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ABSTRACT: Utilizing large Language models (LLMs) for handling scientific information
comes with risk of the outputs not matching expectations, commonly called hallucinations.
To fully utilize LLMs in research requires improving their accuracy, avoiding hallucinations,
and extending their scope to research topics outside their direct training. There is also a
benefit to getting the most accurate information from an LLM at the time of inference
without having to create and train custom new models for each application. Here,
augmented generation and machine learning-driven prompt optimization are combined to
extract performance improvements over base LLM function on a common chemical
research task. Specifically, an LLM was used to predict the topological polar surface area
(TPSA) of molecules. By using augmented generation and machine learning-optimized prompts, the error in the prediction was
reduced to 11.76 root-mean-squared error (RMSE) from 62.34 RMSE with direct calls to the same LLM.

■ INTRODUCTION
LLMs are opening new possibilities for leveraging natural
language processing in chemistry and other scientific fields.
These models can access and generate chemical information,
potentially assisting researchers with tasks such as predicting
molecular properties and designing new molecules. However,
using LLMs in chemical research comes with unique challenges.
One prominent issue is hallucination, where themodel produces
outputs that are confidently incorrect, often due to gaps or
inconsistencies in its training data.1 Hallucinations present a
substantial obstacle in chemistry, where even minor inaccuracies
can lead to significant misinterpretations in predicting molecular
properties or reactions.2 To fully integrate LLMs into chemical
research workflows, these hallucinations must be addressed and
it is critical to improve the models’ ability to better handle
chemical data.
Existing research efforts are exploring various ways to improve

LLM performance on chemistry-specific tasks. Some groups
have developed specialized models, like ChemLLM, which is
trained on extensive chemical data sets to ensure it is proficient
in a wide array of chemical tasks.3 This specialization helps
ChemLLM perform well in chemical applications. Instruction
tuning is another promising approach; models such as
MolecularGPT pretrain models with Simplified Molecular
Input Line Entry System (SMILES) strings connected to
molecular properties to enhance few-shot learning on chemical
properties, outperforming traditional models on molecular
property prediction.4 Additionally, fine-tuned models have
demonstrated success in converting unstructured chemical text

into structured data for reaction databases, highlighting LLM’s
potential to build organized and accessible chemical knowledge
bases.5,6 Some studies have also assessed the performance of
general-purpose LLMs in chemistry-related programming tasks,
such as generating code for chemical data analysis.1 Alter-
natively, custom models can be created from the same
transformer architecture that powers LLMs but using molecular
properties as the training data. For example, Prompt-MolOpt
uses prompt engineering to improve multiproperty optimization
and address data scarcity issues common to this field.7 This
method excels in few- and zero-shot learning scenarios due to its
ability to leverage single-property data sets to learn generalized
causal relationships. DrugAssist is an interactive molecule
optimization model that uses human-machine dialogue to
achieve leading results in single and multiple property
optimization.8 Another area where LLMs are being used is in
the automatic design of systems,9 including the design of more
effective and efficient agentic systems.10,11

These efforts underscore the progress being made with
specialized chemical LLMs and instruction-tuned models, but
they comewith limitations. Developing or fine-tuningmodels on
dedicated chemical data sets requires substantial computational
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and energy resources12 and domain-specific expertise.3,13

Furthermore, once models are fine-tuned for a specific chemical
application, their generalizability may suffer, and their
adaptability to other domains or newly emerging chemical
knowledge can become constrained.7 Therefore, there is a need
for time-of-prompt solutions that can enhance the accuracy of
LLMpredictions at inference time�without requiring extensive
retraining or fine-tuning.14 Such techniques would allow LLMs
to be applied to a wider range of chemical tasks, even in cases
where the model’s pre-existing knowledge may be incomplete or
out-of-date.
Two emerging approaches that could address these

