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Abstract: Adaptive stress tolerance responses are the driving force behind the survival ability of
Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to
cause human infections. Although the bacterial stress adaptive responses are primarily a necessity
for survival in foods and the environment, some aspects of the stress responses are linked to bacterial
pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can
protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its
virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress
survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent
to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional
networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by
the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular
basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes.
The review gives a detailed background on the currently known mechanisms of pathogenesis and
stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps
and connections between the regulatory networks for SigB and PrfA.

Keywords: Listeria monocytogenes; virulence; stress response; Sigma factor B (SigB); positive regulatory
factor A (PrfA)

1. Introduction

Listeria monocytogenes is a foodborne pathogen that is the causative agent of the hu-
man disease, listeriosis. It is primarily a ubiquitous environmental saprophyte found in
many environmental niches such as water, soil, and vegetation [1]. Contaminated, often
ready-to-eat (RTE) foods are the main transmission vehicles for human L. monocytogenes
infections [2–4]. In most individuals, L. monocytogenes infections frequently result in mild,
self-limiting febrile gastroenteritis [5]. However, in susceptible individuals, such as infants,
the elderly, pregnant women and people who are immunocompromised, infections result
in invasive listeriosis which has a high fatality rate of 20–30% [5]. As an invasive intracel-
lular pathogen, L. monocytogenes depends on an arsenal of adhesion and invasion factors
that facilitate its gastrointestinal tract (GIT) colonization and transit through the intestinal
barrier [6]. Additionally, other virulence factors such as the cytolysin (listeriolysin O),
actin polymerization protein ActA and phospholipases are important for the pathogen’s
intracellular survival and spread of infection [7–9].

As a foodborne pathogen, L. monocytogenes encounters several physical and chemical
stresses that impede its growth and survival along the food value chain [10]. In response to
stress exposures, foodborne pathogens develop mechanisms to adjust cellular processes to
a state that allows them to maintain viability and growth under stressful conditions [11].
The development of stress adaptive responses is a process that results from the sensing of
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environmental changes and reprogramming of gene expression towards the synthesis of
stress response proteins that aid bacterial survival under harsh conditions [12]. This stress
adaptation is the driving force behind the ability of L. monocytogenes to colonize and survive
in different niches within food processing environments and to survive food processing
and preservation hurdles [13].

In addition to bacterial stress adaptation being a necessity for survival in foods and
the environment, some aspects of the stress responses are linked to bacterial pathogene-
sis [14]. Being an orally transmitted pathogen, L. monocytogenes must overcome the hostile
host-defence systems in the human GIT as a first step to establishing a successful infec-
tion [14]. Some of these in vivo stress conditions such as acidic pH, increased osmolarity,
and oxidative stress are conditions also encountered by the organism in foods and the
environment [15]. Hence, food stress-induced adaptive tolerance responses to acid, osmotic
and oxidative stresses can protect the pathogen against similar stresses in the GIT, and
thus, directly aid its pathogenicity potential [16]. For some time, it has been known that the
general stress response regulator (Sigma factor B, (SigB)) that controls the expression of
genes for L. monocytogenes environmental stress adaptation, also controls the expression
of some virulence factors involved in GIT colonization and pathogen internalization by
the intestinal epithelium [17,18]. Besides the overlapping function of SigB, evidence has
shown that the relationship between stress responses and virulence are intricately con-
nected through direct and indirect interactions between the stress response regulator and
the virulence regulator (positive regulatory factor A, (PrfA)) [19–21]. This review explores
the current knowledge on the molecular basis of the connection between stress tolerance re-
sponses and the pathogenesis of L. monocytogenes. The review gives a detailed background
on the currently known mechanisms of L. monocytogenes pathogenesis and the mechanisms
of stress adaptation. Furthermore, the paper looks at the current theories and models
explaining the connections between the stress response and virulence regulatory networks.

2. Overview of L. monocytogenes Infection Cycle

Through the ingestion of contaminated food, L. monocytogenes enters the GIT, where it
can traverse the small intestines and establish a systemic infection that disseminates the
pathogen to its main target organs (Figure 1). In most healthy individuals, L. monocytogenes
infections remain largely extracellular within the intestinal lumen and often manifest
with intestinal symptoms, typically as febrile gastroenteritis [6]. However, in susceptible
individuals, the organism invades the epithelial barrier and crosses into the underlying
lamina propria and mesenteric lymph nodes [22]. The organism is subsequently carried in
the blood to the liver and spleen through the portal circulation [23]. In the liver and spleen,
L. monocytogenes is first taken up by Kupffer cells and splenic dendritic cells as resident
phagocytes in the respective organs [24,25]. Initially, the bacterial cells are contained
within a membrane-bound vacuole inside the phagocytic cells. The bacteria subsequently
lyse the vacuole and replicate within the cytosol of infected phagocytes before spreading
into neighboring parenchymal cells [23]. In about 2–3 days following the initial phase
of invasion, the bacterial multiplication inside the liver reaches maximum growth [23].
The susceptibility of the liver and spleen as the initial target organs for L. monocytogenes
colonization and replication is thought to be a result of the fenestrated hepatic and splenic
capillaries that permit an easy diffusion of L. monocytogenes from the bloodstream [23]. As
replication niches, the liver and spleen act as reservoirs for L. monocytogenes, thus, enabling
a re-seeding of the pathogen into the bloodstream, leading to the infection of additional
organs [23]. In addition to establishing a systemic infection, studies in experimentally
infected mice have shown that the organism can establish long-term colonization of the
cecum and lumen of the colon, thus, creating a reservoir for the faecal spread of the
organism back to the environment [26].
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Figure 1. Schematic representation of the infection cycle of L. monocytogenes in humans. Following 
ingestion of contaminated food, the bacteria invade the intestinal barrier into the bloodstream. 
Through the portal circulation, the organism is transported to the liver and spleen where it 
multiplies before being disseminated into the bloodstream. The organism subsequently infects the 
brain and the placenta/fetus in pregnant women. The schematic art pieces were obtained from 
Servier Medical art (https://smart.servier.com (accessed on 1 March 2022)). Servier Medical Art by 
Servier is licensed under a Creative Commons Attribution 3.0 Unported License. 

3. Pathogenesis of Invasive L. monocytogenes Infections 
3.1. L. monocytogenes Virulence Factors 

L. monocytogenes expresses several surface and soluble proteins that mediate the 
adhesion to target cells, internalization, intracellular multiplication and dissemination to 
other host cells [6]. The virulence factors are encoded either as separate loci across the 
bacterial genome or as clusters on pathogenicity islands [27]. A core of virulence genes 
(prfA, hly, actA, plcA, mpl, and plcB) encoded on the Listeria pathogenicity island 1 (LIPI-1) 
is conserved in the genomes of all L. monocytogenes strains [27]. Additionally, many other 
virulence factors encoded in separate loci, such as the internalin A/Internalin B (inlAB) 
operon, are also part of the virulence arsenal conserved in all L. monocytogenes strains [28]. 
The characteristics and roles of some of these proteins in the pathogenesis of L. 
monocytogenes are discussed in this section. 

Listeria adhesion protein (LAP). LAP is a 104-kDa cell wall protein ubiquitously found 
in all Listeria species [29]. It was first described by Pandiripally et al. [30] as protein p104 
which was subsequently found to be an alcohol acetaldehyde dehydrogenase [31]. As an 
essential enzyme, LAP is produced primarily as a cytosolic protein in all Listeria species. 
However, in pathogenic species, the protein is translocated to the cell surface through the 
SecA2 secretory system to facilitate the adhesion of pathogenic Listeria species to intestinal 
cells [32,33]. The epithelial receptor for LAP is a constitutively expressed mitochondrial 
protein, heat shock protein 60 (Hsp60) [29]. In addition to acting as an adhesin, LAP has 
also been implicated in the translocation of the pathogen across the intestinal epithelium 
[34]. 

Fibronectin binding protein (FbpA). Fibronectin binding proteins (Fbp) are cell wall-
anchored proteins that are widely distributed in Gram-positive bacteria [35]. Fbps 
recognize and bind to fibronectin (a component of the human extracellular matrix that 
plays a role in inter-cellular interaction and adhesion) [36]. The interaction between 
bacterial Fbps and fibronectin molecules forms a three-component bridge (involving 

Figure 1. Schematic representation of the infection cycle of L. monocytogenes in humans. Following
ingestion of contaminated food, the bacteria invade the intestinal barrier into the bloodstream.
Through the portal circulation, the organism is transported to the liver and spleen where it multiplies
before being disseminated into the bloodstream. The organism subsequently infects the brain and the
placenta/fetus in pregnant women. The schematic art pieces were obtained from Servier Medical art
(https://smart.servier.com (accessed on 1 March 2022)). Servier Medical Art by Servier is licensed
under a Creative Commons Attribution 3.0 Unported License.

3. Pathogenesis of Invasive L. monocytogenes Infections
3.1. L. monocytogenes Virulence Factors

L. monocytogenes expresses several surface and soluble proteins that mediate the
adhesion to target cells, internalization, intracellular multiplication and dissemination
to other host cells [6]. The virulence factors are encoded either as separate loci across
the bacterial genome or as clusters on pathogenicity islands [27]. A core of virulence
genes (prfA, hly, actA, plcA, mpl, and plcB) encoded on the Listeria pathogenicity island
1 (LIPI-1) is conserved in the genomes of all L. monocytogenes strains [27]. Additionally,
many other virulence factors encoded in separate loci, such as the internalin A/Internalin
B (inlAB) operon, are also part of the virulence arsenal conserved in all L. monocytogenes
strains [28]. The characteristics and roles of some of these proteins in the pathogenesis of L.
monocytogenes are discussed in this section.

Listeria adhesion protein (LAP). LAP is a 104-kDa cell wall protein ubiquitously found
in all Listeria species [29]. It was first described by Pandiripally et al. [30] as protein p104
which was subsequently found to be an alcohol acetaldehyde dehydrogenase [31]. As an
essential enzyme, LAP is produced primarily as a cytosolic protein in all Listeria species.
However, in pathogenic species, the protein is translocated to the cell surface through the
SecA2 secretory system to facilitate the adhesion of pathogenic Listeria species to intestinal
cells [32,33]. The epithelial receptor for LAP is a constitutively expressed mitochondrial
protein, heat shock protein 60 (Hsp60) [29]. In addition to acting as an adhesin, LAP has also
been implicated in the translocation of the pathogen across the intestinal epithelium [34].

