapeptides with positional variety. All positively charged cyclohexapeptides are effective
chiral selectors for the enantioseparation of DNP-α-amino acids with resolutions factors Rs = 1–5.
The charge in position 3 did not have any influence on enantioselectivity of DNP-AAs. However, all of
the cycloheptapeptides failed to resolve DNP-amino acids [47]. This finding suggested that the size and
rigidity of the cyclopeptide system was important for ensuring chiral discrimination. In subsequent
NMR studies it was recognized that the presence of aromatic moieties carrying electron-withdrawing
substituents, i.e., nitro groups, were essential for enantiorecognition via π-π stacking interactions and
amide/aromatic n-π interactions [47,48].

Based on the optimized cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) cyclohexapeptide selector deconvoluted
by Chiari et al. [45], Jung and Schurig et al. also screened related cyclopeptides with small
structural variations [49]. Thus aromatic tyrosine was replaced by phenylalanine and tryptophane
in position 3 and 5. In both cases the enantioselectivity was reduced for several DNP-amino
acids (Table 2, Figure 9) and the choice of the aromatic amino acid had a pronounced effect on
enantioselectivity. When the five-membered ring of proline was opened, the rigid structure of
the cyclohexapeptide was released and accompanied by ring extension. Thus when proline was
substituted by 6-aminohexanoic acid in cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala), no enantioseparation at all
was observed for various DNP-amino acids [49]. Enantioselectivity also broke down when the amino
acid sequence in cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) was changed to cyclo(Arg-Pro-Lys-Tyr-Tyr-β-Ala)
and cyclo(Arg-Pro-Tyr-Lys-Tyr-β-Ala). Thus the sequence ‘aromatic amino acid-proline-aromatic amino
acid’ (Tyr-Pro-Tyr) was essential for chiral recognition. Finally the ring size of the cyclopeptide
was probed (Table 3) [49]. The highest enantioselectivity was observed with cyclohexapeptides.
In agreement with results of De Lorenzi et al. [47], enantioselectivity was lost for conformationally
flexible cycloheptapeptides. Surprisingly, this drop was even more pronounced with cyclopentapeptides
(Table 3). When the cyclohexapeptide cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) was opened up to the linear
peptide Arg-Lys-Tyr-Pro-Tyr-Lys by exchanging β-Ala for Lys no enantioselectivity for DNP-amino
acids was observed [49]. Thus the cyclohexapeptide cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) identified by
Chiari et al. (Figure 7) [45] indeed represents the most favourable selector which could not be
optimized further.

Table 2. Resolution factors Rs of DNP-amino acids on cyclohexapeptides by CE (conditions as in
Figure 6) [49].

Amino Acid/Cyclopeptide DNP-Glu DNP-Norleu DNP-Meth DNP-Ala DNP-Norval DNP-Threo

cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) 4.97 3.80 5.46 2.27 3.64 2.10
cyclo(Arg-Lys-Phe-Pro-Phe-β-Ala) 2.33 1.63 1.96 1.03 1.66 0.59
cyclo(Arg-Lys-Trp-Pro-Trp-β-Ala) 1.69 1.31 1.21 1.47 1.93 0.90
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Table 3. Resolution factors Rs of DNP-amino acids on cyclopeptides of varying ring size by CE
(conditions as in Figure 6) [49].

Amino Acid/Cyclopeptide DNP-Glu DNP-Norleu DNP-Meth DNP-Ala DNP-Norval DNP-Threo

cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) 4.97 3.80 5.46 2.27 3.64 2.10
cyclo(Lys-Lys-Tyr-Tyr-Tyr-Tyr-Lys) 0.36 1.41 1.53 1.05 1.46 0

cyclo(Lys-Tyr-Arg-Tyr-β-Ala) 0 0.62 0 0.35 0.37 0
cyclo(Arg-Lys-Tyr-Tyr-β-Ala) 0.23 0.73 0.43 0.34 0.55 0

2.4. Reciprocal Principle in Combinatorial Approaches Utilizing Cyclopeptides—A Failure and a Success

Instead of a deconvolution strategy, a reciprocal LC approach has been considered by Jung,
Schurig et al. to identify an enantioselective hit component in the deconvoluted library (Figure 10) [49].
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Figure 10. Illustration of the identification of an optimal selectand in a small library exhibiting the
highest enantioselectivity toward a chiral selector used either in the S- or R-configuration as revealed
by the largest difference of its retention (earmarked by the pale blue colour at the right).

Since the cyclopeptide library exists only in one enantiomeric form (obtained from L-amino acids)
two different columns containing the target racemate separately in the L- and D-form, respectively, are
required. The sub-library component present in the mobile phase which exhibits the largest difference
in its retention on the two mirror-image selectors, should also show the highest enantioselectivity
in the reciprocal system when used as chiral selector for the racemic non-bonded candidate used as
selectand (Figure 10).

In initial experiments L- or D-DNP-alanine silica (Figures 11 and 12) was filled into 100 µm
I.D. capillaries. Cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) was selected as the analyte as it shows high
enantioselectivity toward racemic DNP-alanine (Figure 8) [45]. Micro-HPLC measurements were
performed in the reversed phase mode (H2O), in the organic polar mode (methanol/acetonitrile) and
in the normal phase mode (toluene, n-hexane/2-propanol). However, no measurable retention time
differences for the two mirror image stationary phases were observed. Also the coating of 50 µm I.D.
capillaries with L- or D-5-fluoro-2,4-DNP-alanine in the presence of aminopropyltrimethoxysilane in
toluene and the investigation of cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala) by pressure-supported open-tubular
capillary electrochromatography (OT-CEC) did not reveal differences in retention times as expected
from the reciprocal principle [49]. This unexpected result reinforces the limitation of the reciprocal
principle as enantioselectivity may be reduced by non-specific interactions on silica. This might be
circumvented by end-capping of silanol groups or elongation of the linker categories [38,39].
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Since the cyclohexapeptide cyclo(Arg-Lys-Tyr-Pro-Tyr-β-Ala), used as chiral mobile phase selector
in CE, enantioseparates DNP-glutamic acid (Figure 8), the reciprocal principle was also tested by adding
L-DNP-Glu in a first run, and D-DNP-Glu in a second run, to the background electrolyte in the CE
experiment. The corresponding elution time of the added cyclohexapeptide was determined by indirect
UV-detection. Unexpectedly also no striking difference of the elution time of the cyclohexapeptide
was observed for the mirror-image situation of the two experiments between 15–20 ◦C and at voltages
of 10–25 kV, again reinforcing the limitation of the reciprocal concept [49].

For screening a mixture of a combinatorial library for its best selector, also a reciprocal approach
was developed by Li et al. in line with Figure 10 [50]. The model study concerned the optimized
enantioseparation of (1-naphthyl)leucine ester with a small peptide library (4 × 4 = 16) containing Leu,
Ala, Gly and Pro and four different N-acyl components. In a reciprocal fashion, L-(1-naphthyl)leucine
ester was first immobilized and used as CSP for the enantiomeric peptide libraries obtained
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from L- and D-amino acids, respectively. L- and D-sublibraries, exhibiting the largest retention
differences on the L-configurated CSP, were deconvoluted and the best selector for the racemate was
identified [50]. The optimized peptide Leu-Gly was then attached to silica. It enantioseparated racemic
(1-naphthyl)leucine ester with an enantioseparation factor α = 3. Thus it was indeed demonstrated
that CSPs can be developed by a reciprocal chromatographic approach using enantiomeric libraries.