limitations are Retrieval-Augmented Generation (RAG) and
the Multiprompt Instruction PRoposal Optimizer (MIPRO).
RAG combines a retrieval system with a generative model,
enabling LLMs to dynamically fetch or calculate relevant, up-to-
date information from external databases or knowledge
sources.15 In the context of chemistry, RAG could draw on
calculations or curated databases to supply the LLM with
accurate molecular data or specific molecular properties in real
time.9 This external grounding could significantly reduce the
likelihood of hallucinations by ensuring that the LLM has access
to precise chemical data instead of relying solely on its
potentially limited training set. RAG is potentially valuable for
tasks like predicting properties using group contribution
methods, where relationships between molecular structure and
molecular properties are complex and require detailed, accurate
data that an LLM may not robustly encode.7

MIPRO is a prompt optimization framework that creates and
refines the LLM prompts for improved accuracy and
consistency.14 MIPRO uses an LLM to generate additional
instructions to add to the prompt and then selects few-shot
examples that illustrate successful executions of the given task,
optimizing the selection of both using a PyTorch powered ML
framework.16 MIPRO can bootstrap examples from training
data and dynamically generate instruction candidates to provide
structured, task-specific guidance.3 Through Bayesian optimi-
zation, MIPRO iteratively identifies the optimal combination of
examples and instructions, evaluated against a user-generated
quantitative metric. This prompt refinement reduces hallucina-
tions by ensuring that the LLM has a clear and relevant
framework for understanding underlying data, without the need
for creating or fine-tuning a model for a specialized application.7

TPSA is used as a molecular descriptor in drug research
because it can efficiently predict a drug’s ability to passively cross
biological membranes, such as the intestinal lining or the blood-
brain barrier.17 This efficiency is crucial in early drug discovery
stages, where researchers need to evaluate a large number of
potential drug candidates. Several studies have shown that TPSA
correlates well with drug permeability.18 For instance, drugs that
are readily absorbed from the gut or those that can penetrate the
central nervous system typically have lower TPSA values.19

TPSA has also been used in a model that predicts drug exposure
in pregnant women and their fetuses. This model relies on a
“permeability-limited placenta model” that simulates drug
transfer between the mother and fetus.18

Together, RAG and MIPRO present a powerful solution for
improving LLM performance. RAG addresses the issue of
outdated or incomplete information by grounding the LLM’s
responses in current, high-quality data sources, ensuring that
predictions are accurate and contextually relevant. MIPRO
complements this by optimizing the prompt structure, allowing
the LLM to interpret and utilize retrieved data more effectively

through well-designed instructions and examples. Here, as an
example of this approach, I describe a method for predicting
TPSA that combines RAG and MIPRO using a commercially
available LLM, ChatGPT-4o-mini. In tandem, these approaches
enabled the LLM to make accurate, data-driven predictions at
inference time, enhancing its reliability without fine-tuning the
weights of the base model. This approach reduced the root mean
squared error (RMSE) for TPSA prediction from 62.34 using
the GPT-4o-mini LLM directly to 11.76 RMSE when MIPRO
and RAG were employed on top of that LLM for predictions on
the same set of molecules. Similarly, the Mean Absolute Error
(MAE) dropped from 52.06 to 6.39 and the median error
dropped from 49.43 to 0.02. The individual contributions of the
various elements of this approach are described below.

■ MATERIAL AND METHODS
Data Preparation. Molecular data were acquired from

PubChem by querying random compound identifiers and
fetching properties through the PubChem PUG-REST API.
Since PubChem defines TPSA as “a simple method - only N and
O are considered,” [https://pubchem.ncbi.nlm.nih.gov/docs/
glossary accessed on Nov 12, 2024.] only molecules with C, N,
O, and H were included and if the N and O functional groups
could not be mapped to one of the specified functional groups
for calculating TPSA,18 they were excluded.
RDKit was used to parse SMARTS patterns, generating a list