Fibronectin binding protein (FbpA). Fibronectin binding proteins (Fbp) are cell wall-
anchored proteins that are widely distributed in Gram-positive bacteria [35]. Fbps recognize
and bind to fibronectin (a component of the human extracellular matrix that plays a
role in inter-cellular interaction and adhesion) [36]. The interaction between bacterial
Fbps and fibronectin molecules forms a three-component bridge (involving integrins),
which facilitates the adhesion between the bacterial and the host cells [35]. The Fbp of
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L. monocytogenes (FbpA) was characterized by Dramsi et al. [37]. It is a 570-amino-acid
polypeptide that shares a high homology to streptococcal Fbps (PavA of Streptococcus.
pneumoniae, Fbp54 of S. pyogenes and FbpA of S. gordonii) [37]. However, unlike streptococcal
Fbps, the L. monocytogenes FbpA is exposed on the surface of the bacterial cell without the
signal peptide [37].

Internalin A (InlA). InlA is one of the principal virulence factors of L. monocytogenes that
was first described by Gaillard et al. [38]. It is an 80 kDa protein that is anchored onto the cell
wall peptidoglycan through a C-terminal LPXTG motif [39]. InlA mediates the adhesion and
internalization of the pathogen into enterocytes in the first step of invasion of the intestinal
barrier [22]. An N-terminal leucine-rich repeat (LRR) domain acts as the recognition and
binding site to the EC1 domain of the extracellular portion of E-cadherin [40,41].

Internalin B (InlB). InlB is another adhesion protein that plays a major role in L. mono-
cytogenes binding to enterocytes and the subsequent invasion of the intestinal barrier [39].
Unlike InlA, InlB is anchored onto the cell wall through glycine and tryptophan (GW)
modules that non-covalently interact with cell wall teichoic acids [42]. The LRR domain
acts as the recognition and binding site to Met (a host receptor tyrosine kinase) [22]. L.
monocytogenes also produces many other LRR proteins classified under the internalin fam-
ily [43]. However, InlA and InlB have been identified as the principal adhesion proteins
that mediate pathogen binding and invasion [44].

Listeriolysin O (LLO). LLO is a 56 kDa pore-forming cytotoxin encoded by the hly
gene [45,46]. It belongs to the family of cholesterol-dependent cytolysins (CDCs) [46]. It
was one of the first L. monocytogenes virulence factors identified, based on the ability of
virulent strains to cause hemolysis on blood agar [47]. Subsequent experiments identified
the hemolysin as a sulfhydryl-activated toxin responsible for the intracellular growth of L.
monocytogenes in human enterocyte-like Caco-2 cells [48,49]. The role of LLO is the lysis of
the internalization vacuole, resulting in the release of the pathogen into the cytosol of host
cells [50].

Phospholipases. Two types of phospholipases are required for L. monocytogenes.
Phosphatidylinositol-specific phospholipase C (PI-PLC) is encoded by the plcA gene while
phosphatidylcholine phospholipase C (PC-PLC) is encoded by the plcB gene [51,52]. PI-PLC
plays a complementary role together with LLO in the lysis of the primary and secondary
vacuole following pathogen internalization [44]. It catalyzes the cleavage of the membrane
phosphatidylinositol into inositol phosphate and diacylglycerol [53]. PC-PLC is a broad-
range phospholipase which is particularly required for the lysis of the double-membrane
secondary vacuole and the primary vacuole in conditions of LLO deficiency [54]. PC-PLC
is synthesized as a 33-kDa precursor that requires cleavage to produce the active 29-kDa
enzyme [55]. A zinc-dependent metalloprotease (Mpl) encoded by the mpl gene is required
for the maturation of PC-PLC [55].

Actin-polymerizing protein ActA. ActA is a surface protein encoded by the actA gene [56].
It mediates bacterial motility inside infected host cells through actin polymerization [56].
The protein is anchored on the bacterial cell membrane through its hydrophobic C-terminal
domain while the functional N-terminal domain is exposed to the host cell cytoplasm [56].
Within the bacterial cell surface, ActA exhibits an asymmetrical distribution, being more
concentrated at one polar end of the cell. The asymmetrical distribution is responsible for
the directionality of L. monocytogenes motility [57,58]. To facilitate intracellular motility,
ActA mediates actin nucleation and filament formation through the recruitment of host
vasodilator-stimulated phosphoprotein (VASP) and actin-related proteins-2 and 3 (Arp2/3)
complex [59,60].

3.2. Gastrointestinal Tract Colonization and Invasion of Host Cells

Due to its severity and high fatality rates, much of the focus on the pathogenesis of
listeriosis is placed on invasive infections. However, evidence shows that non-invasive
listerial febrile gastroenteritis outbreaks are very common [61–64]. Non-invasive L. mono-
cytogenes infections are typically characterized by enteric symptoms such as vomiting,
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non-bloody diarrhea, nausea and fever that occur within a short period (24 h) following
the ingestion of contaminated foods [62,65]. The mechanisms underlying the pathogenesis
of non-invasive L. monocytogenes infections remain unclear [65]. Recently, a few studies
have attempted to elucidate the mechanisms of L. monocytogenes gastrointestinal tract col-
onization [26,65]. Based on in vitro and mice models, the actin polymerization protein
ActA—which mediates the cell-to-cell spread of the pathogen in invasive listeriosis—has
also been implicated in intestinal colonization [26]. Using actA gene mutants in orally
infected mice, Travier et al. [26] found that ActA can mediate L. monocytogenes aggregation
both in vitro and in the gut lumen. The postulated mechanism of the ActA-mediated
aggregation is based on direct ActA–ActA interactions through the C-terminal regions
(which are not involved in polymerization) [26]. In the same study, the researchers found
that ActA-dependent aggregation was also responsible for an increased ability to persist
within the cecum and colon lumen of mice. Additionally, Halbedel et al. [65] observed a
genetic correlation between the L. monocytogenes disease outcome (invasive or non-invasive)
and the presence or absence of a functional chitinase gene (chiB) in which gastroenteritis
outbreak isolates possessed a premature stop codon in the chiB gene. However, the restora-
tion of chitinase production in a non-invasive isolate could not generate the invasiveness
characteristic [65].

The first step in the pathogenesis of invasive listeriosis is the ability of the pathogen
to cross the intestinal epithelial barrier. Although the complete mechanisms are still not
fully understood, three well-elucidated pathways have thus far been used to explain the
process [22]. These three pathways (Figure 2) are the InlA-mediated transcytosis, the
LAP-mediated translocation, and the microfold (M-cell)-mediated transcytosis [22].

InlA-mediated transcytosis. The InlA- mediated pathway (Figure 2) is the primary route
by which L. monocytogenes invades intestinal cells. InlA is a cell wall-anchored protein
that mediates the uptake of L. monocytogenes into non-phagocytic cells through receptor-
mediated endocytosis [66]. InlA promotes pathogen adhesion and the invasion of the
intestinal epithelium through an interaction with its receptor, E-cadherin (a component
of adherens junctions) [44]. Adherens junctions, tight junctions, and desmosomes are
part of the apical junctional complex that provides a paracellular seal between adjacent
epithelial cells [22]. The InlA interaction with receptors occurs at sites where E-cadherin is
transiently exposed to the intestinal lumen [67,68]. The transient exposure of E-cadherin
occurs during cell extrusion and junction remodeling [68]. Furthermore, changes in the
shape of goblet cells can also result in the exposure of the E-cadherin component of
the cell junctions [67]. Through interaction with the receptor, bacterial cells are taken
into the enterocytes by endocytosis and are subsequently then released into the lamina
propria by exocytosis [22]. The binding of InlA induces the recruitment of other junctional
proteins, α-catenin and β-catenin, as well as actin and p120 catenin, which facilitate E-
cadherin clustering at the site of bacterial entry [69]. Subsequently, a post-translational
modification of E-cadherin (phosphorylation by the tyrosine kinase, Src and ubiquitination
by the ubiquitin-ligase Hakai) induces endocytosis through caveolin or clathrin [22,69].
Ultimately, the InlA/E-cadherin-mediated endocytosis involves components of the host
cytoskeleton that facilitate the formation of localized host cell membrane protrusions that
force the formation of endocytic vesicles around the adherent bacteria cell [44]. It is now
known that host cytoskeletal proteins involved in actin nucleation such as the Arp2/3
complex and VASP are activated in response to InlA binding to its receptors [39,70].
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Figure 2. Pathways of the L. monocytogenes invasion of the intestinal barrier. In the InlA-mediated
transcytosis (A), bacterial cells are taken into the enterocytes by endocytosis through the interaction of
InlA and any exposed E-cadherin receptors followed by subsequent exocytosis into the lamina propria.
In the LAP-mediated translocation (B), the interaction between the bacterial surface protein LAP and
the receptor Hsp60 causes an opening of tight junctions facilitating the movement of bacterial cells
into the lamina propria. In the M-cell-mediated pathway (C), bacterial cells are passively taken in by
M-cells and released by exocytosis into the lamina propria. The schematic art pieces were obtained
from Servier Medical art (https://smart.servier.com). Servier Medical Art by Servier is licensed
under a Creative Commons Attribution 3.0 Unported License.

Unlike InlA, InlB does not play a major role in the invasion of intestinal cells [39].
However, together with InlA, it plays a role in the invasion of other tissues such as the liver,
spleen, CNS and placenta [23]. The InlB receptor is the ubiquitous tyrosine kinase Met
whose normal ligand is Hepatocyte Growth Factor (HGF) [44]. The binding of InlB to Met
results in the autophosphorylation of the cytoplasmic tail of the Met proteins, initiating a
reaction cascade that culminates in the localized polymerization of actin and internalization
of bacterial cells in the same way as InlA [66].

