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Pulse transit time (PTT) is a pivotal marker of vascular stiffness. Because the actual PTT duration in vivo is unknown and the
complicated variation in waveform may occur, the robust determination of characteristic point is still a very difficult task in the
PTT estimation. Our objective is to devise a method for real-time estimation of PTT duration in pulse wave. It has an ability to
reduce the interference caused by both high- and low-frequency noise. The reproducibility and performance of these methods
are assessed on both artificial and clinical pulse data. Artificial data are generated to investigate the reproducibility with various
signal-to-noise ratios. For all artificial data, the mean biases obtained from all methods are less than 1ms; collectively, this newly
proposedmethod has minimum standard deviation (SD, <1ms). A set of data from 33 participants together with the synchronously
recorded continuous blood pressure data are used to investigate the correlation coefficient (CC). The statistical analysis shows that
our method has maximum values of mean CC (0.5231), sum of CCs (17.26), and median CC (0.5695) and has the minimum SD
of CCs (0.1943). Overall, the test results in this study indicate that the newly developed method has advantages over traditional
decision rules for the PTT measurement.

1. Background

Arterial pulse-wave velocity (PWV) is a valuable surrogate
marker for vascular stiffness. Increased arterial stiffness, as
assessed noninvasively by the measurement of PWV, is asso-
ciated with increased risk of clinical cardiovascular disease
(CVD) events [1–4]. In a population-based study among
healthy participants, subjects with increasing PWVwere 2.45
times more likely to develop CVDs during a mean follow-up
period of 4.1 years [5]. It is well delineated that the relative
risk of follow-up CVD events increases with increasing level
of PWV. Indeed, the higher aortic PWV was associated with
a 48% increase in CVD risk [6].The arterial wall thickens and
the arteries get stiffer with aging, whilst elevated blood pres-
sure (BP) may occur as a result of stiffer arteries.The preclin-
ical CVD events should be intervened in the early stage. As

such, given the independent predictive value of PWV, identi-
fying strategies that might be used in reducing the incidence
of events led by the acceleration of the arterial aging process
may have certain importance in prevention of CVDs [7].

PWV is calculated as the distance traveled by a pulse wave
divided by the time (also referred to as the pulse transit time
(PTT)) for the wave to travel that distance. For each cardiac
circle, the PTT can be manually defined in two ways: (a) the
time interval between the R-wave peak of a QRS complex in
electrocardiogram and some fiducial point of the subsequent
arrival of the pulsewave at the finger; (b) the time delay of two
pulse waveforms which are detected from separate arterial
sites. For the first approach, the cardiac preejection period
might be a confounding factor for robust PTT estimation [8].
Over the past decades, a number of methods for measuring
the PTT have been proposed and most vary in the way
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the fiducial point on pulse waveform is determined [9–21].
In a broad sense, these methods for determining the fiducial
point can be categorized into threshold methods, differential
methods, or transect intersection methods.The accuracies of
current methods for the PTT estimation have been limited
by the difficulties encountered in the signals with high-level
noise [22]. The straightforward threshold-based methods are
sensitive to low-frequency baseline modulations (e.g., base-
line drifting and respiratory fluctuations). The differential
methods are susceptible to wide frequency-band noises, such
as white Gaussian noise, since the differential filters (i.e.,
the forward/backward and central derivatives) lack for the
capability of effectually suppressing the high-frequency noise.
Regarding the transect intersection methods, because the
realization process involves reference to the minimum point
of the pulse wave which is sensitive to the fluctuations around
the local area as well as the distinctive point which is generally
determined on the differential signals, they are vulnerable
to both low- and high-frequency noises. Determination of
the quantitative relevance of PTT and BP is time-consuming
and cumbersome inmost clinical situations [23]. In addition,
the issues of accuracy and reproducibility of various decision
rules for PTT measurement have not been well explored.

The research described herein develops a new method
which is based on the first-order, central derivative and the
centroid strategy for the determination of the fiducial point in
PTT measurement. The new method should have the ability
to reduce both baseline drifting and respiratory fluctuations
and, by using the centroid strategy over many optimally
selected points of differential signals to determine the fiducial
point, it could markedly reduce the interference caused by
high-frequency noise. The performances of the proposed
method and existing methods are evaluated in detail with
artificial and clinical pulse data in terms of the reproducibility
and correlation coefficient (CC). Using artificial pulse data
provides the following benefits: (A) the locations of feature
points as defined by different methods in each pulse cycle can
be specified exactly as the “true” references, which indicate
that the reproducibilities are equal to 100% for all of the test
methods; (B) by mixing a certain intensity of artificial noise
into the generated pulse data, the signal-to-noise ratios (SNR)
can be reset to any level, which reveals that the reproducibili-
ties of different methods may be significantly different for
artificial pulse data with various SNR levels: the higher repro-
ducibilitymeans the better performance. Accurate estimation
of PTT recently received heat debate concerning the practical
situation of PTT measurement: we could not obtain the true
PTT duration in vivo [21, 24–26]. Therefore, a set of long-
term clinical pulse data (acquired from 33 volunteers) are
also tested to confirm the CC between the beat-to-beat PTT
changes and the corresponding beat-to-beat BP variations
which are synchronously recorded from the authorized med-
ical device.