of functional groups. SMARTS patterns were loaded and
iteratively applied to each SMILES string, with RDKit
identifying the presence of targeted functional groups in each
molecule. These functional group assignments were then linked
to TPSA contributions using lookup data containing TPSA
values associated with each group.
To focus on drug-like molecules, SMILES codes with more

than 10 hydrogen bond acceptors or more than 5 hydrogen
bond donors were excluded. Additionally, molecules with a mass
greater than 500 were filtered out, further aligning the data set
with criteria typically used for drug-like compound properties.
To prevent biases toward certain values and ensure that the
LLM was exposed to a representative set of molecular features,
chemicals were selected at random. Of the 500 chemical
identifiers randomly generated, 461 met all these criteria and
spanned 0 to 153 in TPSA with a median value of 44.3
(distribution and molecular properties shown in Supporting
Information, Figure S1). The training set contained 30
structured examples selected randomly from this list for creating
bootstrap examples, while the validation set contained a second
set of 30 that were used to validate prompt performance.
Structuring Examples for Training.DSPy examples serve

as modular, query-answer pairs that allowed standardization of
data inputs and generated a comprehensive data set spanning a
wide range of TPSA values. A scaffold split was performed to
ensure that each scaffold type present in the data would occur in
either the train or test sets to provide a more rigorous test. The
examples were then loaded into the LLM program as a
structured data set, where each Example provided the model
with a consistent input−output relationship.
Prompt Optimization. GPT-4-o-mini was used as the

model for generating and testing prompts, ensuring that both
prompt generation and task completion maintained consistent
model behavior. GPT-4o-mini which has a reduced model size
compared to GPT-4o was used here in part to minimize the risk
that prior training data would contain direct answers to the
questions being asked. The reduced parameter size means these
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direct connections are less likely. The most recent version of
MIPRO, MIPROv2 from the DSPy package was used. Ten few-
shot example sets were proposed during the optimization. By
generating 10 sets, MIPRO can experiment with a range of
examples, allowing it to assess which examples best aid the
model in reducing TPSA prediction errors. An initial temper-
ature of 1.2 was used. This increases prompt diversity at the start.
This helps MIPRO to explore various prompt combinations
early on, with a controlled decrease in diversity over time for
convergence.
Twenty-five trials were run, allowing MIPRO to iteratively

refine prompts based on validation performance. Each trial
generates a new prompt set, and Bayesian optimization identifies
which sets perform best. Minibatch evaluation was performed in
batches of 5 examples, enabling efficient prompt evaluation in
each trial. This approach allows for broader prompt testing
within the given trial limit of 25. The number of few-shot and
labeled examples in each prompt was set to a maximum of 8,
ensuring manageable prompt length and optimizing example
diversity without overwhelming the model with too many
examples at once. After every 5 minibatches, a full evaluation on
the validation set was performed. This periodic full evaluation
provided a more stable performance benchmark, allowing the
Bayesian optimizer to adjust prompt selection based on more
reliable performance data.
Evaluation Metric. A custom metric was used to calculate

the absolute error between the LLM predicted TPSA value and
the true TPSA value, using this difference to guide bootstrap
example selection and prompt optimization. During bootstrap
example selection, the metric assesses the accuracy of candidate
few-shot examples generated from the training data set. A
threshold-based approach was used, retaining only examples
where the absolute error was below 20. This threshold ensures
that the examples selected for bootstrapping are reliable
representations of a good TPSA prediction, forming a solid
foundation for the few-shot examples used in prompt
optimization. In prompt optimization, the metric guides
Bayesian optimization by continuously measuring the accuracy
of different prompt configurations. At each trial, the
effectiveness of a prompt is evaluated by calculating the negative
absolute error across a batch of examples. Additionally, every few
minibatches the entire validation set was evaluated to confirm
that the current prompt configuration performs well on a
broader set of examples, enhancing stability and reducing noise
in prompt selection. By calculating negative absolute error
between predicted and actual TPSA values, this metric guides
the optimizer toward more accurate prompt selections.
The TPSA predictor is derived fromDSPyModule object and