LAP-mediated translocation. For a long time, the InlA-mediated pathway was estab-
lished as the main route of L. monocytogenes traversal of the intestinal epithelium [67–69].
However, subsequent evidence that strains possessing non-functional InlA could cause
infections in orally dosed mice and guinea pigs [71,72] showed that the pathogen can
use alternative mechanisms to achieve intestinal invasion [34]. The surface protein, LAP,
which was initially identified as an adhesin that facilitates the binding of L. monocytogenes
to enterocytes, also contributes to the translocation of the pathogen across the intestinal
epithelium [34]. The pathway of LAP-mediated invasion (Figure 2) was elucidated by
Drolia et al. [34] using a Caco-2 cell line and a mouse model. The researchers showed that
LAP induces the intestinal epithelial barrier dysfunction as a mechanism of promoting
bacterial translocation. The binding of LAP to its luminal receptor protein Hsp60 acti-
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vates myosin light-chain kinase (MLCK) that mediates the opening of the intestinal barrier
through the redistribution of junctional proteins, claudin-1, occludin, and E-cadherin [34].
These reactions cause the opening of tight junctions between neighboring enterocytes
allowing L. monocytogenes translocation [22,34]. Furthermore, the LAP-mediated transloca-
tion is thought to be an important precursor event for the InlA-dependent invasion, as it
potentially provides pathogen access to E-cadherin in exposed adherens junctions [34].

M-cell mediated transcytosis. The microfold (M) cells are specialized epithelial cells that
survey the intestinal mucosa for any antigens as part of the mucosal immune response.
They readily take up antigens from the intestinal mucosa and transcytose them across
the intestinal epithelium to the lymphoid tissues of the Peyer’s patches [73]. This process
also serves as a passive route for the transcytosis of pathogens into the basolateral side of
the follicle-associated epithelium [74]. While the role of M-cells in the transcytosis of L.
monocytogenes has been well established, the mechanism of the pathogen interaction with
such cells is not fully understood [74]. Evidence from in vitro and orally infected mice
models has shown that in the absence of InlA, L. monocytogenes rapidly accumulate in the
Peyer’s patches [75,76]. The prevailing paradigm on the M-cell mediated pathway is that
transcytosis occurs across the M cells through a vacuole [22,23]. However, Rey et al. [74]
established that in addition to the rapid vacuolar transcytosis, L. monocytogenes also escapes
to the cytosol of the M-cells by vacuolar rupture. Once in the M-cell cytosol, the pathogen
can initiate a direct ActA-based M-cell-to-enterocyte spread [74].

3.3. Intracellular Survival and Dissemination

The ability to cross the intestinal barrier provides the main gate of L. monocytogenes
entry into the bloodstream. Due to its predilection for the CNS and the placenta in pregnant
women, neurolisteriosis, maternofetal infection and septicemia are the main clinical mani-
festations of invasive listeriosis [77]. The high tropism of L. monocytogenes for these tissues
is unclear. The possible explanation has been attributed to the presence of E-cadherin
and Met, the two receptor proteins for InlA and InlB, respectively [7]. Because of the
presence of Met in the human umbilical vein endothelial cells (HUVEC), L. monocytogenes
can invade the human placenta through an InlB-dependent mechanism [78]. In the CNS,
both receptors are expressed at the surface of choroid plexus epithelial cells and Met is
additionally expressed at the brain endothelial cells of the blood-cerebrospinal fluid (CSF)
and blood–brain barriers. Hence, the invasion of the CNS is facilitated by both InlA and
InlB mechanisms [7].

Once internalized into the target cells in a primary vacuole, the next step in the infec-
tion cycle is the escape from the primary vacuole into the cell cytosol [79] (Figure 3). This
vacuolar escape is mediated by the production of LLO [8,79]. This pore-forming cholesterol-
dependent cytotoxin causes the rupture of the vacuole and release of the bacterial cells into
the host cell cytosol [80]. In addition to LLO, L. monocytogenes also employs phospholipases,
such as PI-PLC, that significantly enhance the lysis of the primary vacuole [52]. Following
a period of intracellular replication inside infected cells, the production of ActA results in
the formation of actin comet tails which facilitate bacterial motility inside the cells as well
as the spread to uninfected cells through membrane protrusions [9]. The double membrane
of the resulting secondary vacuole is degraded by LLO in collaboration with PC-PLC [9].
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nalins InlA and InlB interaction with their respective cell surface receptors result in the internalization
of bacterial cells. The primary endocytic vacuole is then lysed through the activity of LLO and PI-PLC.
Following a period of replication in the cytosol, the release of ActA stimulates actin polymerization by
recruiting host nucleation proteins VASP and Arp2/3 complex. The formation of comet tails propels
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3.4. Clinical Outcomes of Invasive L. monocytogenes Infections

The clinical outcomes of listeriosis depend on the health status of the infected indi-
vidual and are often correlated to underlying factors and comorbidities such as cancer,
chronic renal, cardiovascular, and liver disease, multi-organ failure, and old age [81–83].
In neurolisterial infections, the most common symptoms include meningitis, meningoen-
cephalitis, and rhombencephalitis [7]. For maternofetal listeriosis, the main clinical features
include amniotic inflammation (amnionitis), preterm labor, stillbirths, and spontaneous
abortions. In severe cases, widespread micro-abscesses and granulomatosis infantiseptica
in newborns can occur [84]. Fever, diarrhea, influenza-like symptoms, multi-organ failure,
and decompensated comorbidities are the most commonly reported clinical features associ-
ated with listerial septicemia [81]. In rare cases, infections can also affect a variety of organs
and organ systems [85]. These infections normally involve the cardiovascular system
(endocarditis) [86], respiratory tract infections (pleural infections and pneumonia) [87],
biliary tract infections (cholecystitis, cholangitis, and biliary cyst infection) [88], and bone
and joint infections, especially those involving orthopedic implant devices [89].

4. L. monocytogenes Stress Responses and Adaptation

Similar to all living organisms, the ability of L. monocytogenes to sense and respond
to environmental changes is essential to its survival. Environmental conditions such as
osmotic pressure shifts, temperature shifts, pH extremes, changing redox potential and
fluctuating nutrient availability impose stress on microbial cells [10]. At their extremes,
stress conditions can cause damage to the cellular structural components and disrupt the
homeostatic balance inside microbial cells, resulting in cell death [11]. In many instances,
microorganisms are exposed to mild stress levels that only reduce growth without causing
loss of viability [90]. Due to the demand for minimally processed foods that preserve the
natural freshness and nutritional quality, many foods are processed by the use of mild
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processing technologies that apply a combination of many sub-lethal stress treatments [91].
Despite the benefits of such approaches, exposure to sub-lethal stresses can induce the
development of adaptive stress tolerance responses that enhance the survival of pathogens
when exposed to subsequent lethal stress along the food value chain [15]. Many sub-lethal
stress hurdles employed in food preservation have been proven to induce adaptive tolerance
to lethal stress treatments in L. monocytogenes [92–96]. Exposure to sub-lethal acid at pH 5.0,
sub-lethal heat at 46 ◦C, and sub-lethal H2O2 at 100 ppm H2O2 induces tolerance to lethal
acid at pH 3.5; lethal heat at 63 ◦C and lethal H2O2 at 1000 ppm, respectively [95,97,98].
In addition to homologous adaptive responses, heterologous cross-adaptation between
different stress factors also occurs [99]. For example, protection against lethal acid stress in
L. monocytogenes can be induced by sub-lethal NaCl and heat stress exposures [96–98]. The
development of adaptive responses has implications for pathogen survival in foods and,
subsequently, in the GIT.

4.1. Adaptation to Stress in Foods and Food Processing Environments

The mechanisms responsible for the development of L. monocytogenes adaptive toler-
ance responses against the common environmental and food-related stresses (acid, osmotic,
heat, cold, oxidative stress) have been elucidated [95,100–104]. Upon exposure to stress,
L. monocytogenes modulates the transcription of stress response genes whose effect is to
trigger cellular processes that allow the pathogen to survive and grow in the presence of
stress [21]. The specific mechanisms of response to acid, osmotic, heat, cold, and oxidative
stresses are briefly described in this section.

4.1.1. Osmotic Stress Adaptation

Osmotic stress results from changes in environmental osmolarity that disrupt the
cellular osmotic balance [105]. Changes in environmental osmolarity can result from en-
vironmental salinity, desiccation and the use of hyperosmotic solutes in foods [106,107].
Extreme hyperosmotic conditions result in loss of cell turgor and cell death due to plas-
molysis [105]. The ability of L. monocytogenes to withstand hyperosmotic conditions has
been known for a long time [98,108]. In response to hyperosmotic conditions, the organ-
ism actively accumulates compatible solutes as a way of counterbalancing the negative
effects of outward water movement. Compatible solutes are low-molecular-weight, highly
soluble compounds that bear a neutral charge at physiological pH, whose accumulation
inside the cells helps in restoring cell turgor, without affecting cytoplasmic function [109].
Although several compounds have been identified as potential osmoprotectants, glycine
betaine (N,N,N-trimethylglycine) and carnitine (β-hydroxy-γ-N-trimethyl aminobutyrate)
are the most potent at conferring osmoprotection on L. monocytogenes [110]. Notably, both
compounds are not synthesized by L. monocytogenes but are fairly ubiquitous in foods of
both plant and animal origin and, therefore, their intracellular accumulation is achieved by
active transport from the environment [109,111].

The osmotic stress response is triggered by changes in osmotic pressure as the main
signal [112]. However, the mechanism of signal sensing and transduction has only recently
been elucidated [113]. The modulation of osmolyte transport and the expression of genes
encoding osmolyte transporters is regulated Cyclic di-AMP (c-di-AMP) [105,113]. Two
glycine betaine transporters (Gbu and BetL) and a single carnitine transporter OpuC have
been known to respond to osmotic upshifts [109]. Gbu is an ATP-dependent transporter
encoded by the gbu operon that mediates the uptake of glycine betaine in response to
osmotic and cold stress [114]. BetL is a non-ATP-dependent secondary transporter encoded
by betL, whose uptake of glycine betaine is coupled to Na+ symport [115]. Carnitine
transport is mediated by the ATP-dependent transporter, OpuC, a product of the opuC
operon that responds to both osmotic and cold stress [116].
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4.1.2. Acid Stress Adaptation

Organic acids constitute one of the most frequently used preservatives in foods. Al-
though there are several antimicrobial targets of acids [117–119], the primary antimicrobial
effects result from the protonation of the cytoplasm and disruption of intracellular pH [120].
Two amino acid decarboxylation systems (the glutamate decarboxylase (GAD) and arginine
deiminase (ADI)) have been known to protect L. monocytogenes against acid stress [102,104].