2. Methods

2.1. Moens-Korteweg Equation. The Moens-Korteweg equa-
tion is a classic model for quantitatively identifying the rela-
tionship between the PWV and character traits of vessel (and

contained blood within the vessel), which can be expressed
by

V =
𝐿

𝑇

= √
ℎ𝐸

𝑟𝜌

, (1)

where ℎ and 𝐸 are the arterial wall thickness and Young’s
modulus, respectively. 𝜌 and 𝑟 are the density of blood and
inside radius of vessel, respectively. 𝐿 is the distance between
two arterial sites through which a pulse wave passes over the
corresponding transmit time 𝑇 (i.e., PTT), and V is the PWV.
See Figure 1 for clarification.

It has been commonly recognized that as the intravascular
pressure 𝑃 increases, Young’s modulus 𝐸 increases exponen-
tially. This relationship is of the following form:

𝐸 = 𝐸
0
𝑒
𝛾𝑃
, (2)

where 𝐸
0
is the zero-pressure modulus. 𝛾 is a constant that

depends on the particular vessel. Substituting (2) into the
Moens-Korteweg equation (1) and after a simple rearrange-
ment, we therefore obtain [27]

𝑃 =

1

𝛾

[ln(
𝜌𝑟𝐿
2

ℎ𝐸
0

) − 2 ln𝑇] . (3)

As an approximation, we first assume that parameters 𝑟, 𝜌,𝐸
0
,

and ℎ in (3) are nearly constants during a short period of time
and then take the derivative of both sides of (3) with respect
to 𝑇, which results in [27]

Δ𝑃 ≈

2

𝛾

⋅ (−

Δ𝑇

𝑇

) . (4)

An increase in BP causes an increase in PWVand accordingly
a decrease in the PTT. On the basis of the previously estab-
lished postulate, from (4), it is clear that the increment of BP
(Δ𝑃) is approximately proportional to the relative increment
of PTT (−Δ𝑇/𝑇). We will apply the correlation between Δ𝑃
and−Δ𝑇/𝑇, as shown in (4), as a performancemetrics of PTT
estimation in vivo tests.

2.2. Test Data Materials. Both artificial and clinical pulse
wave data were collected for investigation. From the perspec-
tive of digital signal acquisition, the sampling frequency was
set to 5000Hz for both types of signals to accommodate the
need for the reliable PTT estimation.

The original artificial pulse data were simulated by a pre-
vious research group [24], and these data are publicly avail-
able at [28]. The authors generated the data based on a vali-
dated, nonlinear, and one-dimensional mathematical model
of distributed arterial tree [29]. We employed these original
artificial data to construct long-term pulse data. To inves-
tigate the performances of the herein candidate methods
in a various-level noise environment, the theoretic artificial
pulse signals were mixed with different intensities of artificial
noises including white Gaussian noise and the artificial
respiratory signals simulated by a cosine function.

A total of 33 subjects (including 6 subjects having a
history of hypertension, 6 subjects with hypotension, and 5
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Figure 1:The PTT estimation using simultaneous noninvasivemeasurements of pressure waveform in the respective arm arteries. (a) Schema
of pulse signals acquisition. (b) Brachial arterial pressure signal. (c) Radial arterial pressure signal. (d) Differential signals of brachial/radial
pulse signals using the first-order derivative. (e) Differential signals of brachial/radial pulse signals using the second-order derivative. (f)
Coefficients of slope sum function of two channel signals. In this example, the PTT is calculated by the first-order differential method, and 𝑛
is the beat number. See text for abbreviation.

subjects with the presence of Sinus bradycardia; 16 were male
and 17 were female) were randomly recruited to the clinical
study. Their average age was 29.7 ± 8.7 years (range: 23–62
years). Average height and weight were 166.9±8.4 cm (range:
150–185 cm) and 58.3±10.7 kg (range: 40–83 kg), respectively;
and their mean body mass index was 20.8±2.8 kg/m2 (range:
16.9–28.7 kg/m2). The experiment was approved by the SIAT

Research Ethics Committee (IRB number: SIAT-IRB-140215-
H0040), and the written consent was obtained from all parti-
cipants.

The experimentwas performed in a quiet laboratory envi-
ronment. Studies were conducted with all volunteers lying
still in their supine position for about one and a half hours
each. Figure 1(a) depicts the sketch of experimental setup; for
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each volunteer, the noninvasive brachial and radial pressure
waveforms were acquired by two circular piezoelectric trans-
ducers placed over the left arm and held in place by two straps
around the brachial and radial sites, respectively. To reduce
the error caused by analog-to-digital converter quantization
(i.e., to maintain high signal resolution), the 4-channel, 24-
bit resolution NI USB-9239 data acquisition board (National
Instruments, Austin, TX,USA)was used for pulse data acqui-
sition.The continuous Finapres BP machine (Finapres Medi-
cal Systems B.V., The Netherlands) was employed to simulta-
neously measure the beat-to-beat BP waveforms by an inflat-
ing cuff dynamically fitting around the middle finger at the
right hand. To ensure synchronization of the pulsewaveforms
acquired by the USB-9239 module and the continuous BP
waveforms detected by the Finapres device, both of them
were recorded in the same computer. The involved software
of Finapres device automatically constructed the brachial BP
data (systolic/diastolic/meanBP) from the finger BP data.The
systolic BP data was used for evaluation in this study.