2.5. On-Bead Library Combinatorial Approaches

For the enantioselective screening of a target racemate, Weingarten et al. used a resin library
containing 60 members of a multimodal receptor which were bonded to polystyrene beads (100 µm)
(Figure 13) [51]. The chemically encoded, solid-phase supported library was generated by a
mix-and-split protocol employing three classes of chiral building blocks (Figure 13). The rationale
behind this non-chromatographic screening method was stated as follows: If a tightly binding and highly
enantioselective (e.g., Rs > 10) resin or other solid material were readily available, then it would be possible to
resolve compounds by simply stirring the racemate with such a resin and filtering. The screening method
employed differently coloured enantiomeric target molecules that were labelled with differently
coloured dyes. Thus a quasi-racemate included the blue L-α-amino acid derivative and the red
D-α-amino acid derivative. Proline was selected as the test compound. The idea was to treat an
equimolar mixture of these coloured probe molecules with a library of chiral selectors on synthetic
beads in which each bead carried a different chiral selector (one-bead-one-selector, OBOS). It was
reasoned that a highly enantioselective binding would yield beads that were either red or blue, whereas
non-enantioselective binding would yield beads that were brown. Thus the best selector was directly
visualized through a two-colour differential binding screening. The reddest and bluest beads found
with each probe were then picked and decoded to determine the structures of their associated chiral
selectors. Finally the leading resolving resins were individually resynthesized on a gram scale and
again treated with excess red and blue proline enantiomers. Subsequent treatment with NaOMe and
HPLC quantification of the released dyes provided a determination of the enantiomeric excess (ee) of
the proline derivatives bound to the beads. The identified enantioselective resolving resin was then
tested via its ability to kinetically resolve racemic proline ester in solution [51].
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Figure 13. Structure of the multimodal receptor array and kinetic resolution of differently dye-tagged
solid-supported amino acids from a 60-member library. Module A contains 15 different D- and L-amino
acids, module B contains RR or SS diamine enantiomers, and the receptor module C contains RRRR or
SSSS enantiomers resulting in 15 × 2 × 2 = 60 different library members [51]. Figure 13 reproduced
with permission from [52].
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2.6. On-Bead Combinatorial Approach of Individual Library Members

Fréchet et al. used an on-bead combinatorial approach to the rational design of optimized CSPs
for HPLC. At first a library of 3 × 12 = 36 L-α-amino acid anilides (consisting of 3 α-amino acids
and 12 aromatic amines) was synthesized in solution, then attached to functionalized macroporous
polymeric methacrylate/dimethacrylate beads which were packed into a ‘library column’ and tested for
the enantioseparation of the target analyte. The lead selector of the library, i.e., L-proline-1-indananilide,
employed for the HPLC enantioseparation of the target racemate N-(3,5-dinitrobenzoyl)-leucine
diallylamide, was identified by a deconvolution process using 11 ‘sublibrary columns’ of lower
diversity, each of which containing a CSP with a reduced number of library components [53,54].
Fréchet et al. also combined the library approach and the reciprocal principle for the development
of enantioselective CSPs for HPLC [55,56]. Thus according to Figure 14, a single enantiomer (+)-T
of the target racemate was at first immobilized onto a polymeric support and the resulting CSP
was used for the HPLC screening of sublibraries of racemic compounds that have been prepared
by parallel combinatorial synthesis. The best enantioseparated member of this library (±)-S is
then prepared as the single enantiomer (−)-S, coupled to a solid support and used in the second
step for the required enantioseparation of the target racemate (±)-T. This reciprocal methodology
has been exemplified for the target racemate N-(3,5-dinitrobenzoyl)-leucine and the parallel library
components of racemic 4-aryl-1,4-dihydropyrimidines obtained in a one-pot three-component reaction
(Biginelli dihydropyrimidine three-component condensation reaction) [56]. Hydrogen-bonding and
π-π interactions played a dominant role in chiral recognition.

Molecules 2016, 21, 1535 13 of 35 

 

2.6. On-Bead Combinatorial Approach of Individual Library Members  

Fréchet et al. used an on-bead combinatorial approach to the rational design of optimized CSPs 
for HPLC. At first a library of 3 × 12 = 36 L-α-amino acid anilides (consisting of 3 α-amino acids and 
12 aromatic amines) was synthesized in solution, then attached to functionalized macroporous 
polymeric methacrylate/dimethacrylate beads which were packed into a ‘library column’ and tested 
for the enantioseparation of the target analyte. The lead selector of the library, i.e., L-proline-1-
indananilide, employed for the HPLC enantioseparation of the target racemate N-(3,5-dinitrobenzoyl)- 
leucine diallylamide, was identified by a deconvolution process using 11 ‘sublibrary columns’ of lower 
diversity, each of which containing a CSP with a reduced number of library components [53,54].  
Fréchet et al. also combined the library approach and the reciprocal principle for the development of 
enantioselective CSPs for HPLC [55,56]. Thus according to Figure 14, a single enantiomer (+)-T of the 
target racemate was at first immobilized onto a polymeric support and the resulting CSP was used 
for the HPLC screening of sublibraries of racemic compounds that have been prepared by parallel 
combinatorial synthesis. The best enantioseparated member of this library (±)-S is then prepared as 
the single enantiomer (−)-S, coupled to a solid support and used in the second step for the required 
enantioseparation of the target racemate (±)-T. This reciprocal methodology has been exemplified for the 
target racemate N-(3,5-dinitrobenzoyl)-leucine and the parallel library components of racemic 4-aryl-1,4-
dihydropyrimidines obtained in a one-pot three-component reaction (Biginelli dihydropyrimidine 
three-component condensation reaction) [56]. Hydrogen-bonding and π-π interactions played a 
dominant role in chiral recognition. 

 
Figure 14. Reciprocal combinatorial approach to the optimization of a CSP. Reproduced with 
permission of the Royal Society of Chemistry from [55]. 

Libraries of potential chiral selectors have also been prepared by the Ugi three-component reaction 
of β-lactams and screened for their enantioselectivity by using the reciprocal approach involving a CSP 
comprised of the immobilized model target compound N-(3,5-dinitrobenzoyl)-L-leucine [57]. The 
lead candidate identified from the library of racemic phenylamides of 2-oxo-azetidine acetic acid 
derivatives was subsequently synthesized in bulk. The up-scaled racemate was then resolved by chiral 
preparative HPLC and one enantiomer was immobilized on a solid support. The obtained CSP showed 
enantioselectivities of α = 3 for various amino acid derivatives. Interestingly, the enantioselectivities 
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Libraries of potential chiral selectors have also been prepared by the Ugi three-component reaction
of β-lactams and screened for their enantioselectivity by using the reciprocal approach involving a
CSP comprised of the immobilized model target compound N-(3,5-dinitrobenzoyl)-L-leucine [57].
The lead candidate identified from the library of racemic phenylamides of 2-oxo-azetidine acetic acid
derivatives was subsequently synthesized in bulk. The up-scaled racemate was then resolved by chiral
preparative HPLC and one enantiomer was immobilized on a solid support. The obtained CSP showed
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enantioselectivities of α = 3 for various amino acid derivatives. Interestingly, the enantioselectivities
observed were even higher than those obtained during the reciprocal screening on the immobilized
target compound N-(3,5-dinitrobenzoyl)-L-leucine [57].