The GAD system depends on the enzyme glutamate decarboxylase, a product of the
gadD operon which decarboxylates glutamate to produce γ-amino butyric acid (GABA)
while consuming a proton and releasing a bicarbonate anion. The decarboxylation is
coupled with an antiporter (GadT) that takes out the produced GABA while taking in glu-
tamate [104]. L. monocytogenes produces three glutamate decarboxylase enzymes (GadD1,
GadD2, and GadD3) and two antiporters (GadT1 and GadT2) that are encoded as pairs
consisting of gadD1T1 and gadD2T2 operons in separate parts of the genome [104]. The
genes have distinct functions in the acid stress response of L. monocytogenes. The expression
of gadD1T1 is required for mild acid (pH 5.1) survival, while the gadD2T2 expression is
needed for severe acid stress (pH 2.8), and therefore, is necessary for the adaptive acid
tolerance response (ATR) [121].

The ADI system involves the conversion of arginine to ornithine accompanied by
the production of ammonia and carbon dioxide [122]. As part of the system, an arginine-
ornithine antiporter (protein ArcD encoded by arcD) facilitates the uptake of arginine in
exchange for ornithine. Once inside the cell, the deimination of arginine by the enzyme
arginine deiminase (encoded by the arcA) produces ammonia and citrulline. The latter
is then converted to ornithine and carbamoyl phosphate through the enzyme ornithine
carbamoyltransferase (encoded by arcB). Carbamoyl phosphate is subsequently converted
to ammonia and carbon dioxide through the activity of carbamate kinase (encoded by
arcC) [102]. This reaction reduces internal pH through the conversion of ammonia (NH3) to
ammonium ions (NH4

+) [123].

4.1.3. Heat Stress Adaptation

Thermal processing is an established method of food preservation, known for its
lethality, especially at elevated temperatures. As a non-spore-former, L. monocytogenes is
generally susceptible to heat stress, although it has been reported to exhibit thermotolerance
upon exposure to heat shock at sublethal temperatures [124,125]. Moreover, heat resistance
can be induced by exposure to acid, oxidative, alkali, and chlorine stresses [126,127]. The
heat stress response is universal in all prokaryotes and is triggered by temperature up-shifts
above the normal growth range. Its main effect is the protection of cellular proteins and
enzymes against heat-induced denaturation that affects their physiological functions [101].
The heat shock response of L. monocytogenes involves the increased transcription of heat
shock genes coding for three classes of heat shock proteins (HSPs) [128]. Of these three
classes of HSPs, the expression of Class I and Class III proteins is a direct response to heat
stress, while Class II proteins are general stress response proteins under the regulatory
control of σB [101]. Class I HSPs are chaperones made up of the proteins, dnaK, dnaJ,
groES, and groEL encoded in two operons (the dnaK and groEL-groES operons) [129,130].
Class III HSPs are ATP-dependent proteases (clpP, clpC, clpE, and clpB) involved in the
proteolysis of misfolded proteins [13]. Under normal growth temperature, the expression
of the Class I HSPs and Class III HSPs genes is prevented by HrcA and CtsR repression, re-
spectively [101,131]. Under conditions of elevated temperatures, de-repression is achieved
through the reduced DNA binding of repressors and improved binding of sigma factor A,
leading to increased transcription [101].

4.1.4. Cold Stress Adaptation

Although L. monocytogenes is typically a mesophile, with an optimum growth tempera-
ture of 30–37 ◦C, the organism has a remarkable ability to multiply under low-temperature
conditions [132]. While part of this psychrotrophic growth ability may be intrinsic, a signifi-
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cant part of it is induced by exposure to cold conditions [133]. At least three mechanisms are
utilized by L. monocytogenes in response to cold stress-imposed challenges. These include
the adjustment of the fatty acid composition of the cell membranes in order to maintain
fluidity, the increased expression of cold shock proteins (CSP), and the accumulation of
osmolytes and oligopeptides [103].

Upon exposure to low temperatures, the membrane of mesophilic bacteria changes
from an elastic liquid crystalline state to a gel-phase state, resulting in the impairment of
nutrient uptake [100]. The low-temperature growth propensity of L. monocytogenes is related
to its ability to maintain membrane fluidity, which is necessary for nutrient transport [134].
The mechanism of cold stress adaptation involves the adjustment of membrane fluidity
through the incorporation of unsaturated anteiso-branched-chain fatty acids (BCFA) [135].
Anteiso-BCFAs have a lower melting point than the analogous iso-BCFAs that account
for >95% of the membrane fatty acid composition of L. monocytogenes cells growing at
37 ◦C [136]. A key determinant in the adjustment of membrane fluidity is the enzyme
β-ketoacyl-acyl carrier protein synthase III (FabH) which catalyzes the initial condensation
reaction between iso- and anteiso-branched α-keto acids and acetyl-coenzyme A [135,137].

CPSs belong to a family of small highly conserved and structurally related proteins
that are widely distributed in the prokaryotic kingdom [100]. Within the genomes of L.
monocytogenes, three families of CSP genes (CspA, CspB, and CspD coding for CpsA, CpsB
and CpsD, respectively) have been found [138]. While these proteins are dispensable
for growth at 37 ◦C, they are required for growth at 5–10 ◦C [139,140]. Using directed
mutagenesis, Schmid et al. [139] observed that CspA is the main CSP required for low-
temperature growth of L. monocytogenes. Although the exact functions of CSPs are still
to be fully elucidated, the current postulation is that these proteins act as nucleic acid
chaperones that bind RNA and DNA, thus, facilitating the control of processes such as
replication, transcription, and translation within bacterial cells under cold stress [100]. This
is presumably necessary to help the organisms overcome the challenges of DNA and RNA
supercoiling, which is associated with low-temperature growth [100], coupled with the
role of CSPs are RNA helicases, that bind to ribosomes and facilitate RNA maturation
challenges at low temperatures [141]. Four DEAD-box RNA helicase genes have been
found in the genome of L. monocytogenes [142]. Using knock-out mutants, the helicases
were found to be necessary for L. monocytogenes cold growth [141,143].

L. monocytogenes cold stress adaptation also involves the accumulation of compatible
solutes, glycine betaine, and carnitine, as well as oligopeptides as cryoprotectants [103]. The
main osmolyte transporters Gbu, BetL and OpuC induced by osmotic stress are also induced
by cold stress [144,145]. The accumulation of oligopeptides in L. monocytogenes is mediated
by the oligopeptide permease transporter (OppA) encoded by the opp operon [146]. The
exact roles of the accumulated osmolytes and oligopeptides in the cold stress response
are unclear. Some posited roles include acting as cryoprotectants and stabilization of
enzymes [103].

4.1.5. Oxidative Stress Adaptation

Oxidative stress results from the production and accumulation of reactive oxygen
species (ROS) such as superoxide anion, hydrogen peroxide, hydroxyl radicals, peroxyl rad-
icals, and singlet oxygen that cause damage to cellular molecules such as DNA, lipids, and
proteins [147]. As a facultative anaerobe, L. monocytogenes is oxidative stress-tolerant. Cata-
lase and superoxide dismutase encoded by the kat and sod genes, respectively, are the pri-
mary antioxidant enzymes produced by L. monocytogenes [148,149]. The two enzymes detox-
ify the superoxide anion and hydrogen peroxide generated by aerobic metabolism [150].
In addition to the detoxifying enzymes, L. monocytogenes possesses a metal-dependent
peroxide sensor, PerR (peroxide repressor), that regulates the expression of peroxidase
genes and genes for metal homeostasis [151]. The PerR regulon includes kat, fur (iron
homeostasis regulator), hemA (haem biosynthesis), fri (iron-binding protein) and fvrA (iron
efflux pump) [151,152].
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4.2. Adaptation to Stress in the GIT

The successful colonization and subsequent GIT invasion by L. monocytogenes rely on
the ability of the pathogen to overcome the harsh conditions associated with the innate
defences of the GIT. The first physical stress encountered by L. monocytogenes in the GIT
is the low pH of the stomach that the pathogen must deal with as it transits to the small
intestines [153]. The critical role of acid stress adaptation in L. monocytogenes pathogenesis
has been demonstrated through in vitro infection models of enterocyte-like cells and mice
models [154,155]. The survival of stomach acidity is attributable to the expression of the
GAD system [104]. The gadD2T2 operon, which is responsible for the ATR of L. monocyto-
genes induced by environmental acid stress exposure, is required for the survival in gastric
fluid [104,121].

Once L. monocytogenes passes through the low pH of the stomach, it is faced with high
osmotic stress and bile stress in the lumen of the small intestines [156]. The resistance to
osmotic stress in the GIT has been attributed to the activation of the carnitine transporter
opuC [116,140]. L. monocytogenes mutants with opuC gene deletions have been shown to
exhibit limited pathogenicity in animal infection models, while the deletion of glycine
betaine transporter genes gbu and betL do not seem to affect virulence [116,140]. The
importance of carnitine as the preferred osmolyte in the GIT survival of L. monocytogenes is
probably linked to its relative abundance in mammalian tissues [140]. Bile stress tolerance is
a critical factor in L. monocytogenes GIT survival and colonization. The pathogen produces a
bile salt hydrolase (BSH) enzyme (encoded by bsh) that catalyzes the hydrolysis of the amide
bond between the bile acids (cholic acid and chenodeoxycholic acid) and the amino acid
conjugates [157]. The enzymatic hydrolysis is complemented by an increased expression
of the transporter protein BilE (a product of the bilE gene) which is responsible for bile
exclusion [158].