2.3. Digital Signal Processing

2.3.1. Preprocessing. A second-order, linear phase, low-pass
filter is employed for suppressing high-frequency noise that
might contaminate the pulse signal. The transfer function of
this filter is given by

𝐻
𝑙1
(𝑧) =

1 − 2𝑧
−128
+ 𝑧
−256

1 − 2𝑧
−1
+ 𝑧
−2
, (5)

where the gain is Gain1 = 16384 = 214 and the intrinsic delay
of 𝐻
𝑙1
(𝑧) is 127 samples. Figure 2(a) displays the frequency

response of this filter. The utilization of 𝐻
𝑙1
(𝑧) provides a

main benefit: its linear-phase characteristic leaves the phase
of the frequency components lying within the pass band of
this filter undistorted. Let 𝑥[𝑛] denote the input raw signal
and let 𝑦[𝑛] denote the output signal. Figures 1(b) and 1(c)
illustrate the filtered signals obtained frombrachial and radial
arteries, respectively.

2.3.2. Differential Filters. The differentiation technique is
widely used as a tool for extracting valuable information
about the physiologic process contained in the physiological
signal. Regarding the pulse waveforms, the elaborately desig-
ned differential filters can provide an advantage in reducing
the low-frequency interferences, such as baseline drifting and
respiratory fluctuations.

(i) The First-Order Differential Filter. A 7-point stencil first-
order, central differential filter is applied to the output (i.e.,
𝑦[𝑛]) of𝐻

𝑙1
(𝑧) [30]:

𝐷
1
(𝑧) = − (1 − 9𝑧

−16
+ 45𝑧

−32
− 45𝑧

−64
+ 9𝑧
−80
− 𝑧
−96
) ,

(6)

where the gain is Gain2 = 960 and the intrinsic delay of𝐷
1
(𝑧)

is 48 samples. Figure 2(b) shows the frequency response of
this filter. Let 𝑑1[𝑛] denote the output of this filter.

(ii) The Second-Order Differential Filter. The decision rules
based on the second-order differential filter for feature extrac-
tion are also adopted in the literature. To identify the perfor-
mance of this kind of methods, likewise, a 7-point central
differential filter is applied to the previously obtained 𝑦[𝑛]
[30]:

𝐷
2
(𝑧) = 1 − 13.5𝑧

−16
+ 135𝑧

−32
− 245𝑧

−48

+ 135𝑧
−64
− 13.5𝑧

−80
+ 𝑧
−96
,

(7)

where the gain is Gain3 = 23040 and the intrinsic delay of
𝐷
2
(𝑧) is 48 samples. Let 𝑑2[𝑛] be the output of this filter.

Figure 2(c) depicts the frequency response of𝐷
2
(𝑧).

(iii) The Low-Pass Filter. To further suppress the high-freq-
uency noise caused by the differential filters𝐷

1
(𝑧) and𝐷

2
(𝑧),

we smooth the resultant𝑑1[𝑛] and𝑑2[𝑛]with a simple integer
and low-pass filter of the form in (8), respectively;

𝐻
𝑙2
(𝑧) =

1 − 𝑧
−96

1 − 𝑧
−1
, (8)

where the gain is Gain4 = 96 and the intrinsic delay of𝐻
𝑙2
(𝑧)

is 47.5 samples. Figure 2(d) delineates the frequency response
of this filter. Let 𝑑1󸀠[𝑛] and 𝑑2󸀠[𝑛] denote the correspond-
ing output signals of 𝐻

𝑙2
(𝑧), respectively. Figure 1(d) is an

example that displays two channels of 𝑑1󸀠[𝑛] by using the
filters 𝐷

1
(𝑧) and 𝐻

𝑙2
(𝑧). Figure 1(e) illustrates two channels

of 𝑑2󸀠[𝑛] by using the filters𝐷
2
(𝑧) and𝐻

𝑙2
(𝑧).

(iv) Slope Sum Function. The slope sum function (SSF) tech-
nique was firstly introduced in [31]. A similar form (9) is pro-
posed in the present design but is modified to accommodate
the different sampling rate of the pulse data (i.e., 5000Hz):

𝑤 [𝑛] =

1

𝑁

𝑁−1

∑

𝑘=0

Δ𝜇 [𝑛
∗
] ,

Δ𝜇 [𝑛
∗
] =

{

{

{

Δ𝑦 [𝑛
∗
] , if Δ𝑦 [𝑛∗] > 0,

0, if Δ𝑦 [𝑛∗] ⩽ 0,

(9)

where 𝑁 = 96, 𝑛 is the sample number, and 𝑛∗ = 𝑛 − 𝑘.
Δ𝑦[𝑛] = −𝑦[𝑛−48]+9𝑦[𝑛−32]−45𝑦[𝑛−16]+45𝑦[𝑛+16]−

9𝑦[𝑛 + 32] + 𝑦[𝑛 + 48]. Where, 𝑦[𝑛] represents the output of
𝐻
𝑙1
(𝑧). It is apparent that the SSF defined in (9) is equivalent

to that first let 𝑡𝑚[𝑛] = 𝑑1[𝑛], if 𝑡𝑚[𝑛] < 0, let 𝑡𝑚[𝑛] = 0; then
make 𝑡𝑚[𝑛] be applied to the filter 𝐻

𝑙2
(𝑧), and the ultimate

output is 𝑤[𝑛]. The inset Figure 1(f) demonstrates the SSF
signals of two channels.