2.7. Batch-Screening of Peptide Libraries and the Reciprocal Principle

Previous studies by Pirkle, Hyun et al. had shown that the enantiomers of racemic
N-(3,5-dinitrobenzoyl)-peptide selectands are enantioseparated on a number of CSPs [58]. It was
therefore reasoned that in a reciprocal fashion N-(3,5-dinitrobenzoyl)-peptide CSPs should be capable
of enantioseparating various racemic compounds [59]. In an off-column batch-screening approach,
Welch et al. probed the selector-selectand interaction directly, rather than resorting to a bonded
analogue of the selectand used as CSP and packed into a column [60,61]. Thus the individual
components of a parallel library of 50 silica-supported N-(3,5-dinitrobenzoyl)-dipeptide CSPs were
prepared by solid phase synthesis on aminopropylsilica (APS) particles [59]. Whereas the ‘aa1’
position (Figure 15, top) consisted of the five D-α-amino acids Phg, Val, Pro, Gln and Phe, the
‘aa2’-position (Figure 15, top) was comprised of the same five α-amino acids in the L- and D-form,
respectively, giving rise to 50 different dipeptides. The members of the library were subsequently
screened for the enantioselective recognition of the test racemate N-(2-naphthyl)alanine diethylamide
by an efficient batch-screening process. Thus individual vials containing approximately 50 mg of the
candidate CSPs were placed into an autosampler and a dilute solution of the target racemate was
added to each vial. The concentration (1 mL; 10−5 M in 2-propanol/n-hexane (20/80, v/v)) of the
analyte solution was low enough to avoid saturation of the available interaction sites on the CSP.
During equilibration using a rotary platform shaker, the individual enantiomers were partitioned
between the solid and liquid phases of the vial. After equilibration, enantioselective HPLC of 50 µL
injections of the supernatant solution in each vial afforded two peaks for the individual enantiomers.
A 1:1 ratio revealed no enantioselectivity of the adsorbent, whereas ratios up to 1:2.72 indicated
the presence of an enantioselective adsorbent. It was found that the homochiral combinations (DD)
of the library components exhibited a higher enantioselectivity than the heterochiral combinations
(LD) [60]. The presence of steric bulk in the ‘aa 2’ position and of hydrogen-bonding groups in
the ‘aa1’ position proved to be important for enantiomeric discrimination of the test racemate.
APS-bonded D-Gln-D-Val-DNB, D-Pro-D-Val-DNP and D-Gln-D-Phe-DNP were identified as the
leading enantioselective selectors for racemic N-(2-naphthyl)alanine diethylamide. Based on these
findings, an improved library of individual dipeptides was designed. It included amino acids with
side chain functional groups such as Glu, His, and Arg, Whereas the ‘aa1’ position (Figure 15, top)
consisted of the seven L-α-amino acids Gln, Asn, Ser, His, Asp, Arg and Glu, the ‘aa2’-position
(Figure 15, top) was comprised of the L-α-amino acids Val, Leu, Ileu, Phe, Tyr, tert-Leu and Trp and the
D-α-amino acids Val, Leu, Ileu, Phe, Tyr and Trp, respectively, giving rise to 91 different dipeptides.
N-(2-naphthyl)alanine diethylamide was enantioseparated on APS-bonded L-Glu-L-Leu-DNP with the
high enantioselectivity of α = 20.74 (Figure 15, bottom) [61]. Up to 100 mg of the compound could be
enantioseparated using an analytical column (4.6 mm× 250 mm I.D.) in a single injection. The versatile
approach of Welch et al. permitted the identification of the necessary structural requirements for chiral
recognition by comparing the relative performance of various CSPs in the library. The enantioselective
library approach, commercialized jointly by Regis Technology and MediChem Research [reported in:
Chem. Eng. News 1999, 11, p. 101], may also prove useful for the discovery of improved selectors for
other types of supramolecular chromatographic interactions.
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eluent: 2-propanol/n-hexane (20/80 v/v). Reprinted with permission from [61]. Copyright (1999)
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An improved strategy for the evaluation of common CSPs by the straightforward single-vial-
equilibration-approach of Welch et al. was based on rapid LC/MS screening of isotopically labelled
pseudoenantiomers present in the supernatant instead of the HPLC analysis of the enantiomers [62].

Concurrently, another batch-wise screening method was described by Wang and Li [63].
The approach was almost identical to that of Welch et al. with the exception that the incubation
was performed with the selector attached to a polymeric resin, instead of a chromatographic support.
The reliability of the established stepwise solid-phase Merrifield-type peptide synthesis was considered
as an advantage. However, it was also recognized that the screening result would not necessarily
correlate with the chromatographic experiment as no chromatographic support was used for the
batch screening step [38,39]. Crucial elements of the approach were the reciprocity of chromatographic
separation and the use of enantiomeric libraries. Thus, a potential chiral selector from the parallel
library was linked onto a solid-phase resin. The racemic analyte in the proper solvent was then allowed
to equilibrate with this potential selector on the resin. The enantiomeric ratio of the analyte in the
supernatant was analysed after the equilibration period by circular dichroism. A selective adsorption
of one of the two enantiomers to the resin was indicative of an efficient chiral selector. It was then
linked onto a chromatographic support, and its enantioselectivity toward the target analyte was
evaluated. The feasibility of the parallel library screening procedure was compared with the model
system studied earlier of the chiral HPLC enantioseparation of N-(1-naphthyl)leucine ester using a
16-member small library [50].

Bluhm et al. simplified the reciprocal system by using only one library (all-L) which was
equilibrated on two different columns containing the immobilized target racemate (1-naphthyl)leucine
ester either in the L- or enantiomeric D-form, followed by incubation of each CSP with a mixture
library [64]. The adsorbed members of the library on the two columns were washed off and
analysed by a reversed phase HPLC assay. Components with the same retention time but different
intensities in both chromatograms represented an optimized selector. Its chemical structure was
then determined by LC-MS or LC-MS-MS. In the reciprocal fashion, the optimized candidate, i.e.,
immobilized N-3,5-dinitrobenzoyl-L-leucine ester, was used as CSP to enantioseparate racemic
N-(1-naphthyl)leucine ester with the high enantioseparation factor α = 12 [64]. In an optimized
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study, a 200-member parallel dipeptide library was created and screened with 10-undecenyl-N-
(1-naphthyl)leucinate [65]. The library was prepared using Fmoc-protected α-amino acids with
amino-methylated polystyrene (AMPS) resin as solid support. The library contained three modules.
Modules 2 and 3 consisted of ten different L-α-amino acids, whereas the N-terminating module 1 was
an acetyl group or a 3,5-dinitrobenzoyl (DNB) group. Each single library member was incubated with
a solution of racemic 10-undecenyl-N-(1-naphthyl)leucinate. After equilibration, the supernatant was
collected and assessed for enantiomeric excess ee by circular dichroism (CD).

In another study, an 81-member dipeptide library was evaluated for the target compound
containing a stereogenic phosphorus atom, i.e., tert-butyl-1-(2-methylnaphthyl)phosphane oxide [66].
The member with the highest enantioselectivity was DNB-D-Asn-L-Thr-Abu-AMPS (Abu = 4-amino-
butanoic acid). It was attached to aminopropylsilica and used as CSP for the target racemate in HPLC.
However, the enantioselcetivities between the batch-experiment and the chromatographic experiment
did not match due to the different solid supports. Therefore a longer linker had to be employed to
immobilize the chiral selector onto silica to observe an enantioseparation factor of α = 3.2 for the
racemic phosphine oxide. A 121-member peptide library was also tested for the enantioseparation of
atropisomeric 1,1′-bi-2,2′-naphthol. A trityl-protected di-asparagine selector (Fmoc-Asn(Trt)-Asn(Trt))
yielded a separation factor of α = 7.2 [67]. By the reciprocal principle, it can be assumed that the target
racemate 1,1′-bi-2,2′-naphthol, for which a highly enantioselective peptide has been identified, could
also be used as a CSP for the enantioseparation of the racemic peptides.

Another high throughput screening protocol was proposed for chiral selector discovery. It was
modeled after the protocol for biological screening of candidate drugs from chemical libraries.
The procedure was based on target distribution between an aqueous phase and an organic phase [68].

3. Single-Walled Carbon Nanotubes, SWCNTs

In single-walled carbon nanotubes (SWCNTs), a single layer graphene sheet is rolled-up into
a tubular structure. The use of SWCNTs as selective stationary phases for the chromatographic
separation of various classes of achiral compounds has been reviewed [1]. SWCNTs exist in three forms,
i.e., two achiral structures (armchair and zig-zag) and a chiral structure. Chiral single-walled carbon
nanotubes (n,m)-SWCNTs are characterized by n,m- indices, where n and m are coordination numbers
of the carbon atoms in the hexagonal network. By convention, when n is greater than m, the species is
right-handed or P (for positive), and when m is greater than n, the species is left-handed or M (for negative).