5. Crosslink between Stress Responses and Virulence
5.1. Regulation of L. monocytogenes Stress Response

In L. monocytogenes, the general stress response alternative sigma factor B (SigB)
modulates a reprogramming of gene expression that facilitates the survival and protection
against harsh environmental conditions [12]. Since it was first described in L. monocytogenes
three decades ago [159], several roles of SigB have been identified [160–163]. The identified
regulon of this general stress response regulator encompasses more than 200 genes that are
involved in environmental stress survival, metabolism, and virulence [20,164]. As a general
stress response regulator, SigB mediates survival under a broad range of lethal stresses
along the food value chain. Transcriptomic and mutagenesis experiments have shown
that responses to the common environmental and food stress factors (acid, osmotic, heat,
cold, oxidative stress and nutrient stress) are sigB-dependent [20,159,165–167]. Although
SigB is the central transcriptional regulator of stress survival genes in L. monocytogenes,
some alternative transcriptional regulators are also utilized in response to specific stress
factors. For instance, the expression of Class I and Class III hsp genes relies on HrcA and
CtsR proteins as negative regulators [101], while the peroxide repressor PerR regulates the
expression of oxidative stress response genes [151].

In addition to regulating stress responses in the environment, SigB also modulates
gene expression in response to stress conditions encountered along the oral infection route.
sigB deletion mutants exhibit limited pathogenicity in orally infected model animals [168].
The SigB modulation of the gadD2T2 operon, opuC, bsh and bilE gene expression is critical
to the survival of stomach acidity, intestinal osmotic and bile stresses, respectively, as a
prerequisite for a successful intestinal invasion [116,121,157,158]. Besides its role in stress
survival and adaptation, evidence shows that SigB also plays a critical role in the invasion
of the intestinal barrier and initiation of infection [12,21]. Thus, the general stress response
regulator facilitates a smooth transition from the environmental saprophytic life cycle to
the pathogenic life cycle inside host cells.
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Molecular Mechanisms of SigB-Dependent Regulation

The SigB protein is encoded by the sigB gene as part of an operon that includes seven
other genes referred to as the regulation of sigma B (rsb) genes (rsbR, rsbS, rsbT, rsbU,
rsbV, rsbW, and rsbX) coding for Rsb proteins [169]. The Rsb proteins are responsible for
the detection of environmental stress signals and the regulatory cascade that controls the
activity of SigB. The sensing and transduction of environmental signals is mediated by a
1.8 MDa supra-macromolecular stressosome consisting of a complex of RsbR-RsbS-RsbT
proteins [12,170]. Although the exact mechanisms of stress sensing are not clearly under-
stood, the current model is based on phosphorylation events by the sensor kinase RsbT
and its subsequent release from the stressosome complex (Figure 4). RsbT subsequently ac-
tivates RsbU, converting to an active phosphatase. Through its dephosphorylation activity,
RsbU in turn activates RsbV [12,171]. In exponentially growing cells, the SigB protein exists
as an inactive form bound to the anti-SigB protein, RsbW [169]. The activation of SigB is
achieved by a partner-switching mechanism in which the release of RsbW is mediated by
the binding of the dephosphorylated form of the anti-SigB protein, RsbV (Figure 4) [169].
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5.2. Regulation of L. monocytogenes Virulence

The transition of L. monocytogenes from an environmental saprophyte to an intracellular
pathogen is facilitated by changes in gene expression patterns from environmental survival-
related genes to intracellular survival-related genes. Central to the transition is the role of
the protein PrfA, encoded by the prfA gene [172]. PrfA is a 27 kDa member of the cyclic
AMP receptor protein (Crp)/fumarate nitrate reductase regulator (Fnr) family of bacterial
transcription factors [28,173]. The Crp/Fnr transcriptional activators are symmetrical
homodimers consisting of an N-terminal cAMP binding domain and C-terminal DNA
binding domain [28]. Its regulon includes a block of virulence genes (hly, actA, plcA, mpl,
and plcB) encoded by the Listeria pathogenicity island 1 (LIPI-1) and the inlAB operon on a
separate chromosomal locus [172,174,175]. Apart from the invasion proteins, inlA and inlB,
the role of PrfA in L. monocytogenes pathogenesis is largely on the expression of virulence
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factors associated with the intracellular stage of the infection as well as the cell-to-cell
spread [19,176]. Hence, the transcriptional regulator is activated once the pathogen is in
the cytosol of host cells, switching the bacterial cells from the avirulent to the virulent
state [176]. The signals and mechanisms that trigger prfA expression in the host cytosol
have only become clearer in the last decade [177–179]. Branched chain amino acids (BCAA)
and phosphorylated hexoses have been identified as the metabolic signals inside host
cells [180,181]. An exception to the need for intracellular activation has been observed with
L. monocytogenes mutants that constitutively express the prfA gene (prfA* mutants) [182,183].
Such prfA* mutants exhibit a high virulence in animal infection models. However, their
environmental stress survival ability is poor [176]. PrfA activates transcription by binding
to the PrfA box, a 14-bp A/T-rich palindromic nucleotide sequence located ~40 bp upstream
of the transcriptional start sites of genes under its control [21].

5.3. Regulatory Intersection between Stress Response and Virulence

A plethora of evidence has shown that responses to stress in L. monocytogenes influence
pathogenesis [150,154,184–186]. In most reports, the relationship between stress response
and pathogenesis is attributed to adaptive tolerance responses that enable the pathogen to
survive host innate defences in the GIT [15,16]. Along with the adaptive stress tolerance,
the relationship can also be attributable to overlaps and direct interaction between the
regulatory networks of stress and virulence [12,21]. Some of the currently understood
mechanisms behind the interplay between the stress and virulence regulatory networks
are described in this section. An illustration of the overlap and interactions between
transcriptional regulators of stress and virulence is depicted in Figure 5.
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Coregulation of the inlA/B operon, actA and bsh: The dispensability of SigB in the patho-
genesis of L. monocytogenes is a fact that has been established for a long time [18,168].
The initial evidence for the role of SigB in L. monocytogenes pathogenesis was based on
observations that sigB deletion mutants are avirulent on oral infection but are fully virulent
when injected intravenously [168]. Subsequent elucidation of the role of SigB established
that in addition to its stress regulon, this transcriptional regulator extends to the control of
virulence genes inlA, inlB, and actA (Table 1) [58,187]. The overlapping regulatory controls
of SigB and PrfA on the inlAB operon provide the connection between the stress response
and virulence of the pathogen [156]. The biological significance of this coregulation of the
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inlAB operon has been explained in terms of the need to facilitate a transition from GIT
survival to the invasion of the intestinal barrier, in which SigB is necessary for initiating
infection in the intestinal phase before yielding the regulatory function to PrfA in the
intracellular stages of infection [156]. Moreover, PrfA also extends its regulatory network
to some stress response genes involved in the GIT survival phase (Table 1), such as the bsh
gene [184,188]. Guariglia-Oropeza et al. [184] suggested a model where SigB-dependent
gene expression plays a role in the survival of acid and osmotic stress exposures in the
early stages of GIT infection before the subsequent induction of PrfA by the exposure to
bile. This intestinal expression of PrfA regulon potentially primes L. monocytogenes for
the subsequent intracellular stage of infection. While ActA is primarily a virulence factor
necessary for the intracellular stage of L. monocytogenes infection, it is also produced in the
extracellular environment, where it mediates aggregation and biofilm formation [26,58].
Within the intestinal lumen, actA expression is under the dual regulation of both SigB and
PrfA and is necessary for GIT colonization [26,189].

Table 1. Stress response proteins and virulence factors expressed by L. monocytogenes at different
stages of the infection cycle.

Stage of Infection
Cycle

Stress Response
Proteins/Virulence Factor Function Transcriptional

Regulator References

Intestinal phase GadD2T2 Glutamate decarboxylase for survival of stomach acidity SigB [104]
OpuC Carnitine transporter for osmotic stress survival SigB [116]

Bsh Bile salt hydrolase for bile stress survival SigB and PrfA [157,184]
BilE Bile exclusion system for bile stress survival SigB and PrfA [158]
InlA Adhesion and invasion of enterocytes SigB and PrfA [39,168]
InlB Adhesion and invasion of enterocytes SigB and PrfA [39]

ActA Bacterial aggregation and intestinal colonization SigB and PrfA [26,189]
Intracellular phase LLO Primary vacuole lysis PrfA [46]

PI-PLC Primary vacuole lysis PrfA [53]
PC-PLC Secondary vacuole lysis PrfA [54]

ActA Intracellular motility and cell-to-cell spread PrfA [56,190]

SigB downregulation of prfA expression and maintenance of basal levels: A growing body
of evidence indicates that the interactions between SigB and PrfA extend beyond the
coregulation of the inlAB operon (Figure 5) [19,191]. Three transcriptional promoters
(prfAP1, prfAP2 and prfAP3) are utilized in the control of prfA expression in L. monocytogenes.
Of these, prfAP1 and prfAP2 are intragenic promoters located upstream of the prfA gene
on the LPI-1 that are activated by the vegetative sigma factor A (for prfAP1) and both
sigma factor A and SigB (for prfAP2) [192]. However, the biological significance of SigB
regulation of prfA expression has not been easy to establish [19]. The current hypothesis
is that SigB regulation through the prfAP2 promoter may facilitate the downregulation of
prfA transcription [19,28]. The repression is postulated to keep a basal level of PrfA that
allows for a sensitive and rapid shift from the avirulent state to a virulent state once inside
host cells [28]. Thus far, the main mechanism for the upregulation of prfA transcription
inside host cells appears to be the positive autoregulatory feedback loop through the prfAP3
promoter [19]. The signal that triggers the upregulation of prfA transcription inside host
cells remains unclear. One established observation is the role of temperature in the prfA
expression [193,194]. In L. monocytogenes, a thermosensor located in the 5’-untranslated
region (5′-UTR) of the prfA mRNA transcript allows for the translation of transcript at
37 ◦C, while preventing translation at temperatures <30 ◦C [195].

The metabolic regulator CodY as a link between SigB and PrfA networks: CodY is a
Gram-positive bacterial metabolic regulator that responds to intracellular Guanosine-5’-
triphosphate (GTP) concentration as an indicator of nutrient stress [196]. Under conditions
of nutrient availability, CodY represses sigB expression, while activating the stress re-
sponse regulator under conditions of nutrient stress [179]. Apart from GTP as the nutrient
stress signal, CodY also responds to the cellular concentrations of branched chain amino
acids (BCAA) [180]. Due to the low BCAA concentrations in host cells during infection,
CodY plays a critical role in the biosynthesis of BCAAs through the upregulation of the
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ilv (isoleucine, leucine and valine (ILV)) operon [180]. Simultaneously, CodY results in
an increased expression of virulence gene expression through a direct upregulation of
prfA, while also causing an increased sigB expression [179]. Thus, the metabolic regulator
acts as a link between L. monocytogenes metabolism, stress response, and pathogenesis
(Figure 5) [178,197].