2.4. Pulse-Beat Detection. Prior to the determination of the
reference feature point on the single waveform, each pulse
beat should be detected. Because the pulse beat can be readily
identified, we briefly outline the algorithm here, and full
details are beyond the objective of this paper. It is based on
a simplification of Pan-Tompkins algorithm which is widely
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Figure 2: Frequency responses of the employed digital filters in the present study. (a) Frequency response of𝐻
𝑙1
(𝑧). (b) Frequency response

of𝐷
1
(𝑧). (c) Frequency response of𝐷

2
(𝑧). (d) Frequency response of𝐻

𝑙2
(𝑧). The sampling rate is 5000Hz.

used for QRS detection in electrocardiogram [32]. Its proce-
dures are as follows.

(1) Extraction of Variation Information. The two channel raw
signals are both applied to a differential filter 1−𝑧−128; we then
obtain corresponding sequences of the variation information
of the raw signals.

(2) Squaring Operation. Subsequently, a nonlinear transfor-
mation is performed which consists of point by point squar-
ing of the samples in the sequences obtained from (1). It aims
to amplify the high-frequency information of raw signals.

(3) Threshold Definition. Two automatically update threshold
values can be determined by processing the sequences obtai-
ned from (2) using a simple low-pass filter (1 − 𝑧−16384)/(1 −
𝑧
−1
). The gain of this filter is 16384. The samples of two

sequences in (2) are synchronously divided by these two
thresholds in real time, respectively. We then obtain two new
sequences. It is apparent that (3) is similar to a normalization
process.

(4)MovingWindow Integration.We then construct a new seq-
uence by the sum operation of two sequences obtained from
(3). The integration operation is taken over the constructed
sequence with a moving window of the width of 450 points,
which is accomplished by an integer digital filter (1 −
𝑧
−450
)/(1 − 𝑧

−1
). The gain of the filer is 450. The utilization

of this filter is to attenuate the higher frequencies associated
with the device noise.

(5) Pulse-Beat Detection. Similar to (3), a basic threshold
value is calculated by processing the sequence in (4) with the
aforementioned filter (1 − 𝑧−16384)/(1 − 𝑧−1), and a decisive
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threshold value is also defined as two times of the basic
threshold. A buffer array is used to record the samples in this
sequence if the samples are larger than the basic threshold.
Therefore, the data buffer is now scanned by counting the
data points which meet or exceed the decisive threshold. If
200 or more of these points in this buffer meet or exceed the
threshold, then the data buffer is associated with a pulse beat.

2.5. Feature Extraction Based on Different Decision Rules. In
the present study, we investigated the efficacy of 10 different
computerized methods, as well as a newly proposed method
for the determination of the reference point on the pulse
waveform. For each detected pulse beat, Figure 3 presents
how the feature point is determined by 11 methods which are
briefly described as follows.

(i) Minimum of the Pulse Wave. It is defined as the minimum
point of the segment lying in the trough area of two adjacent
pulse waves (MIN, the offset of the first wave in diastolic
phase and the onset of the next wave in systolic phase) [10,
15, 27], as depicted in Figure 3(a). It can be determined by a
threshold-slope technique which is introduced in [10].

(ii) Direct Threshold Methods. They seek out the reference
point as the last point moving from the minimum point with
an intensity value less than a specified threshold before the
systolic peak of the current pulse waveform, as rendered in
Figure 3(b). The thresholds are set at 0.2 [19], 0.25 [11, 20],
0.30 [18], and 0.50 [12, 13, 15] times of the pulse pressure above
the diastolic pressure (i.e., the trough-to-peak height), and
these methods are denoted as TH20%, TH25%, TH30%, and
TH50%, respectively.

(iii) Peak of the First-Order Derivative [10, 14, 15, 17]. In
𝑑1
󸀠
[𝑛], we determine themaximumof the𝑑1󸀠[𝑛] in thewhole

duration of the pulse as the feature point. It is apparent that
this reference point is closest to the median position in the
systolic phase of each pulse waveform; see Figure 3(c) for
clarification.

(iv) Peak of the Second-Order Derivative [10, 15, 19]. In 𝑑2󸀠[𝑛],
we determine the maximum of the 𝑑2󸀠[𝑛] in the whole
duration of the pulse as the feature point.This reference point
is closest to the minimum (i.e., onset of systolic wave) of the
systolic phase of each pulse waveform. Figure 3(d) portrays
this.

(v) SSF Method. Recalling the sequence 𝑤[𝑛] obtained by the
operation (9), the SSF defines the point as the reference point
at which the resultant 𝑤[𝑛] reaches a threshold, as can be
seen in Figure 3(e). The threshold level for this method is
counted as a fraction of the amplitude of the peak of 𝑤[𝑛]
in the corresponding pulse waveform, and the threshold level
is 1.0% [31].