(n,m)-SWCNTs represent interesting supramolecular entities for the reciprocal chromatographic
selector/selectand relationship. The enantiomers of nine pre-separated single chirality (n,m)-SWCNTs
of varying enantiomeric purity were separated on Sephacryl gel containing allyl-dextran as the
chiral selector by gel permeation chromatography (Figure 16) [69]. The successful enantioseparation
was proved by their opposite CD-spectra. The enantiomeric purities are not known and they
varied for different (n,m)-single chirality SWCNTs with the second eluted enantiomer being more
enriched [69]. The fractionation of (n,m)-SWCNTs by countercurrent chromatography also led to chiral
recognition [70]. The method was based on the partition of sodium deoxycholate (SDC) dispersed
(n,m)-SWCNTs in a polyethylene glycol/dextran aqueous two-phase system. The (n,m)-dependent
bimodal elution peak width of the chiral nanotubes were interpreted as enantiomeric recognition
in the presence of chiral SDC and polymeric dextran [70]. Dextran represents a complex branched
glucan (a polysaccharide made of D-glucose building blocks). By the reciprocal approach, nonracemic
(n,m)-SWCNTs may be considered in the future as novel CSPs for the enantiomeric separation of
lower linear dextrins (‘acyclodextrins’, maltooligosaccharides) which are readily available in both
enantiomeric forms obtained from D- and L-glucose, respectively. Incidentally, acetylated/silylated
dextrins with a different degree of oligomerization and devoid of a molecular cavity have been used
as CSPs for the enantioseparation of derivatized amino acids and various underivatized racemic
compounds by GC, thus highlighting the role of the polar external surface of the selector for chiral
recognition in contrast to the well-established inclusion mechanism exerted by cyclodextrins [71].
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Figure 16. Illustration of the enantioseparation of P- and M-SWCNTs by gel permeation liquid
chromatography on an allyl-dextran stationary phase. Reprinted with permission from [69]. Copyright
(2014) American Chemical Society.

Using molecular dynamics simulations, Raffaini and Ganazzoli investigated in a theoretical
study the adsorption and denaturation of an oligopeptide formed by 16 chiral L-α-amino acids and
having a helical structure in the native state on both the inner and the outer surface of the chiral
(10,20)- and (20,10)-SWCNTs with an opposite handedness, and of the armchair (16,16)-SWCNT
nanotube with a similar diameter for comparison [72]. The molecular simulations indicated that the
enantioseparation of the chiral carbon nanotubes by chromatographic methods are feasible using
oligopeptides of a sufficient length. It was also suggested that natural oligopeptides could not only be
used to separate enantiomeric nanotubes, but in the reciprocal fashion also chiral nanotubes of single
handedness could be considered as chiral selectors for racemic oligopeptides (Giuseppina Raffiani,
personal communication, 2016).

Unspecified chiral (n,m)-SWCNTs were tested as CSPs for the enantioseparation of twelve
classes of racemic pharmaceuticals by nano-LC [73,74]. The finding would require that the
commercially available chiral (6,7)-SWCNT (carbon >90%, 0.7–0.9 nm diameter by fluorescence)
obtained from Sigma-Aldrich was nonracemic or even enantiomerically pure. Neither the mode
of the required enantiomeric enrichment of the synthetic racemic (6,7)-SWCNT nor its chiroptical
data was reported. Some racemic compounds showed a deviation of the expected 1:1 peak ratio
and no enantioseparation was noticed for the chiral (7,8)-SWCNTs. Also in another report of the
continuous-flow enantioseparation of carvedilol with fluorescent detection on chiral carbon nanotubes,
chiroptic data and enantiomeric compositions of the chiral selector were not mentioned [75]. As chiral
SWCNTs contain equal amounts of left- and right-handed helical structures, their use as CSP requires the
separation of these non-superimposable mirror image forms into single enantiomers of defined enantiomeric
purity as outlined by Peng et al. [76].

In order to investigate whether the use of SWCNTs can improve enantioseparations on an
existing CSP, comprised of the chiral nonracemic ionic liquid (R)-N,N,N-trimethyl-2-aminobutanol-
bis(trifluoromethane-sulfon)imidate, two capillary columns, i.e., one containing the chiral ionic liquid
alone and the other containing the chiral ionic liquid together with the SWCNTs were tested by GC [77].
It was shown that the capillary column containing SWCNTs improved the enantioselectivity of the
chiral ionic liquid. The ‘nonchiral’ role of the SWCNT was due to an increase of the surface area of the
inner capillary wall by formation of a layer with a skeletal network, leading the enhanced retention
times, which improved the resolution factor Rs for the enantiomers [77].

4. Chromatography of Fullerenes and the Reciprocal Principle

The molecular recognition of fullerene congeners on various selectors by liquid chromatography
has been reviewed [1,78,79], including enantioseparation of chiral native fullerenes or its derivatives [1].
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For more selective molecular recognition leading to large separation factors between C60 and C70

(α > 2), a supramolecular approach was first employed by Hawkins et al. [80]. As a strong π-acceptor
selector for the π-donor fullerene selectands, a CSP containing N-(3,5-dinitrobenzoyl)-phenylglycine
(DNBPG), originally developed by Pirkle et al. for enantioseparations [23], was employed (Figure 17).
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methacrylate) selector in 45 min with chlorobenzene as eluent has been described [83]. 

(R)-(−)-2-(2,4,5,7-tetranitro-9-fluorenylideneamino-oxy)propionic acid (TAPA) (Figure 1b, and 
Figure 19), a strong π-electron acceptor due to the tetranitrofluorenylidene moiety, forms supramolecular 
charge transfer complexes with appropriate π-donor molecules. TAPA was used to separate C60 and C70 

with a separation factor α up to 2.6 and the same peculiar increase of retention with increasing 
temperature previously observed with π-acidic N-(3,5-dinitrobenzoyl)-phenylglycine (DNBPG) was 
found and interpreted as arising from solute solvation at low temperatures [84]. The same authors 
mentioned that C60 and C70 can behave as both π-electron donor and π-electron acceptor (the electron 
affinity of C60 amounts to 2.6 eV). 

The enantioseparation of the tris-adduct C60[C(COOEt)2]3 and hexakis-adduct C60[C(COOEt)2]6 
entailed with an inherent chiral substitution pattern (Figure 20) has also been described on the CSP 
(R)-(−)-2-(2,4,5,7-tetranitro-9-fluorenylideneaminooxy)propionic acid (TAPA) bonded to silica gel 
(Figure 19) by micro HPLC [85]. 

Figure 17. HPLC separation of C60 (12.2 min) and C70 (23.5 min) on a Pirkle-type ionically DNBPG
containing column (250 × 10 mm I.D.) eluted with n-hexane at 5.0 mL/min and detected at 280 nm,
α = 2.25 (r.t.). Reprinted with permission from [80]. Copyright (1990) American Chemical Society.

An unprecedented increase in retention of C60 and C70 with increasing column temperature was
observed by Pirkle and Welch on the covalently bonded π-acidic N-(3,5-dinitrobenzoyl)-phenylglycine
(DNBPG) containing column (250 × 4.6 mm I.D.) (Figure 18) [81]. Van’t Hoff plots revealed the
rare case of positive enthalpy and entropy values, i.e., the gain in entropy is accompanied by an
endothermic adsorption.
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Tripodal 3,5-dinitrobenzoate ester and 2,4-dinitrophenyl ether stationary phases containing
three π-acidic functionalities for simultaneous multipoint supramolecular interaction with fullerenes
(‘Buckyclutcher’) were developed and they provided the highest retention and the greatest separation
factor for the C60/C70 mixture [82]. A remarkable separation of 15 fullerene congeners in the range
of C60–C96, including enantiomerically enriched specimens, by HPLC on a syndiotactic poly(methyl
methacrylate) selector in 45 min with chlorobenzene as eluent has been described [83].

(R)-(−)-2-(2,4,5,7-tetranitro-9-fluorenylideneamino-oxy)propionic acid (TAPA) (Figures 1b and 19),
a strong π-electron acceptor due to the tetranitrofluorenylidene moiety, forms supramolecular charge
transfer complexes with appropriate π-donor molecules. TAPA was used to separate C60 and C70 with
a separation factor α up to 2.6 and the same peculiar increase of retention with increasing temperature
previously observed with π-acidic N-(3,5-dinitrobenzoyl)-phenylglycine (DNBPG) was found and
interpreted as arising from solute solvation at low temperatures [84]. The same authors mentioned
that C60 and C70 can behave as both π-electron donor and π-electron acceptor (the electron affinity of
C60 amounts to 2.6 eV).