Glutathione allosteric activation of PrfA as an indirect link between SigB and PrfA networks:
Similar to other Crp/Fnr family proteins, PrfA requires a co-factor to improve its DNA bind-
ing at promoter sequences [178]. In recent years, the tripeptide glutathione (GSH) has been
identified as a post-translational activator of PrfA through allosteric mechanisms [198,199].
In addition to the direct role of SigB in the transcription of prfA, the stress response regu-
lator also plays some indirect roles in stimulating prfA expression. Through the activity
of the enzyme glutathione synthase (encoded by the gshF gene), L. monocytogenes can en-
dogenously synthesize glutathione [200]. However, due to its antioxidant action, GSH is
oxidized to GSSG. To maintain a healthy oxidative state, L. monocytogenes produces the
SigB-regulated glutathione reductase (encoded by lmo1433) to modulate the GSH/GSSG
ratio [17]. Thus, SigB contributes indirectly to PrfA activity by maintaining high levels of
GSH reductase [12].

Along with the activation of prfA, there is also evidence to suggest that some stress
response proteins of L. monocytogenes are involved in the post-transcriptional modifica-
tion of some virulence factors [185,201]. For instance, Eshwar et al. [185] showed that
cspABD deletion mutants could not produce the actin polymerization protein ActA, while
Schärer et al. [201] made a similar observation with LLO production. Based on their obser-
vation, Eshwar et al. [185] hypothesized that the Csp proteins could be linked to the regula-
tion of virulence gene expression at both transcriptional and post-transcriptional levels in
L. monocytogenes.

6. Strain and Lineage Variability in Stress Response and Virulence

L. monocytogenes exhibits great heterogeneity within the species. The species is
divided into four evolutionary lineages (designated lineages I, II, III, and IV), and 13
serotypes [202,203]. Additionally, using multilocus sequence typing (MLST) and whole-
genome sequencing analysis, the species is divided into >100 clonal complexes (CCs) and
sub-lineages (SLs) [204–206]. Among the lineages and serotypes, heterogeneity also exists
with respect to virulence and ecological niche preferences [27,207]. Three serotypes belong-
ing to lineage I (4b and 1/2b) and lineage II (1/2a) account for >95% of human listeriosis
cases [208,209]. Furthermore, among the serotypes associated with human disease, serotype
4b strains are the most frequently implicated in severe clinical outcomes such as brain and
placental infections [209,210]. On the other hand, lineage II strains are predominant in
foods [209,211].

The molecular basis of L. monocytogenes strain and lineage virulence heterogeneity
has been deciphered from the genetic differences between the so-called hypervirulent
(serotype 4b, lineage I) and the hypovirulent (lineage II) strains [27,208]. Based on single
nucleotide polymorphisms (SNPs) and multilocus genotyping (MLGT) using virulence
(such as inlA, inlB; hly, plcC; actA) and sigB as well as whole-genome sequencing, several
studies have shown that lineage II strains carry numerous mutations in their inlA genes
that lead to premature stop codons and the production of truncated forms of inlA [212–214].
Consequently, despite their frequent occurrence in foods, lineage II strains are hypovirulent
due to their inability to express a functional InlA protein needed for a successful systemic
infection [27]. Apart from the core virulence genes encoded on LIPI-1 and the inlAB islet
universally present in all L. monocytogenes strains, some lineage I strains harbor an extra set
of virulence genes (the Listeria Pathogenicity Island 3 (LIPI-3)) [215,216]. LIPI-3 carries a
gene cluster that includes the llsA gene conceding for the synthesis of Listeriolysin S (LLS), a
bacteriocin whose function is to inhibit host microbiota during infection [216]. The absence
of the LIPI-3 in the genomes of lineage II strains and its presence in the sub-lineages of
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lineage I (4b serotype) strains suggests that it is the main factor behind the hypervirulence
of serotype 4b strains [27,204].

With respect to lineage II strains, their overrepresentation in the food environment is
presumed to be a function of their ability to withstand environmental stress [203]. Available
evidence shows that stress resistance phenotypes in L. monocytogenes are linked to genetic
lineages, with lineage II strains particularly showing a better adaptation to environmental
stresses such as salt, acid, and heat [217,218]. Using comparative genomics, of 174 clinical
and food isolates, Pirone-Davies et al. [219] identified eight plasmid-borne genes uniquely
associated with lineage II strains from food. These genes included cadmium resistance
genes cadA and cadC, a multi-drug resistance gene ebrB, and a quaternary ammonium
compound resistance gene qac [219]. Plasmid-harboring L. monocytogenes strains were
found to be persistent in food processing environments and tolerant to benzalkonium
chloride, elevated temperature, salinity, and acidic environments [220–222].

The near-total lack of association of lineage III strains with either foods or human infec-
tions is a subject that is still to be fully elucidated. A pan-genome analysis of 26 strains rep-
resenting lineages I, II, and III, identified 86 disparately distributed genes highly conserved
in lineages I and II genomes but highly divergent or absent in lineage III genomes [208].
Among the disparately distributed genes were genes involved in carbohydrate metabolism
(phosphotransferase system (PTS)) and transcription factors [208]. Cerutti et al. [223] also
identified genes for small regulatory RNAs that co-evolved with genes for pathogenicity
and host interaction present in the genomes of lineage I and II strains but missing in the
genomes of lineage III strains. Thus, reinforcing the hypothesis that lineage III strains
evolved by loss of virulence and metabolic functions [208,223].

7. Conclusions and Future Perspectives

Adaptive stress tolerance responses play a critical role in the pathogenicity of L.
monocytogenes. While stress adaptation is primarily a mechanism of environmental survival,
the processes play a role in protecting the organism against the innate defence systems
of the GIT. Furthermore, the transcriptional regulator of environmental stress adaptation,
SigB, also has some concurrent effects on the expression of virulence factors that are also
under the virulence regulator, PrfA. In parallel with the SigB regulatory effect on virulence
genes, PrfA also exerts a synchronic effect on stress response genes for survival in the
GIT. The regulatory overlap between the stress response and virulence serves as a point of
coordination that facilitates a smooth transition from the avirulent saprophytic survival
state to a virulent pathogenic state once inside the host.

Apart from the overlapping functions, direct and indirect interactions between the two
transcriptional regulators account for the intricate link between the regulatory networks for
stress response and virulence. While a significant amount of information is now available
on the expressional crosstalk between SigB and PrfA as the respective central regulators
of stress response and virulence, the full understanding of these molecular interactions
is still elusive. As a prominent foodborne pathogen, an understanding of the molecular
basis of L. monocytogenes stress survival and its influence on pathogenesis is critical to the
identification of potential targets for the control of the pathogen through the interruption
of its transmission and infection cycle.

Author Contributions: Conceptualization, T.S. and E.M.B.; writing—original draft preparation, T.S.;
writing—review and editing, T.S. and E.M.B.; supervision, E.M.B. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Microorganisms 2022, 10, 1522 18 of 26

References
1. Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of

Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [CrossRef]
2. Halbedel, S.; Wilking, H.; Holzer, A.; Kleta, S.; Fischer, M.A.; Lüth, S.; Pietzka, A.; Huhulescu, S.; Lachmann, R.; Krings, A.; et al.

Large nationawide outbreak of invasive listeriosis associated with blood sausage, Germany, 2018–2019. Emerg. Infect. Dis. 2020,
26, 1456–1464. [CrossRef]

3. Thomas, J.; Govender, N.; McCarthy, K.M.; Erasmus, L.K.; Doyle, T.J.; Allam, M.; Ismail, A.; Ramalwa, N.; Sekwadi, P.; Ntshoe,
G.; et al. Outbreak of listeriosis in South Africa associated with processed meat. N. Engl. J. Med. 2020, 382, 632–643. [CrossRef]

4. Self, J.L.; Conrad, A.; Stroika, S.; Jackson, A.; Whitlock, L.; Jackson, K.A.; Al, J.L.S.E.; Wellman, A.; Fatica, M.K.; Bidol, S.; et al.
Multistate outbreak of listeriosis associated with packaged leafy green salads, United States and Canada, 2015–2016. Emerg. Infect.
Dis. 2019, 25, 1461–1468. [CrossRef] [PubMed]

5. Warriner, K.; Namvar, A. What is the hysteria with Listeria? Trends Food Sci. Technol. 2009, 20, 245–254. [CrossRef]
6. Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; Portillo, F.G.-D.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity

and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021, 12, 2509–2545.
[CrossRef] [PubMed]

7. Disson, O.; Lecuit, M. Targeting of the central nervous system by Listeria monocytogenes. Virulence 2012, 3, 213–221. [CrossRef]
8. Pizarro-Cerdá, J.; Cossart, P. Invasion of host cells by Listeria monocytogenes. In Listeria monocytogenes: Pathogenesis and Host

Response; Goldfine, H., Shen, H., Eds.; Springer Science Business Media, LLC: Berlin, Germany, 2007; pp. 159–176.
9. Cossart, P.; Lebreton, A. A trip in the “new Microbiology” with the bacterial pathogen Listeria monocytogenes. FEBS Lett. 2014, 588,

2437–2445. [CrossRef]
10. Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska,

E. Adaptive response of Listeria monocytogenes to the stress factors in the food processing environment. Front. Microbiol. 2021,
12, 710085. [CrossRef] [PubMed]

11. Vorob’eva, L.I. Stressors, stress reactions, and survival of bacteria: A review. Appl. Biochem. Microbiol. 2004, 40, 217–224. [CrossRef]
12. Guerreiro, D.N.; Arcari, T.; O’Byrne, C.P. The σB-mediated general stress response of Listeria monocytogenes: Life and death

decision making in a pathogen. Front. Microbiol. 2020, 11, 1505. [CrossRef]
13. Bucur, F.I.; Grigore-Gurgu, L.; Crauwels, P.; Riedel, C.U.; Nicolau, A.I. Resistance of Listeria monocytogenes to stress conditions

encountered in food and food processing environments. Front. Microbiol. 2018, 9, 2700. [CrossRef]
14. Fang, F.C.; Frawley, E.R.; Tapscott, T.; Vázquez-Torres, A. Bacterial stress responses during host infection. Cell Host Microbe. 2016,

20, 133–143. [CrossRef] [PubMed]
15. Begley, M.; Hill, C. Stress adaptation in foodborne pathogens. Annu. Rev. Food Sci. Technol. 2015, 6, 191–210. [CrossRef]
16. Gahan, C.G.M.; Hill, C. Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Front. Cell Infect. Microbiol.