(vi) Transect Intersection Methods. Two transect intersection
methods (denoted as TAN1 and TAN2, resp.) are investigated
here. TAN1 begins by generating a line that passes through
two positions of pulse signal 𝑦[𝑛]which are corresponding to

the peaks of the first-order derivative in (iii) and the second-
order derivative in (iv), respectively; the reference point is
determined by the intersection of this line and the horizontal
line that passes through the minimum point obtained in (i)
[18]. TAN2 is used by producing a line that is centered at
the site of the signal 𝑦[𝑛] which is related to the previously
determined peak of the first-order derivative in (iii). Data
points are then synchronously added on both forward and
backward sides of this site until the CCbetween the data set of
𝑦[𝑛] and the set of the data generated by least-square fitting is
less than 0.999 [10]. Likewise, the reference point is specified
as the intersection of the line fitted by the just generated data
and the horizontal line that passes through the minimum
point obtained in (i). Inspect Figure 3(f) for details.

(vii) Method Based on the Centroid Method (McM). We first
obtain the point with maximum value of the first-order
derivative in the current area using (iii) on 𝑑1󸀠[𝑛]. In the
leftward direction of this peak, we thus can determine a point
at which the amplitude is less than 1/4 of this peak. In the
rightward direction, we can also determine another point at
which the amplitude is less than 1/64 of this peak. Figure 3(g)
reveals this process. The introduction of threshold values
brings about two advantages: the use of the first threshold
(i.e., 1/4) could reduce the fluctuation interference caused
by noise source around the onset of the systolic phase, and
the use of the second threshold (i.e., 1/64) could lessen mor-
phological variations which are mostly caused by predicrotic
and dicrotic waves. With these points between two reference
positions, we then determine the optimal feature point based
on the McM:

𝑅
𝑐
[𝑚
𝑐
] =

∑𝑑1
󸀠
[𝑖] 𝑟 [𝑖]

∑ 𝑑1
󸀠
[𝑖]

, (10)

where 𝑖 is the index for the points lying within these two
reference positions and𝑅

𝑐
[𝑖] is the distance from the leftward

reference point to the 𝑖-index sample. 𝑚
𝑐
is optimal point

obtained. Because the differential filter 𝐷
1
(𝑧) is sensitive to

high-frequency noise, the application of (10) can significantly
eliminate this kind of noise. We will quantitatively evaluate it
in the next section.

We repeat (i) to (vii) for determining the feature points for
each paired pulse beats in two channel signals, respectively.
Therefore, we can obtain 11 PTTs for each cardiac beat.

3. Results and Discussion

3.1. Results of Artificial Pulse Data Sets. Because it is difficult
to accurately estimate the absolute value of PTT, the arti-
ficial data are generated to investigate the reproducibilities
(i.e., mean ± standard deviation [SD]) of all decision rules
introduced in this study. As aforementioned, for each in
four publicly available artificial records [28], we constructed
two 1800-second duration sequences and resampled them at
5000Hz, including about 1800 paired pulse beats, and made
one have a time delay of 250ms by the circular-shifting oper-
ation.Thereby, for each paired pulse waves in the constructed
sequences, they had a distance with 250ms, and this distance
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Figure 4: Statistical results of the artificial data with various noise levels using different decision rules. From left to right: insets (a) to (d) show
4 artificial data with the addition of various intensity of simulated noise (i.e., SNR =∞, 15, and 35 dB, resp.). (e) to (h) show the distributions
of standard deviations of all 11 methods.

was regarded as the PTT duration. By this way, we obtained
4 paired pulse sequences with the PTT duration of 250ms.

A major purpose for the utilization of artificial pulse data
is to assess the newly proposed approach and the traditional
methods in a noisy environment. The zero-mean, Gaussian
white noise were added to each paired sequences data to rep-
roduce artificial pulse waves with SNR from 15 to 50 dB, in
increments of 1 dB (note that the Gaussian white noise in
each constructed sequence is different from each other), as
well as a∞ dB case. For each specified SNR case, the noisy
data was then mixed with artificial respiratory signal which
was generated by a cosine function with the amplitude of a
tenth of the simulated pulse wave amplitude and the intrinsic
frequency of 1/6Hz (i.e., 10 beats per minute). We thus
obtained 37 sets of paired data for 4 constructed sequences.
Figures 4(a) to 4(d) show the simulated pulse data with SNR
of∞, 15, and 35 dB for constructed sequences, respectively.

The performance of each method was summarized as the
mean and SD of the bias and precision values across all the
simulated pulse data at various SNR levels. For each method,
the mean is calculated by averaging distances of the feature

pointsmeasured fromevery paired pulsewaves in each paired
constructed sequences. The SD of distances is also calculated
to investigate the dispersion from themean at a specified SNR
case. The mean differences are less than 1ms for all methods.
Figures 4(e) to 4(h) only delineate the SD distributions
with respect to different SNR values for 4 kind constructed
sequences for all methods, respectively. From Figures 4(e) to
4(h), for the SNR = ∞ dB case, it is clear that the SDs are
all equal to 0 for all of these methods, which implies that the
reproducibility for each method at SNR = ∞ dB is 100%.
However, for various SNR values, the performances of dif-
ferent methods are significantly different. In accordance with
the distributions of SDs in Figures 4(e) to 4(h), collectively, we
conclude that when SNR → ∞ dB, then SD → 0ms for all
of these methods, and they coincide with practical situations.
It is observed that theMIN, SSF, D1, andD2methods have the
poorest performances since they are extremely sensitive to
high-frequency noise interference; the least-square technique
based TAN1 and TAN2methods demonstrate modest perfor-
mances; the direct threshold methods (i.e., TH20%, TH25%,
TH30%, and TH50%) show favorable agreement and better
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Figure 5: Linear regression analysis of Δ𝑃 and −Δ𝑇/𝑇 relationships in 6 typical subjects which are indexed as (a) to (f), respectively. The
linear-fitting results are listed on the top left corner in each inset.

performances. Regarding the accuracy as a whole, the McM
method outperforms the other 10 methods: most of the SDs
are less than 1ms for various SNR cases.