utilizes the TypedPredictor program to ensure responses with
correct formatting. The predictor encapsulates the logic for
preparing, formatting, and training the model on prompt-
optimized TPSA prediction tasks. It utilizes a structured prompt
that can integrate molecular descriptions, functional group data,
and specific atom counts. These modules include Describing
Molecular Functional Groups: The method first calls
describe_molecule with the SMILES code. This function
returns an assignment of functional groups based on predefined
SMARTS patterns.
Augmented Generation. The prompts are generated in

segments that are removed selectively during the ablation study.
The prompt segments include: (1) Functional Group
Information: A function was created using rdkit that provides
a list of functional groups present in the smiles code as matched

to the list of TPSA contributors,18 (2) Atom Counts: identifies
the number of nitrogen and oxygen atoms in the molecule. (3)
The total atom count is used to generate specific instructions on
how each atom’s presence should impact the TPSA value. (4)
Data from the published group contribution table to the TPSA
for each functional group present. (5) Details that specify the
response format, ensuring the LLM outputs a JSON object with
a list of TPSA values. The predicted TPSA contributions are
summed to avoid math hallucinations20 and to provide a single
TPSA value. Ablated models are named using the letters from
Figure 1, a through f, that are retained in the model.

■ RESULTS
The effectiveness of structured prompt optimization using RAG
and MIPRO (tpsa_model_abcdef, Figure 1) was compared to a
basic prompt (direct model) for predicting the TPSA of a set of
140 molecules. The direct model, which uses a simple,
nonaugmented prompt without RAG or MIPRO optimizations,
results in a mean RMSE of 62.34 and MAE of 52.06 with a
median error of 49.43, with predictions showing little alignment
to the actual TPSA mostly with the prediction overestimating
the TPSA. The prompt used was “Predict the numerical value of
the topological surface area, TPSA, for a molecule described by
the SMILES code, {molecule},” wheremolecule was one SMILES
code selected from a list. This basic prompt leads to poor model
performance, as the LLM struggles to reliably relate molecular
structure to TPSA without the additional context provided in
the optimized prompt. SMILES codes are common but if the

Figure 1. Process for generating prompt components (blue) for tpsa
model from input SMILES (green) and RAG components (yellow).
Letters in figure correspond to included components in model names
(e.g., tpsa_model_acf).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c02322
J. Chem. Inf. Model. 2025, 65, 4274−4280

4276

https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c02322?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


training data did not include the specific property connected to
that specific form of the SMILES code, as appears to be the case,
the LLM cannot infer what the values should be (Figure 2A).
The model incorporating RAG and optimized with MIPRO’s
prompt structuring and few-shot example selection (tpsa_mo-
del_abcdef), achieves an RMSE of 11.76, MAE of 6.39, and a
median error of 0.02, a significant improvement with most
predictions closely matching the calculated values obtained from
PubChem. This suggests that incorporating functional group
details and other contextual information and optimizing
prompts through MIPRO significantly enhances prediction
accuracy. For the tpsa model a multipart prompt structure
(Figure 2B) was used that incorporated RAG components as
well as text designed to ensure the response of the LLM followed
the request for typed format of a list of float values which were
then summed to get the predicted TPSA value. This prompt was
used in the MIPRO process which produced examples and a
data description that were appended to the prompt at inference.
The outliers that had a predicted TPSA > 5 different from the
calculated TPSA (supporting info, Figure S2) tended to have
more nitrogen atoms suggesting that the more complicated
molecules were harder to predict.
These results were also compared to predictions made by