2014, 4, 9. [CrossRef] [PubMed]
17. Kazmierczak, M.J.; Mithoe, S.C.; Boor, K.J.; Wiedmann, M. Listeria monocytogenes σB regulates stress response and virulence

functions. J. Bacteriol. 2003, 185, 5722–5734. [CrossRef] [PubMed]
18. Kazmierczak, M.J.; Wiedmann, M.; Boor, K.J. Contributions of Listeria monocytogenes σB and PrfA to expression of virulence and

stress reponse genes during extra- and intracellular growth. Microbiology 2006, 152, 1827–1838. [CrossRef] [PubMed]
19. Gaballa, A.; Guariglia-Oropeza, V.; Wiedmann, M.; Boor, K.J. Cross talk between SigB and PrfA in Listeria monocytogenes facilitates

transitions between extra- and intracellular environments. Microbiol. Mol. Biol. Rev. 2019, 83, e00034-19. [CrossRef] [PubMed]
20. Liu, Y.; Orsi, R.H.; Gaballa, A.; Wiedmann, M.; Boor, K.J.; Guariglia-Oropeza, V. Systematic review of the Listeria monocytogenes σB

regulon supports a role in stress response, virulence and metabolism. Future Microbiol. 2019, 14, 801–828. [CrossRef]
21. Tiensuu, T.; Guerreiro, D.N.; Oliveira, A.H.; O’Byrne, C.; Johansson, J. Flick of a switch: Regulatory mechanisms allowing Listeria

monocytogenes to transition from a saprophyte to a killer. Microbiology 2019, 165, 819–833. [CrossRef] [PubMed]
22. Drolia, R.; Bhunia, A.K. Crossing the intestinal barrier via Listeria adhesion protein and Internalin A. Trends Microbiol. 2019, 27,

408–425. [CrossRef]
23. McMullen, P.D.; Freitag, N.E. Listeria monocytogenes. In Molecular Medical Microbiology, 2nd ed.; Tang, Y.-W., Sussman, M., Liu,

D., Poxton, I., Schwartzman, J., Eds.; Academic Press, Elsevier Ltd.: New York, NY, USA, 2014; pp. 1345–1361.
24. Lecuit, M. Listeria monocytogenes, a model in infection biology. Cell. Microbiol. 2020, 22, e13186. [CrossRef]
25. Liu, D.; Yin, X.; Olyha, S.J.; Nascimento, M.S.L.; Chen, P.; White, T.; Gowthaman, U.; Zhang, T.; Gertie, J.A.; Zhang, B.; et al.

IL-10-dependent crosstalk between murine marginal zone B cells, macrophages, and CD8α+ dendritic cells promotes Listeria
monocytogenes infection. Immunity 2019, 51, 64–76. [CrossRef]

26. Travier, L.; Guadagnini, S.; Gouin, E.; Dufour, A.; Chenal-Francisque, V.; Cossart, P.; Olivo-Marin, J.C.; Ghigo, J.M.; Disson, O.;
Lecuit, M. ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage. PLoS Pathog. 2013, 9, e1003131.
[CrossRef]

27. Disson, O.; Moura, A.; Lecuit, M. Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends Microbiol. 2021,
29, 811–822. [CrossRef] [PubMed]

28. de las Heras, A.; Cain, R.J.; Bielecka, M.K.; Vázquez-Boland, J.A. Regulation of Listeria virulence: PrfA master and commander.
Curr. Opin. Microbiol. 2011, 14, 118–127. [CrossRef] [PubMed]

http://doi.org/10.1128/AEM.01018-14
http://doi.org/10.3201/eid2607.200225
http://doi.org/10.1056/NEJMoa1907462
http://doi.org/10.3201/eid2508.180761
http://www.ncbi.nlm.nih.gov/pubmed/31310227
http://doi.org/10.1016/j.tifs.2009.03.008
http://doi.org/10.1080/21505594.2021.1975526
http://www.ncbi.nlm.nih.gov/pubmed/34612177
http://doi.org/10.4161/viru.19586
http://doi.org/10.1016/j.febslet.2014.05.051
http://doi.org/10.3389/fmicb.2021.710085
http://www.ncbi.nlm.nih.gov/pubmed/34489900
http://doi.org/10.1023/B:ABIM.0000025941.11643.19
http://doi.org/10.3389/fmicb.2020.01505
http://doi.org/10.3389/fmicb.2018.02700
http://doi.org/10.1016/j.chom.2016.07.009
http://www.ncbi.nlm.nih.gov/pubmed/27512901
http://doi.org/10.1146/annurev-food-030713-092350
http://doi.org/10.3389/fcimb.2014.00009
http://www.ncbi.nlm.nih.gov/pubmed/24551601
http://doi.org/10.1128/JB.185.19.5722-5734.2003
http://www.ncbi.nlm.nih.gov/pubmed/13129943
http://doi.org/10.1099/mic.0.28758-0
http://www.ncbi.nlm.nih.gov/pubmed/16735745
http://doi.org/10.1128/MMBR.00034-19
http://www.ncbi.nlm.nih.gov/pubmed/31484692
http://doi.org/10.2217/fmb-2019-0072
http://doi.org/10.1099/mic.0.000808
http://www.ncbi.nlm.nih.gov/pubmed/31107205
http://doi.org/10.1016/j.tim.2018.12.007
http://doi.org/10.1111/cmi.13186
http://doi.org/10.1016/j.immuni.2019.05.011
http://doi.org/10.1371/journal.ppat.1003131
http://doi.org/10.1016/j.tim.2021.01.008
http://www.ncbi.nlm.nih.gov/pubmed/33583696
http://doi.org/10.1016/j.mib.2011.01.005
http://www.ncbi.nlm.nih.gov/pubmed/21388862


Microorganisms 2022, 10, 1522 19 of 26

29. Jagadeesan, B.; Littlejohn, A.E.F.; Amalaradjou, M.A.R.; Singh, A.K.; Mishra, K.K.; La, D.; Kihara, D.; Bhunia, A.K. N-Terminal
Gly224-Gly411 domain in Listeria adhesion protein interacts with host receptor HsP60. PLoS ONE 2011, 6, e20694. [CrossRef]

30. Pandiripally, V.K.; Westbrook, D.G.; Sunki, G.R.; Bhunia, A.K. Surface protein p104 is involved in adhesion of Listeria monocytogenes
to human intestinal cell line, Caco-2. J. Med. Microbiol. 1999, 48, 117–124. [CrossRef]

31. Burkholder, K.M.; Bhunia, A.K. Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial
translocation and induces expression of LAP receptor Hsp60. Infect. Immun. 2010, 78, 5062–5073. [CrossRef]

32. Jagadeesan, B.; Koo, O.K.; Kim, K.P.; Burkholder, K.M.; Mishra, K.K.; Aroonnual, A.; Bhunia, A.K. LAP, an alcohol acetaldehyde
dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species.
Microbiology 2010, 156, 2782–2795. [CrossRef] [PubMed]

33. Burkholder, K.M.; Kim, K.-P.; Mishra, K.K.; Medina, S.; Hahm, B.-K.; Kim, H.; Bhunia, A.K. Expression of LAP, a SecA2-dependent
secretory protein, is induced under anaerobic environment. Microbes Infect. 2009, 11, 859–867. [CrossRef]

34. Drolia, R.; Tenguria, S.; Durkes, A.C.; Turner, J.R.; Bhunia, A.K. Listeria adhesion protein induces intestinal epithelial barrier
dysfunction for bacterial translocation. Cell Host Microbe 2018, 23, 470–484.e7. [CrossRef] [PubMed]

35. Hymes, J.P.; Klaenhammer, T.R. Stuck in the middle: Fibronectin-binding proteins in Gram-positive bacteria. Front. Microbiol.
2016, 7, 1504. [CrossRef] [PubMed]

36. Henderson, B.; Nair, S.; Pallas, J.; Williams, M.A. Fibronectin: A multidomain host adhesin targeted by bacterial fibronectin-
binding proteins. FEMS Microbiol. Rev. 2011, 35, 147–200. [CrossRef]

37. Dramsi, S.; Bourdichon, F.; Cabanes, D.; Lecuit, M.; Fsihi, H.; Cossart, P. FbpA, a novel multifunctional Listeria monocytogenes
virulence factor. Mol. Microbiol. 2004, 53, 639–649. [CrossRef]

38. Gaillard, J.-L.; Berche, P.; Frehel, C.; Gouln, E.; Cossart, P. Entry of L. monocytogenes into cells is mediated by internalin, a repeat
protein reminiscent of surface antigens from Gram-positive cocci. Cell 1991, 65, 1127–1141. [CrossRef]

39. Ireton, K.; Mortuza, R.; Gyanwali, G.C.; Gianfelice, A.; Hussain, M. Role of internalin proteins in the pathogenesis of Listeria
monocytogenes. Mol. Microbiol. 2021, 116, 1407–1419. [CrossRef]

40. Schubert, W.-D.; Urbanke, C.; Ziehm, T.; Beier, V.; Machner, M.P.; Domann, E.; Wehland, J.; Chakraborty, T.; Heinz, D.W. Structure
of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002, 111,
825–836. [CrossRef]

41. Dellafiora, L.; Filipello, V.; Dall’Asta, C.; Finazzi, G.; Galaverna, G.; Losio, M.N. A structural study on the Listeria monocytogenes
internalin A—Human E-cadherin interaction: A molecular tool to investigate the effects of missense mutations. Toxins 2020,
12, 60. [CrossRef] [PubMed]