3.2. Results of Clinical Pulse Data Sets. The absolute PTT
values obtained from various measurement methods are
often not interchangeable when in fact different methods
might cause substantially different PTT values for the clinical
pulse data.The relationship between values of beat-to-beat BP
alteration and the corresponding values of beat-to-beat PTT
variation, that is, (4), is thus applied for investigation with
clinical data.

For each method, the PTT is measured in real time as
the time interval from the brachial wave to the radial wave
for each paired waves. For all of these methods, we thus can
obtain 33 × 11 sequences of PTT data (denoted as 𝑇 for each
sequence as before) and 33 × 11 sequences of BP data (also
denoted as 𝑃 for each sequence as before). We first let all
of these PTT and BP sequences be processed with a median
filter with the window of a width of 31 points. This median
filter is designed to eliminate the artificial outliers as well as
removing the very low-frequency drifting caused by respi-
ratory fluctuation. Let 𝑇 and 𝑃 be the outputs of 𝑇 and 𝑃 of
the nonlinear filter, respectively. Thereafter, let the sequences

𝑃 be applied to a simple forward derivative as below to obtain
the variation of BP (denoted as Δ𝑃 for each record):

Δ𝑃 [𝑛] = 𝑃 [𝑛] − 𝑃 [𝑛 − 31]. (11)

And then, the corresponding synchronous variation of PTT
can be counted according to (12) (denoted as Δ𝑇/𝑇 for each
record):

Δ𝑇 [𝑛]

𝑇 [𝑛]

=

𝑛

∑

𝑖=𝑛−29

𝑇 [𝑖] − 𝑇 [𝑖
∗
]

𝑇 [𝑖
∗
]

, (12)

where 𝑖∗ = 𝑖 − 1. The relationships of sequences of Δ𝑃 and
−Δ𝑇/𝑇 are then quantitatively examined (hereinafter,Δ𝑃 and
−Δ𝑇/𝑇 denote two sequences, resp.).

According to the basic formula (4), for the results
obtained from each participant using the McM method,
we then plotted the obtained Δ𝑃 against −Δ𝑇/𝑇 in scatter
way. Figure 5 shows the corresponding results of 6 typical
participants, in which 6 subfigures depict results of 6 subjects,
respectively. The red lines are linear least-squares fit of
Δ𝑃[𝑛] with respect to −Δ𝑇[𝑛]/𝑇[𝑛]. From Figure 5, it can
be apparently seen that the adjusted R-squared coefficients
of determination fall within [0.476, 0.617] and the intercept
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Figure 6: Test results of clinical pulse data obtained from all of these methods for 33 participators. Each column contains a distribution of
33 CCs calculated from all the subjects for a specific method. In each column, the red line indicates mean values of CCs, and the cyan lines
represent the 95% confidence interval of CCs.

values are less than 0.2mmHg, which indicate that there is a
reasonably good agreement with (4).

For each subject, the CC between Δ𝑃 and −Δ𝑇/𝑇 is
calculated using each method. We can thus obtain 33 CCs
for each method. The 95% of confidence interval (i.e., mean
± 1.96 SD) of CCs were also calculated. In Figure 6, each
column contains the 33 CCs counted by a specified method.
In each colum, themean and 95% of confidence interval were
signed in red and cyan lines, respectively. Table 1 depicts the
summary statistics of all the CCs for these methods.

In terms of the MIN method, from the tenth column of
Figure 6 and the second row of Table 1, we see that all CCs are
less than 0.45 and most CCs fall in [0.1, 0.2]; several negative
CCs are also observed, and the median CC is 0.08900. When

comparing the CCs of this method with these of the McM
method, in fact, there are only 2 CCs larger than those of
the McM method. Because the MIN method is vulnerable to
high- and low-frequency fluctuations around the same area,
all of these descriptions confirmed the poor performance of
the MIN method.

With regard to the D1, D2, and SSF methods, from
Figure 6 (the second, third, and last columns) and the
Table 1, we note that the D1 and D2 methods show similar
performances. Statistically, the performance of D1 method
is slightly better than that of D2 method (from Table 1, the
Mean ± SDs are 0.3542 ± 0.2866 and 0.2362 ± 0.3560 for D1
and D2 methods, resp.). This indicates that the D2 method is
more vulnerable to the high-frequency noise interference. For
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Table 1: Statistical analysis of correlations between Δ𝑃 and −Δ𝑇/𝑇 calculated from all candidate methods for 33 participators.