The enantioseparation of the tris-adduct C60[C(COOEt)2]3 and hexakis-adduct C60[C(COOEt)2]6

entailed with an inherent chiral substitution pattern (Figure 20) has also been described on the CSP
(R)-(−)-2-(2,4,5,7-tetranitro-9-fluorenylideneaminooxy)propionic acid (TAPA) bonded to silica gel
(Figure 19) by micro HPLC [85].
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racemic naproxen [23], it may be speculated that some bis-, tris- and hexakis-adducts of C60 may also be 
enantioseparated by the silica-bonded naproxen selector (Figure 3a) via a twofold reciprocal recognition 
scenario. 

  
Figure 20. Top: Structure of the tris-adduct C60[C(COOEt)2]3. Bottom: Enantioseparation of a hexakis-
adduct C60[C(COOEt)2]6 on the CSP TAPA bonded to aminopropyl silica gel by micro HPLC (α = 1.1). 
Packed fused-silica capillary (20 cm × 0.25 mm I.D.), μL/min acetonitrile/water (75/25, v/v), room 
temperature. Reprinted with permission from [85]. 

In order to optimize supramolecular recognition between fullerenes and polyaromatic 
compounds (PAHs), the reciprocal principle of changing the chromatographic roles of selector and 
selectand has been suggested by Saito et al. [87]. In liquid chromatography, fullerene selectors can be 
used as supramolecular stationary phases either as native crushed specimen packed into capillaries or 
covalently linked to a functionalized silica gel [78,88,89]. The chemically bonded C60 phase (Figure 21) 
[87] showed preferential interaction with triphenylene and perylene which possess partial structures 
similar to that of C60. Interestingly, larger retention factors are observed for nonplanar vs. planar PAH 
molecules of comparable molecular size. Thus effective molecular recognition occurs between the C60 
selector and nonplanar selectands with a similar molecular curvature of the fullerene [87]. Bonded C60 
phases were also used for self-recognition, i.e., for the congener separation of C60 and C70 [87,88]. As 
compared to an octadecylsilica (ODS) reversed phase devoid of aromatic moieties, a C60 phase entailed 
high retention factors for C60 and C70 and an enhanced separation factor (α = 2.9) [87]. 

Figure 19. Structure of (R)-(−)-2-(2,4,5,7-tetranitro-9-fluorenylideneamino-oxy)propionic acid (TAPA)
bonded to silica gel [4,84].

The enantioseparation of bis-, tris- and hexakis-adducts of C60 (Figure 20, top) has been achieved
by HPLC on the Whelk-O1-CSP [86]. As the Whelk-O1-CSP (Figure 3c) was originally optimized
for racemic naproxen [23], it may be speculated that some bis-, tris- and hexakis-adducts of C60 may
also be enantioseparated by the silica-bonded naproxen selector (Figure 3a) via a twofold reciprocal
recognition scenario.
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Figure 20. Top: Structure of the tris-adduct C60[C(COOEt)2]3. Bottom: Enantioseparation of a
hexakis-adduct C60[C(COOEt)2]6 on the CSP TAPA bonded to aminopropyl silica gel by micro HPLC
(α = 1.1). Packed fused-silica capillary (20 cm × 0.25 mm I.D.), µL/min acetonitrile/water (75/25, v/v),
room temperature. Reprinted with permission from [85].

In order to optimize supramolecular recognition between fullerenes and polyaromatic compounds
(PAHs), the reciprocal principle of changing the chromatographic roles of selector and selectand
has been suggested by Saito et al. [87]. In liquid chromatography, fullerene selectors can be used
as supramolecular stationary phases either as native crushed specimen packed into capillaries
or covalently linked to a functionalized silica gel [78,88,89]. The chemically bonded C60 phase
(Figure 21) [87] showed preferential interaction with triphenylene and perylene which possess partial
structures similar to that of C60. Interestingly, larger retention factors are observed for nonplanar
vs. planar PAH molecules of comparable molecular size. Thus effective molecular recognition
occurs between the C60 selector and nonplanar selectands with a similar molecular curvature of
the fullerene [87]. Bonded C60 phases were also used for self-recognition, i.e., for the congener
separation of C60 and C70 [87,88]. As compared to an octadecylsilica (ODS) reversed phase devoid
of aromatic moieties, a C60 phase entailed high retention factors for C60 and C70 and an enhanced
separation factor (α = 2.9) [87].
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Figure 21. Synthetic scheme for a C60 bonded silica stationary phase. Reproduced with permission 
from [87]. Copyright Wiley-VCH, Weinheim, Germany. 
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column (15 m × 0.29 mm I.D.) was coated with pure C60 (film thickness 0.1 μm) using a high-pressure 
static method [90]. The thermostable solid C60 phase behaved like the liquid phase squalane in its 
van der Waals interaction with n-alkanes. 

C60 linked to poly(dimethylsiloxane) (Figure 22, top) was coated on a 10 m × 0.25 mm I.D. fused 
silica column and used for the selective separation of isomeric hexachlorobiphenyls differing in ortho-
chlorine substitution pattern. Thermodynamic parameters were obtained by the retention-increment 
method R′ [91,92]. It separates supramolecular interactions from non-specific interactions of the linker. 
It was shown that the retention behaviour of PCBs depends strongly on the degree of ortho-chlorine 
substitution which in turn is linked with non-planarity (Figure 22, bottom). The deviation from 
planarity of PCBs strongly decreases the supramolecular interaction with C60 [93]. Since planar PCBs 
are more toxic than non-planar PCBs, a tentative link of retention behaviour on C60 and toxicity has 
been advanced [93]. 

In Table 4 the selective interaction of aromatic compounds with C60 linked to poly(dimethylsiloxane) 
(Figure 22, top) is expressed by the retention-increment R’, i.e., a value of two indicates that the retention 
of the PCB congener on C60 is twice as compared to a reference column devoid of the fullerene  
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Table 4. Retention-increments R’ for the selective interaction of aromatic compounds with C60. 
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Nitrobenzene 80 0.95 
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Figure 21. Synthetic scheme for a C60 bonded silica stationary phase. Reproduced with permission
from [87]. Copyright Wiley-VCH, Weinheim, Germany.

Fullerenes have also been used as stationary phases in gas chromatography (GC). A glass capillary
column (15 m × 0.29 mm I.D.) was coated with pure C60 (film thickness 0.1 µm) using a high-pressure
static method [90]. The thermostable solid C60 phase behaved like the liquid phase squalane in its van
der Waals interaction with n-alkanes.

C60 linked to poly(dimethylsiloxane) (Figure 22, top) was coated on a 10 m × 0.25 mm I.D.
fused silica column and used for the selective separation of isomeric hexachlorobiphenyls differing in
ortho-chlorine substitution pattern. Thermodynamic parameters were obtained by the retention-increment
method R′ [91,92]. It separates supramolecular interactions from non-specific interactions of the linker.
It was shown that the retention behaviour of PCBs depends strongly on the degree of ortho-chlorine
substitution which in turn is linked with non-planarity (Figure 22, bottom). The deviation from
planarity of PCBs strongly decreases the supramolecular interaction with C60 [93]. Since planar PCBs
are more toxic than non-planar PCBs, a tentative link of retention behaviour on C60 and toxicity has
been advanced [93].

In Table 4 the selective interaction of aromatic compounds with C60 linked to poly(dimethylsiloxane)
(Figure 22, top) is expressed by the retention-increment R′, i.e., a value of two indicates that the
retention of the PCB congener on C60 is twice as compared to a reference column devoid of the
fullerene selector [94].

Table 4. Retention-increments R′ for the selective interaction of aromatic compounds with C60.
Complexation column (k): 10 m x 0.25 mm I.D. fused silica column coated with the C60 phase
(0.25 µm). Reference column (k0, without C60): 10 m × 0.25 mm I.D. fused silica column coated
with dimethyl-acetylaminopropyl(methyl)polysiloxane (0.25 µm) [94].