42. Braun, L.; Dramsi, S.; Dehoux, P.; Bierne, H.; Lindahl, G.; Cossart, P. InIB: An invasion protein of Listeria monocytogenes with a
novel type of surface association. Mol. Microbiol. 1997, 25, 285–294. [CrossRef] [PubMed]

43. Bierne, H.; Sabet, C.; Personnic, N.; Cossart, P. Internalins: A complex family of leucine-rich repeat-containing proteins in Listeria
monocytogenes. Microbes Infect. 2007, 9, 1156–1166. [CrossRef] [PubMed]

44. Pizarro-Cerdá, J.; Kühbacher, A.; Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view. Cold
Spring Harb. Perspect. Med. 2012, 2, a010009. [CrossRef]

45. Milohanic, E.; Glaser, P.; Coppée, J.-Y.; Frangeul, L.; Vega, Y.; Vázquez-Boland, J.A.; Kunst, F.; Cossart, P.; Buchrieser, C.
Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol.
2003, 47, 1613–1625. [CrossRef]

46. Hamon, M.; Ribet, D.; Stavru, F.; Cossart, P. Listeriolysin O: The Swiss army knife of Listeria. Trends Microbiol. 2012, 20, 360–368.
[CrossRef]

47. Hof, H. Virulence of different strains of Listeria monocytogenes serovar 1/2a. Med. Microbiol. Immunol. 1984, 173, 207–218.
[CrossRef]

48. Geoffroy, C.; Gaillard, J.-L.; Alouf, J.E.; Berche, P. Purification, characterization, and toxicity of thesulfhydry-activated hemolysin
Listerion O from Listeria monocytogenes. Infect. Immun. 1987, 55, 1641–1646. [CrossRef] [PubMed]

49. Kuhn, M.; Kathariou, S.; Goebel, W. Hemolysin supports survival but not entry of the intracellular bacterium Listeria monocytogenes.
Infect. Immun. 1988, 56, 79–82. [CrossRef] [PubMed]

50. Phelps, C.C.; Vadia, S.; Arnett, E.; Tan, Y.; Zhang, X.; Pathak-Sharma, S.; Gavrilin, M.A.; Seveau, S. Relative roles of Listeriolysin
O, InlA, and InlB in Listeria monocytogenes uptake by host cells. Infect. Immun. 2018, 86, e00555-18. [CrossRef] [PubMed]

51. Camilli, A.; Goldfine, H.; Portnoy, D.A. Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are
avirulent. J. Exp. Med. 1991, 173, 751–754. [CrossRef]

52. Smith, G.A.; Marquis, H.; Jones, S.; Johnston, N.C.; Portnoy, D.A.; Goldfine, H. The two distinct phospholipases C of Listeria
monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 1995, 63, 4231–4237.
[CrossRef]

53. Poussin, M.A.; Goldfine, H. Involvement of Listeria monocytogenes phosphatidylinositol-specific phospholipase C and host protein
kinase C in permeabilization of the macrophage phagosome. Infect. Immun. 2005, 73, 4410–4413. [CrossRef]

54. Gründling, A.; Gonzalez, M.D.; Higgins, D.E. Requirement of the Listeria monocytogenes broad-Range phospholipase PC-PLC
during infection of human epithelial cells. J. Bacteriol. 2003, 185, 6295–6307.

55. Coffey, A.; Burg, B.V.D.; Veltman, R.; Abee, T. Characteristics of the biologically active 35-kDa metalloprotease virulence factor
from Listeria monocytogenes. J. Appl. Microbiol. 2000, 88, 132–141. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0020694
http://doi.org/10.1099/00222615-48-2-117
http://doi.org/10.1128/IAI.00516-10
http://doi.org/10.1099/mic.0.036509-0
http://www.ncbi.nlm.nih.gov/pubmed/20507888
http://doi.org/10.1016/j.micinf.2009.05.006
http://doi.org/10.1016/j.chom.2018.03.004
http://www.ncbi.nlm.nih.gov/pubmed/29606495
http://doi.org/10.3389/fmicb.2016.01504
http://www.ncbi.nlm.nih.gov/pubmed/27713740
http://doi.org/10.1111/j.1574-6976.2010.00243.x
http://doi.org/10.1111/j.1365-2958.2004.04138.x
http://doi.org/10.1016/0092-8674(91)90009-N
http://doi.org/10.1111/mmi.14836
http://doi.org/10.1016/S0092-8674(02)01136-4
http://doi.org/10.3390/toxins12010060
http://www.ncbi.nlm.nih.gov/pubmed/31968631
http://doi.org/10.1046/j.1365-2958.1997.4621825.x
http://www.ncbi.nlm.nih.gov/pubmed/9282740
http://doi.org/10.1016/j.micinf.2007.05.003
http://www.ncbi.nlm.nih.gov/pubmed/17764999
http://doi.org/10.1101/cshperspect.a010009
http://doi.org/10.1046/j.1365-2958.2003.03413.x
http://doi.org/10.1016/j.tim.2012.04.006
http://doi.org/10.1007/BF02122112
http://doi.org/10.1128/iai.55.7.1641-1646.1987
http://www.ncbi.nlm.nih.gov/pubmed/3110067
http://doi.org/10.1128/iai.56.1.79-82.1988
http://www.ncbi.nlm.nih.gov/pubmed/3121515
http://doi.org/10.1128/IAI.00555-18
http://www.ncbi.nlm.nih.gov/pubmed/30061379
http://doi.org/10.1084/jem.173.3.751
http://doi.org/10.1128/iai.63.11.4231-4237.1995
http://doi.org/10.1128/IAI.73.7.4410-4413.2005
http://doi.org/10.1046/j.1365-2672.2000.00941.x
http://www.ncbi.nlm.nih.gov/pubmed/10735252


Microorganisms 2022, 10, 1522 20 of 26

56. Suárez, M.; González-Zorn, B.; Vega, Y.; Chico-Calero, I.; Vázquez-Boland, J.A. A role for ActA in epithelial cell invasion by
Listeria monocytogenes. Cell. Microbiol. 2001, 3, 853–864. [CrossRef] [PubMed]

57. Kocks, C.; Hellio, R.; Gounon, P.; Ohayon, H.; Cossart, P. Polarized distribution of Listeria monocytogenes surface protein ActA at
the site of directional actin assembly. J. Cell Sci. 1993, 105, 699–710. [CrossRef] [PubMed]

58. Travier, L.; Lecuit, M. Listeria monocytogenes ActA: A new function for a “classic” virulence factor. Curr. Opin. Microbiol. 2014, 17,
53–60. [CrossRef] [PubMed]

59. Skoble, J.; Auerbuch, V.; Goley, E.D.; Welch, M.D.; Portnoy, D.A. Pivotal role of VASP in Arp2/3 complex-mediated actin
nucleation, actin branch-formation, and Listeria monocytogenes motility. J. Cell Biol. 2001, 155, 89–100. [CrossRef] [PubMed]

60. Kühn, S.; Enninga, J. The actin comet guides the way: How Listeria actin subversion has impacted cell biology, infection biology
and structural biology. Cell. Microbiol. 2020, 22, e13190. [CrossRef] [PubMed]

61. Maurella, C.; Gallina, S.; Ru, G.; Adriano, D.; Bellio, A.; Bianchi, D.M.; Chiavacci, L.; Crescio, M.I.; Croce, M.; D'Errico, V.; et al.
Outbreak of febrile gastroenteritis caused by Listeria monocytogenes 1/2a in sliced cold beef ham, Italy, May 2016. Eurosurveillance
2018, 23, 17–00155. [CrossRef]

62. Ooi, S.T.; Lorber, B. Gastroenteritis due to Listeria monocytogenes. Clin. Infect. Dis. 2005, 40, 1327–1332. [CrossRef] [PubMed]
63. Jacks, A.; Pihlajasaari, A.; Vahe, M.; Myntti, A.; Kaukoranta, S.-S.; Elomaa, N.; Salmenlinna, S.; Rantala, L.; Lahti, K.; Huusko,

S.; et al. Outbreak of hospital-acquired gastroenteritis and invasive infection caused by Listeria monocytogenes, Finland, 2012.
Epidemiol. Infect. 2016, 144, 2732–2742. [CrossRef]

64. Sim, J.; Hood, D.; Finnie, L.; Wilson, M.; Graham, C.; Brett, M.; Hudson, J. Series of incidents of Listeria monocytogenes non-invasive
febrile gastroenteritis involving ready-to-eat meats. Lett. Appl. Microbiol. 2002, 35, 409–413. [CrossRef]

65. Halbedel, S.; Prager, R.; Banerji, S.; Kleta, S.; Trost, E.; Nishanth, G.; Alles, G.; Hölzel, C.; Schlesiger, F.; Pietzka, A.; et al. A Listeria
monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerg. Microbes Infect. 2019, 8,
17–28. [CrossRef]

66. Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev.
Microbiol. 2018, 16, 32–46. [CrossRef]

67. Nikitas, G.; Deschamps, C.; Disson, O.; Niault, T.; Cossart, P.; Lecuit, M. Transcytosis of Listeria monocytogenes across the intestinal
barrier upon specific targeting of goblet cell accessible E-cadherin. J. Exp. Med. 2011, 208, 2263–2277. [CrossRef] [PubMed]

68. Pentecost, M.; Otto, G.; Theriot, J.; Amieva, M.R. Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion.
PLoS Pathog. 2006, 2, 0029–0040. [CrossRef]

69. Bonazzi, M.; Lecuit, M.; Cossart, P. Listeria monocytogenes internalin and E-cadherin: From structure to pathogenesis. Cell. Microbiol.
2009, 11, 693–702. [CrossRef] [PubMed]

70. Saila, S.; Gyanwali, G.C.; Hussain, M.; Gianfelice, A.; Ireton, K. The host GTPase Arf1 and its effectors AP1 and PICK1 stimulate
actin polymerization and exocytosis to promote entry of Listeria monocytogenes. Infect. Immun. 2020, 88, e00578-19. [CrossRef]
[PubMed]

71. Holch, A.; Ingmer, H.; Licht, T.R.; Gram, L. Listeria monocytogenes strains encoding premature stop codons in inlA invade mice
and guinea pig fetuses in orally dosed dams. J. Med. Microbiol. 2013, 62, 1799–1806. [CrossRef]
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