Methods Mean SD‡ Sum Minimum Median Maximum
McM 0.5231 0.1943 17.26 0.08030 0.5695 0.7913
MIN 0.07990 0.2011 2.637 −0.3756 0.08900 0.4484
D1 0.3542 0.2866 11.69 −0.1955 0.3605 0.7950
D2 0.2362 0.3560 7.793 −0.6076 0.2283 0.7611
SSF 0.1229 0.2067 4.054 −0.2660 0.05950 0.6010
Th50% 0.4985 0.1987 16.45 0.1241 0.5285 0.8013
Th30% 0.4605 0.2219 15.20 −0.008500 0.4862 0.7926
Th25% 0.4479 0.2239 14.78 −0.03950 0.4564 0.7834
Th20% 0.4235 0.2312 13.98 −0.04390 0.4534 0.7727
TAN1 0.3311 0.2783 10.93 −0.2253 0.3862 0.7064
TAN2 0.3407 0.2754 11.24 −0.2594 0.3921 0.7016
‡indicates standard deviation. See text for abbreviation.

the SSF method, most of CCs are less than 0.4 as we can see
in the last column of Figure 6. Recalling Figure 6 and Table 1,
we can conclude that its performance is poorer than that ofD1
and D2 methods since the determination of the peak of SSF
coefficients is required, which is quite sensitive to wide-band
noise.

The straightforward threshold-based methods (i.e.,
TH20%, TH25%, TH30%, and TH50%) produce CCs on the
order of 0.41 ∼ 0.49. Overall, from Figure 6 (six to ninth
columns) and Table 1, it is interesting that the four methods
perform quite similarly, possibly because of the similar
capabilities of these methods for interference elimination.
Collectively, the higher the threshold the slightly better the
performance: from Table 1, the Mean ± SDs are 0.4235 ±
0.2312, 0.4479 ± 0.0.2239, 0.4605 ± 0.0.2219, and 0.4985 ±
0.1987 for TH20%, TH25%, TH30%, and TH50%, respec-
tively. Compared with other existing methods, the TH50%
shows a closest performance to that of the McMmethod.

From Figure 6 (the fourth and fifth columns) and the
Table 1, concerning the transect intersection methods (i.e.,
TAN1 and TAN2). We note that there is no significant differ-
ence in performance. In Table 1, the Mean± SDs are 0.3311 ±
0.2783 and 0.3407 ± 0.2754, respectively. The median values
of CCs are 0.3862 and 0.3921, respectively. Because the only
difference of these two methods is the tactics that different
techniques are applied for determining the transect line and
this indirectly means that different rules for determining the
transect line make no apparent contribution to the perfor-
mance. A possible explanation for the observed relatively
poorer performance might be that performance of these
types of methods is more tightly related to the feature point
obtained by the MIN method.

Performance of this newly proposed McM method can
be deduced from the first column of Figure 6 and first row of
Table 1; it is clear that most of the CCs fall within [0.5, 0.7]
as we can apparently see from Figure 6. Of note, in contrast
to other 10 candidate methods summarized in Table 1, in the
total study population, the McM method has the maximum
values ofmean (0.5231), sum (17.26), andmedian (0.5695) and
has the minimum value of SD (0.1943), which, together with

referring to other columns in Figure 6, indicate that theMcM
method has the best performance.

3.3. Benefits and Limitations. It is worth emphasizing that
test results of both artificial and clinical pulse data using all
methods exhibit overall performance tendencies which imply
that the two metrics for evaluation mutually validate the
feasibility. These test results for both data sets reveal that the
MIN method is inappropriate for determining feature point
in PTTmeasurement because of its high bias, high dispersion
(i.e., large SDs), and low CCs. In effect, the minimum point
of pulse wave is quite gradual at the diastolic branch for some
clinical data. Overall, the results of this study demonstrate
that the combination of differential method, double-thresh-
old settings, and the centroidmethod yields a reliablemethod
for PTT estimation.This newmethod exhibits a higher detec-
tion rate than previous decision rules. This could possibly
lead to incorporation into pulse-wave detection devices to
improve the reproducibility and accuracy.

Accurate measurement of PTT might provide help for
robust BP estimation diagnosis of CVDs, the early prediction
of CVDs, and so on. In the present study, both artificial and
clinical pulse data are used for assessing the existing decision
rules and a newly presented method McM. The results of
artificial data at different SNR levels demonstrated that the
McM method has the best reproducibility. A clinical popu-
lation of 33 participants is used for investigation based on
the Moens-Korteweg equation. A few low positive CCs have
been observed for each method. In spite of this, the statistical
results confirmed that the McMmethod, collectively, has the
best performance which indicates it would be readily utilized
in routine clinical practice for risk stratification, prognosis,
and cost-effective preventive therapy.

We can speculate that robust determination of PTT (𝑇)
would yield an accurate measurement of relative variation of
PTT (Δ𝑇/𝑇). In the meanwhile, we acknowledge that reliable
estimation of Δ𝑇/𝑇 does not definitely mean that we could
obtain a reliable detection of the absolute PTT duration.
Because it is difficult to obtain the true duration of PTT
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in vivo, the Moens-Korteweg equation, that is, (1), is then
employed for evaluation in the current study.The application
of (1) is based on some assumptions including that the vessel
wall is isotropic [33]. Human’s blood vessels are far more
complicated than an ideal elastic tube. In addition, (4) is an
approximate estimate of relationship between the Δ𝑃 and
Δ𝑇/𝑇, and several associated factors might need to be con-
sidered for investigation. Reciprocally, several results of low
positive CCs observed in this study may provide additional
insight regarding (4) which should be further investigated
[27]. Nevertheless, it is thus an inherent limitation of our
study.