Analyte T (◦C) R′ = (k− k0)/k0

1.2-Dichlorobenzene 80 0.61
2.6-Dichlorotoluene 80 0.69

Nitrobenzene 80 0.95
2-Nitrotoluene 80 0.91

Aniline 80 1.58
Phenol 90 0.50

Naphthalene 90 0.73
1-Methylnaphthalene 120 0.83
2-Methylnaphthalene 120 0.70

Indole 120 1.28
Quinoline 120 1.87

Isoquinoline 120 2.94
4-Chlorophenol 120 0.34

2.4-Dichlorophenol 120 0.77
2.4.6-Trichlorophenol 120 1.29
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Figure 22. Top: Synthesis of C60 linked to aminopropyl poly(dimethylsiloxane). Bottom: Gas 
chromatographic elution order of hexachlorobiphenyl congeners with different degree of ortho-chloro 
substitution. The increased retention time of the second eluted enantiomer is marked with an arrow. 
10 m × 0.25 mm I.D. fused silica column coated with the C60 phase (0.25 μm), 190 °C, carrier: 0.6 bar 
(at gauge) helium, electron capture detection. Reprinted with permission from [93].  

5. The Reciprocal Selectand/Selector System of Fullerenes/Cyclodextrins 

A supramolecular selectand/selector system par excellence is represented by fullerenes (Cn, n = 
number of carbon atoms) and cyclodextrins (CDn, n = number of D-glucose building blocks). It also 
lends itself to the principle of reciprocal recognition. According to Figure 23, the role of selector and 
selectand can be reversed. 

The non-chromatographic supramolecular recognition phenomenon between fullerenes and 
cyclodextrins is well established. γ-Cyclodextrin (CD8) forms water-soluble bicapped 2:1 association 
complexes with [60]fullerene (C60) [95–101]. Also β-cyclodextrin (CD7) may undergo complexation 
with C60 [102,103]. 

Shape selectivity governs the HPLC separation of C60 and C70 on native γ-cyclodextrin chemically 
bonded to silica [104]. C70 was much more strongly retained than C60 on this stationary phase whereas 
no separation of the two fullerenes occurred on the corresponding unmodified silica indicating that 
the separation is due to the selective supramolecular interaction with the cyclodextrin selector [104]. In 
a reciprocal strategy, Bianco et al. used a C60-bonded phase (Figure 24) in an aqueous/organic medium 
for the high-efficiency HPLC separation of α-, β- and γ-cyclodextrins (CD6-CD8) [105]. As expected, 
the trace shows increased retention with increased molecular weight of CDn (Figure 25). 

With the advent of the enzymatic access to large-ring cyclodextrins [106,107], separation of the 
congeners CDn represented a considerable analytical challenge. Koizumi et al. separated CD6-CD85, 
obtained by the action of cyclodextrin glycosyltransferase from Bacillus macerans, on synthetic 
amylose by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric 

Figure 22. Top: Synthesis of C60 linked to aminopropyl poly(dimethylsiloxane). Bottom: Gas
chromatographic elution order of hexachlorobiphenyl congeners with different degree of ortho-chloro
substitution. The increased retention time of the second eluted enantiomer is marked with an arrow.
10 m × 0.25 mm I.D. fused silica column coated with the C60 phase (0.25 µm), 190 ◦C, carrier: 0.6 bar
(at gauge) helium, electron capture detection. Reprinted with permission from [93].

5. The Reciprocal Selectand/Selector System of Fullerenes/Cyclodextrins

A supramolecular selectand/selector system par excellence is represented by fullerenes (Cn,
n = number of carbon atoms) and cyclodextrins (CDn, n = number of D-glucose building blocks).
It also lends itself to the principle of reciprocal recognition. According to Figure 23, the role of selector
and selectand can be reversed.

The non-chromatographic supramolecular recognition phenomenon between fullerenes and
cyclodextrins is well established. γ-Cyclodextrin (CD8) forms water-soluble bicapped 2:1 association
complexes with [60]fullerene (C60) [95–101]. Also β-cyclodextrin (CD7) may undergo complexation
with C60 [102,103].

Shape selectivity governs the HPLC separation of C60 and C70 on native γ-cyclodextrin chemically
bonded to silica [104]. C70 was much more strongly retained than C60 on this stationary phase whereas
no separation of the two fullerenes occurred on the corresponding unmodified silica indicating that the
separation is due to the selective supramolecular interaction with the cyclodextrin selector [104]. In a
reciprocal strategy, Bianco et al. used a C60-bonded phase (Figure 24) in an aqueous/organic medium
for the high-efficiency HPLC separation of α-, β- and γ-cyclodextrins (CD6-CD8) [105]. As expected,
the trace shows increased retention with increased molecular weight of CDn (Figure 25).

With the advent of the enzymatic access to large-ring cyclodextrins [106,107], separation of the
congeners CDn represented a considerable analytical challenge. Koizumi et al. separated CD6-CD85,
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obtained by the action of cyclodextrin glycosyltransferase from Bacillus macerans, on synthetic amylose
by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection
using a 25 cm × 4 mm I.D. Dionex CarboPac PA-100 column (Figure 26) [108], whereas Bogdanski et
al. separated CD6-CD21 by liquid-chromatography with electrospray ionization mass spectrometric
detection (LC/ESI-MS) using a 25 cm× 4 mm I.D. LiChrospher NH2 column [109]. With one exception
(CD9 on HPAEC) the congeners CDn were eluted from the stationary phases according to the degree
of polymerization (Figure 26).
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Figure 24. Synthetic pathway to a 6,6-[60]fulleropyrrolidine derivative by aziridine ring opening via
1,3-dipolar addition to C60 and grafting the fullerene-containing triethoxysilane to silica microparticles
leading to a chemically homogeneous material with defined structure and high chromatographic
efficiency. Reprinted with permission from [105]. Copyright (1997) American Chemical Society.
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250 × 1.8 mm I.D. stainless steel column packed with [60]fulleropyrrolidine-based silica (Hypersil, 5 μm), 
eluent: 0.25 mL/min water/methanol/tetrahydrofuran (80/10/10 for 3 min and then linear gradient to 
40/30/30 in 25 min, at 25 °C. Reprinted with permission from [105]. Copyright (1997) American 
Chemical Society. 

 
Figure 26. Separation of cyclodextrin congeners (CD6–CD85) enzymatically obtained by cyclodextrin 
glycosyltransferase from Bacillus macerans on synthetic amylose by high-performance anion-exchange 
chromatography (HPAEC) with pulsed amperometric detection using a 25 cm × 4 mm I.D. Dionex 
CarboPac PA-100 column. Reprinted with permission from [108]. 

In striking contrast, an unusual supramolecular selectivity pattern has been observed for the 
reciprocal separation of CD6–CD15 congeners on a fullerene C60 selector anchored to silica particles 
(Figure 27), which strongly deviates from the usually observed correlation of retention and molecular 
weight [110]. Thus, whereas CD6 and CD7 exhibit a low retention and are eluted in ~5 min, CD8–CD10 
are eluted only after a long retention gap of about 15 min with the elution order CD8 < CD10 < CD9 in 
~20 min. The higher CD11-CD15 congeners are eluted together with CD6 in ~5 min (Figure 27). The 
drop of retention between CD10 and CD11 of 15 min is indeed remarkable. The unusual elution order 
has been detected with LC-electrospray ionization-mass spectrometry (ESI-MS) of sodium ion 
adducts of CD6-CD15. The results were confirmed for CD6-CD25 by employing an LC-evaporative 
light scattering detection (ELSD) system [110]. 

Figure 25. Separation of α-, β- and γ-cyclodextrins (CD6, CD7, CD8) on immobilized C60 by HPLC.
250 × 1.8 mm I.D. stainless steel column packed with [60]fulleropyrrolidine-based silica (Hypersil,
5 µm), eluent: 0.25 mL/min water/methanol/tetrahydrofuran (80/10/10 for 3 min and then linear
gradient to 40/30/30 in 25 min, at 25 ◦C. Reprinted with permission from [105]. Copyright (1997)
American Chemical Society.
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Figure 26. Separation of cyclodextrin congeners (CD6–CD85) enzymatically obtained by cyclodextrin
glycosyltransferase from Bacillus macerans on synthetic amylose by high-performance anion-exchange
chromatography (HPAEC) with pulsed amperometric detection using a 25 cm × 4 mm I.D. Dionex
CarboPac PA-100 column. Reprinted with permission from [108].

In striking contrast, an unusual supramolecular selectivity pattern has been observed for the
reciprocal separation of CD6–CD15 congeners on a fullerene C60 selector anchored to silica particles
(Figure 27), which strongly deviates from the usually observed correlation of retention and molecular
weight [110]. Thus, whereas CD6 and CD7 exhibit a low retention and are eluted in ~5 min, CD8–CD10
are eluted only after a long retention gap of about 15 min with the elution order CD8 < CD10 < CD9
in ~20 min. The higher CD11-CD15 congeners are eluted together with CD6 in ~5 min (Figure 27).
The drop of retention between CD10 and CD11 of 15 min is indeed remarkable. The unusual elution
order has been detected with LC-electrospray ionization-mass spectrometry (ESI-MS) of sodium ion
adducts of CD6-CD15. The results were confirmed for CD6-CD25 by employing an LC-evaporative
light scattering detection (ELSD) system [110].
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It separates supramolecular interactions from non-specific interactions of the linker. Thus two 
stationary phases, i.e., one containing the spacer alone and one containing the C60 selector bonded via 
the spacer were prepared (Figure 28). Nucleosil (5 μm, 100 Å) was reacted in toluene with  
3-glycidoxypropyltrimethoxysilane to yield 3-glycidoxypropyl-silica and (i) the epoxide was reacted 
with bis(1-aminohexyl)malonate to the silica-bonded spacer without selector and (ii) the same epoxide 
was reacted with bis(1-aminohexyloxycarbonyl)malonate-dihydro[60]fullerene [111]. The striking 
selectivity change of CDn occurred only on the C60-selector but not on the silica-bonded spacer devoid 
of the C60 selector. Due to the necessary use of an LC elution gradient only apparent relative 
complexation constants Krel (related to CD6) were obtained (Table 5). They nevertheless highlight the 
remarkable stability differences for the CD6-CD12 congeners in their supramolecular interaction with 
C60 [110]. The striking selectivity pattern (Table 5) may be subject to molecular modelling studies in 
the future. The well-known deviation from the ideal ‘doughnut’ structure of small CDn (n < 10) due 
to conformationally strain-induced band flips and kinks in CDn (n > 10) [112] may reveal clues of 
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Figure 27. Overlaid LC-ESI-MS traces of the selective separation of CD6-CD15 sodium ion adducts
on C60 on a 250 × 4 mm I.D. stainless steel column packed with silica-bonded C60 stationary phase,
0.5 mL/min water to acetonitrile/tetrahydrofuran gradient elution, 25 ◦C [110]. Reproduced from A.
Bogdanski, Doctoral Thesis, University of Tübingen, Tübingen, Germany, 2007.

The retention-increment method [91,92] has been employed to quantify the unusual
selectivity. It separates supramolecular interactions from non-specific interactions of the linker.
Thus two stationary phases, i.e., one containing the spacer alone and one containing the C60 selector
bonded via the spacer were prepared (Figure 28). Nucleosil (5 µm, 100 Å) was reacted in toluene with
3-glycidoxypropyltrimethoxysilane to yield 3-glycidoxypropyl-silica and (i) the epoxide was reacted
with bis(1-aminohexyl)malonate to the silica-bonded spacer without selector and (ii) the same epoxide
was reacted with bis(1-aminohexyloxycarbonyl)malonate-dihydro[60]fullerene [111]. The striking
selectivity change of CDn occurred only on the C60-selector but not on the silica-bonded spacer
devoid of the C60 selector. Due to the necessary use of an LC elution gradient only apparent relative
complexation constants Krel (related to CD6) were obtained (Table 5). They nevertheless highlight
the remarkable stability differences for the CD6-CD12 congeners in their supramolecular interaction
with C60 [110]. The striking selectivity pattern (Table 5) may be subject to molecular modelling studies
in the future. The well-known deviation from the ideal ‘doughnut’ structure of small CDn (n < 10)
due to conformationally strain-induced band flips and kinks in CDn (n > 10) [112] may reveal clues of
molecular recognition pattern.
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Table 5. Apparent complexation constants Krel of cyclodextrins and silica-bonded [60]fullerene (C60) 
related to CD6 (α-cyclodextrin) [110]. 
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Krel 1 4.5 39 46 42 1 2 

It has been speculated [110] that by using a single [78]fullerene selector (C78), the most strongly 
interacting CD-congener can be identified and, according to the reciprocal principle, could then 
applied as a silica-bonded resolving agent for the separation of all five isomeric [78]fullerenes 
including the direct enantioseparation of chiral D3-[78]-fullerene [113]. 

6. Chromatography of Calixarenes and the Reciprocal Principle 

Gutsche reviewed the application of calixarenes (Figure 29) as reciprocal selectors and selectands 
[114]. 

 
Figure 29. The structure of calix[4]arene. Reproduced with permission of the Royal Society of 
Chemistry from [114]. 

Following the purification of C60- and C70-fullerenes with calix[8]arene [115,116], a reciprocal 
separation of calix[4]arene, calix[6]arene and calix[8]arene (Figure 30, top) by microcolumn liquid 
chromatography (μ-LC) on a chemically-bonded C60 silica stationary phase (Figure 21) has been 
reported by Saito et al. [117]. An improved sseparation of the same calixarene congeners by μ-LC on 
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stationary phase (bottom) [110]. Reproduced from A. Bogdanski, Doctoral Thesis, University of
Tübingen, Tübingen, Germany, 2007.

Table 5. Apparent complexation constants Krel of cyclodextrins and silica-bonded [60]fullerene (C60)
related to CD6 (α-cyclodextrin) [110].

CD6 CD7 CD8 CD9 CD10 CD11 CD12

Krel 1 4.5 39 46 42 1 2

It has been speculated [110] that by using a single [78]fullerene selector (C78), the most strongly
interacting CD-congener can be identified and, according to the reciprocal principle, could then applied
as a silica-bonded resolving agent for the separation of all five isomeric [78]fullerenes including the
direct enantioseparation of chiral D3-[78]-fullerene [113].

6. Chromatography of Calixarenes and the Reciprocal Principle

Gutsche reviewed the application of calixarenes (Figure 29) as reciprocal selectors and selectands [114].
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Figure 29. The structure of calix[4]arene. Reproduced with permission of the Royal Society of Chemistry
from [114].

Following the purification of C60- and C70-fullerenes with calix[8]arene [115,116], a reciprocal
separation of calix[4]arene, calix[6]arene and calix[8]arene (Figure 30, top) by microcolumn liquid
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chromatography (µ-LC) on a chemically-bonded C60 silica stationary phase (Figure 21) has been
reported by Saito et al. [117]. An improved sseparation of the same calixarene congeners by µ-LC
on a 6,6-[60]fulleropyrrolidine silica stationary phase (Figure 24) was later reported by Bianco et al.
(Figure 30, bottom) [105].
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calix[4]arene) by electrokinetic chromatography (EKC) has been reported [120]. By enantioselective 
liquid chromatography a chiral calixarene functionalized with (−)-ephedrine at the lower rim and 
chemically bonded to silica has been used to separate racemic 1-phenyl-2,2,2-trifluoroethanol [121].  

A chiral resorc[4]arene selector [122] of the basket-type containing four ω-unsaturated alkyl chains 
was synthesized from resorcinol and 1-undecenal [123]. Afterwards chiral L-valine-tert-butylamide 
moieties were attached to the eight hydroxyl groups. The chiral resorc[4]arene was then linked via 
the ω-unsaturated alkyl chains to poly(dimethyl-methylhydro)siloxane via platinum-catalyzed 
hydrosilylation to yield chemically bonded Chirasil-Calix-Val (Figure 31) [123]. On a 20 m × 0.25 mm 
I.D. fused silica capillary column coated with Chirasil-Calix (0.25 μm) the N(O,S)-trifluoroacetyl-D,L-
α-amino acids Ala, Abu, Val, Ile, Leu, Pro, Phe, Glu, Tyr, Orn and Lys were enantioseparated by GC 
with Rs > 2 [122]. 