As mentioned in the Introduction section, various meth-
ods for measurement of the PTT have been developed in
the literature, 10 candidate methods are briefly reviewed and
investigated in this study. Noteworthily, the utilization of
different decision rules might adopt different digital signal
processing (DSP) techniques proposed by different research
groups. In addition, several technical specifications of the
DSP algorithms are unavailable or have not been disclosed for
some existing methods and especially for the methods pro-
posed by commercial manufacturers. We thus only assessed
the decision rules for feature-point localization on the pulse
waves via the same DSP technique. It possibly implies that
poor performance of the existing decision rules evaluated
here does not mean that the original methods proposed by
previous investigators have poor performance. In this regard,
it is another weakness of our study.

4. Conclusions

Accurate identification of the fiducial point of the pulse wave-
form is deemed essential for the estimation of PTT duration.
Thus far, there is nowell-establishedmethod for PTTmeasur-
ement. In the present study, firstly, we introduced theMoens-
Korteweg equation and its deduced equation for investigating
the relationship of PTT and BP. A series of integer digital
filters are subsequently designed for pulse signal processing.
Several existing decision rules for feature-point localization
have been briefly reviewed, and a novel approach which
consists of the differential method, threshold method, and
the centroid method is proposed. Ultimately, the new and
existing methods are investigated with both artificial and
clinical pulse data. Taken together, our evaluation results of
artificial and clinical data indicate that this newly presented
method outperforms the existing methods. Nonetheless, it is
important to note that, even for this newly proposedmethod,
several lowCCs of clinical data have been observed. From the
standpoints of biosignal detection and hemodynamics, this
method remains to be optimized on larger samples. Whereas
those low positive CCs are of clinical interest and would be
worthy of systematic investigation in examining whether the
variation of BP (Δ𝑃) is a principal or modest determinant of
the relative change of PTT (Δ𝑇/𝑇).
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[22] J. Solà, R. Vetter, P. Renevey, O. Chételat, C. Sartori, and S. F.
Rimoldi, “Parametric estimation of pulse arrival time: a robust
approach to pulse wave velocity,” Physiological Measurement,
vol. 30, no. 7, pp. 603–615, 2009.

[23] A.Hennig andA. Patzak, “Continuous blood pressuremeasure-
ment using pulse transit time,” Somnologie, vol. 17, no. 2, pp. 104–
110, 2013.

[24] N. R. Gaddum, J. Alastruey, P. Beerbaum, P. Chowienczyk, and
T. Schaeffter, “A technical assessment of pulse wave velocity
algorithms applied to non-invasive arterial waveforms,” Annals
of Biomedical Engineering, vol. 41, no. 12, pp. 2617–2629, 2013.

[25] T. G. Papaioannou, O. Vardoulis, and N. Stergiopulos, “Valida-
tion of algorithms for the estimation of pulse transit time: where
do we stand today?” Annals of Biomedical Engineering, vol. 42,
no. 6, pp. 1143–1144, 2014.

[26] N. R. Gaddum, J. Alastruey, P. Chowienczyk, and T. Schaeffter,
“Validation of algorithms for the estimation of pulse transit
time: where do we stand today? Response to commentaries by

papaioannou et al,” Annals of Biomedical Engineering, vol. 42,
no. 6, pp. 1145–1147, 2014.

[27] W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, and T. Togawa,
“Continuous estimation of systolic blood pressure using the
pulse arrival time and intermittent calibration,” Medical and
Biological Engineering and Computing, vol. 38, no. 5, pp. 569–
574, 2000.

[28] N. Gaddum, TTAlgorithm, 2012, http://www.mathworks.co.uk/
matlabcentral/fileexchange/37746-ttalgorithm/.

[29] J. Alastruey, A. W. Khir, K. S. Matthys et al., “Pulse wave prop-
agation in a model human arterial network: assessment of
1-D visco-elastic simulations against in vitro measurements,”
Journal of Biomechanics, vol. 44, no. 12, pp. 2250–2258, 2011.

[30] Central Differences—Pavel Holoborodko, http://www.holob-
orodko.com/pavel/numerical-methods/numerical-derivative/
central-differences/.

[31] W. Zong, T. Heldt, G. B. Moody, and R. G. Mark, “An open-
source algorithm to detect onset of arterial blood pressure
pulses,” in Proceedings of the Computers in Cardiology, pp. 259–
262, IEEE, Thessaloniki, Greece, September 2003.

[32] J. Pan and W. J. Tompkins, “A real-time QRS detection algo-
rithm,” IEEE Transactions on Biomedical Engineering, vol. 32,
no. 3, pp. 230–236, 1985.

[33] R. G. Gosling and M. M. Budge, “Terminology for describing
the elastic behavior of arteries,” Hypertension, vol. 41, no. 6, pp.
1180–1182, 2003.