Figure 30. Top: Structures of tert-butyl-calix[n]arenes. Bottom: HPLC trace for the separation of
tert-butylcalix[n]arenes on a 6,6-[60]fulleropyrrolidine stationary phase (Figure 24). 250 × 1.8 mm I.D.
stainless steel column. Eluent: CH2Cl2/2-propanol (99.5/0.5), flow rate 0.3 mL/min; T: 25 ◦C;
UV detection at 280 nm. Reprinted with permission from [105]. Copyright (1997) American
Chemical Society.

Achiral chromatographic selectivity has been achieved for various amino acid esters on
silica-bonded calix[4]arene tetraester [118,119]. The enantioseparation of binaphthyl atropisomers on
the chiral acylcalix[4]arene amino acid derivatives (N-l-alaninoacyl)calix[4]arene and (N-l-valinoacyl)
calix[4]arene) by electrokinetic chromatography (EKC) has been reported [120]. By enantioselective
liquid chromatography a chiral calixarene functionalized with (−)-ephedrine at the lower rim and
chemically bonded to silica has been used to separate racemic 1-phenyl-2,2,2-trifluoroethanol [121].

A chiral resorc[4]arene selector [122] of the basket-type containing fourω-unsaturated alkyl chains
was synthesized from resorcinol and 1-undecenal [123]. Afterwards chiral L-valine-tert-butylamide
moieties were attached to the eight hydroxyl groups. The chiral resorc[4]arene was then linked
via the ω-unsaturated alkyl chains to poly(dimethyl-methylhydro)siloxane via platinum-catalyzed
hydrosilylation to yield chemically bonded Chirasil-Calix-Val (Figure 31) [123]. On a 20 m × 0.25 mm
I.D. fused silica capillary column coated with Chirasil-Calix (0.25 µm) the N(O,S)-trifluoroacetyl-D,L-
α-amino acids Ala, Abu, Val, Ile, Leu, Pro, Phe, Glu, Tyr, Orn and Lys were enantioseparated by GC
with Rs > 2 [122].
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In the dual chiral recognition system Chirasil-Calix-Val-Dex, a resorc[4]arene containing  
L-valine diamide (Calix-Val) and permethylated β-cyclodextrin (CD) were chemically linked to 
poly(dimethylsiloxane) [124]. The selector system belongs to the category of mixed chiral stationary 
phases [125]. On this binary CSP both N-TFA-valine ethyl ester (due the presence of Calix-Val) and 
chiral unfunctionalized 1,2-trans-dialkylcyclohexanes (due to the presence of the CD) were 
simultaneously enantioseparated (Figure 32) [124]. In order to account for matched and mismatched 
enantioselectivities imparted by the two selectors, the chirality of Calix-Val could be changed from 
to L to D. When racemic Calix-LD-Val were used, any observed enantioselectivity could only arise 
from the presence of CD [124]. 

In the example above, the chiral resorc[4]arene is used as an enantioselective selector. In a 
reversed fashion the enantiomers of a chiral resorc[4]arene compound can also be studied as selectands. 
Thus, tetrabenzoxacine resorc[4]arene (Figure 33, top) was enantioseparated by HPLC on the CSP 
Chiralpak AD developed by Okamoto et al. [126]. The chromatograms show temperature-dependent 
interconversion profiles due to enantiomerization during enantioseparation (Figure 33, bottom) [127]. 
By peak-form analysis featuring plateau formation [128], the inversion barrier was determined to  
ΔG = 92 ± 2 kJ/mol (298K) [127]. 
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In the dual chiral recognition system Chirasil-Calix-Val-Dex, a resorc[4]arene containing
L-valine diamide (Calix-Val) and permethylated β-cyclodextrin (CD) were chemically linked to
poly(dimethylsiloxane) [124]. The selector system belongs to the category of mixed chiral stationary
phases [125]. On this binary CSP both N-TFA-valine ethyl ester (due the presence of Calix-Val)
and chiral unfunctionalized 1,2-trans-dialkylcyclohexanes (due to the presence of the CD) were
simultaneously enantioseparated (Figure 32) [124]. In order to account for matched and mismatched
enantioselectivities imparted by the two selectors, the chirality of Calix-Val could be changed from to
L to D. When racemic Calix-LD-Val were used, any observed enantioselectivity could only arise from
the presence of CD [124].

In the example above, the chiral resorc[4]arene is used as an enantioselective selector. In a
reversed fashion the enantiomers of a chiral resorc[4]arene compound can also be studied as selectands.
Thus, tetrabenzoxacine resorc[4]arene (Figure 33, top) was enantioseparated by HPLC on the CSP
Chiralpak AD developed by Okamoto et al. [126]. The chromatograms show temperature-dependent
interconversion profiles due to enantiomerization during enantioseparation (Figure 33, bottom) [127].
By peak-form analysis featuring plateau formation [128], the inversion barrier was determined to
∆G = 92 ± 2 kJ/mol (298K) [127].
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Figure 33. Top: Interconverting enantiomers of tetrabenzoxacine resorc[4]arene by HPLC on the CSP 
Chiralpak AD. Bottom: Distorted peak profiles caused by enantiomerization (dotted line: expected 
peak profiles devoid of interconversion). Reprinted with permission from [127]. 

This finding is recalled here, because one may speculate to employ interconverting calixarene 
enantiomers in a reciprocal fashion as a dynamic CSP in the spirit of a scenario of column deracemization 
described by Welch [129]. Thus when an enantiomerically pure selectand, which interacts with high 
affinity and enantioselectivity with an interconverting selector present in the stationary phase, is added 
to the mobile phase, it may cause deracemization of the selector, thereby creating a nonracemic CSP for 
subsequent enantiomeric separations of the selectand in its racemic form. This intriguing scenario was 
demonstrated by HPLC with a conformationally labile naphthamide atropisomer [129]. First it was 
shown that the naphthamide can be enantioseparated on the Whelk-O1 CSP (Figure 3c). Under 
stopped-flow conditions [130], deracemization took place in the mobile phase. With the reciprocal 
concept the racemic naphthamide was then linked to silica whereas the soluble analog of the 
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This finding is recalled here, because one may speculate to employ interconverting calixarene
enantiomers in a reciprocal fashion as a dynamic CSP in the spirit of a scenario of column deracemization
described by Welch [129]. Thus when an enantiomerically pure selectand, which interacts with high
affinity and enantioselectivity with an interconverting selector present in the stationary phase, is added
to the mobile phase, it may cause deracemization of the selector, thereby creating a nonracemic
CSP for subsequent enantiomeric separations of the selectand in its racemic form. This intriguing
scenario was demonstrated by HPLC with a conformationally labile naphthamide atropisomer [129].
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First it was shown that the naphthamide can be enantioseparated on the Whelk-O1 CSP (Figure 3c).
Under stopped-flow conditions [130], deracemization took place in the mobile phase. With the
reciprocal concept the racemic naphthamide was then linked to silica whereas the soluble analog of the
enantiomerically pure Whelk-O1 selector was added to the mobile phase. After deracemization of the
CSP, the racemic analog of the Whelk-O1 selector was enantioseparated, however, with the expected
subsequent decrease of the separation factor α due to gradual racemization of the CSP [129].

The reciprocal concept of interconverting molecules in separation methods could also be
extended to the liquid chromatographic investigation of conformational cis/trans-diastereomers of
L-peptidyl-L-proline. Studies of proline-containing peptides separated on calixarene-bonded silica gels
have been investigated by Gebauer et al. [131] and interconversion barriers of L-proline containing
dipeptides by dynamic CE were determined [132].

7. Conclusions

Since the first reports by Mikeš and Pirkle on the use of a reciprocal approach in chromatography
through changing the role of selectands and selectors, many examples have been reported in different
areas of selective supramolecular interactions including combinatorial advances. Advantages and
limitations of the reciprocal concept are outlined. The reciprocal strategy clearly aids the development of
optimized selectors for difficult separations of selectands including enantiomers. Various scenarios of
the interchanging role of selectors and selectands in separation science are discussed in the hope that
this will stir further endeavors devoted to the principle of reciprocity in supramolecular recognition.

The present account should be seen as part of the emerging field of supramolecular separation
methods [1,2] with further emphasis also to molecular sensor approaches and surface related
recognition phenomena. The optimization of selector/selectand systems is the precondition for
meaningful mechanistic studies by various molecular modelling approaches.
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