DrugAssist, an LLM built on Llama2-7B-Chat but fine-tuned
using the MolOpt-Instructions data set.8 The training set
contains over a million examples of molecules connected to
molecular properties. TPSA is not an explicit property in the
data set but related properties such as hydrogen bond donor and
acceptor count, solubility, and Blood-Brain Barrier Penetration
are included in the training data. However, the model performs
poorly (supporting info Figure S3). In this case the RMSE is
177.59, MAE is 91.85, and the median error is −29.30. So, while
fine-tuning with smiles codes and properties resulted in
improved performance in molecule generation, this did not
carry over to improved TPSA prediction, suggesting direct fine-
tuning on TPSA may be necessary if one wanted to use fine-
tuning as an alternative method to improve the ability of an LLM
to make TPSA predictions.
Next, different components were removed from the complete

model to assess the impact each component had on the accuracy
improvement over the direct LLM call. The tpsa_model_abcdf

configuration excludes the RAG component that contains
tabular TPSA contribution data18 used for calculating group
contributions to TPSA. This omission results in a mean RMSE
of 16.01, MAE of 11.47, and median error of 5.0 (Figure 3A).
While the median error is slightly higher than the fully optimized
model, most data points still cluster near the perfect prediction
line, with most deviations occurring at higher TPSA values. This
suggests that the tabular TPSA data provide some accuracy
benefit but are not critical to the model’s overall performance.
The outliers with >5 ΔTPSA (supporting info, Figure S4) lean
toward more complicated structures. Outliers also have a greater
number of nitrogen and oxygen atoms (Figure S5).
The tpsa_model_acdef omits only the RAG step that provides

a list of functional groups present in the SMILES to the LLM.
With a mean RMSE of 13.21, MAE of 8.22, and median error of
0, this configuration shows a slight decline in accuracy compared
to the fully optimized model, while the predictions remain
centered around the actual TPSA values (Figure 3B). This result
implies that while functional group descriptions add value in
helping with SMILES interpretation, the model can still achieve
reasonably accurate predictions without them, correctly
identifying functional groups from the provided SMILES. The
outliers (supporting info, Figure S6) again contain more
nitrogen and oxygen atoms and also have a longer mean
conjugation length than those with ΔTPSA < 5.
The tpsa_model_acf, has both of the prior RAG omissions

and shows a further increase in RMSE to 16.99, MAE to 13.53,
and a median error of 5.75 after removing both the functional
group list and specific atom counts (Figure 3C). Without these
critical details (the number and types of functional groups are
removed) provided by RAG, predictions become more widely
dispersed from actual values. This configuration underscores the
importance of functional group information for minimizing
hallucinations and achieving reliable TPSA predictions. The 106
outliers (supporting info, Figure S7) with >5 TPSA difference
contain many of the same molecules as the individual RAG
removals as well as some new ones.
Next, the text added by the MIPRO optimization was

iteratively removed from the full model to assess the
contribution of MIPRO to the improvement of the overall
model. When the description of the data set (termed signature in

Figure 2. (A) Direct LLM prediction of TPSA values for a set of randomly selected SMILES codes from PubChem using GPT-4o-mini. (B) Same
molecules predicted by the full model including RAG and MIPRO components also using GPT-4o-mini.
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DSPy) was removed (Figure 4A) the mean RMSE value
increased to 23.84, MAE to 18.89, and the median error to 14.25
and there were 110 outliers (Figure S8). In contrast, when the
bootstrapped examples were removed, the RMSE increased
even more to 42.72, MAE to 37.73, and median error to 35.30
(Figure 4B). The number of outliers with >5 TPSA difference
was even higher for the model without demos, 137, (supporting
info, Figure S9). In both cases, the LLM tended to favor
returning similar incorrect values. The inclusion of bootstrapped
examples in the demos was the most significant value to the
output of MIPROv2. In the case of the removed signature there
was a significant increase in the number of nitrogen atoms for the
outliers with ΔTPSA > 5 compared to those with a closer match
(Figure S5)
The p-values from a t test for a significant difference in TPSA

from the direct model are as follows: tpsa_model_acf 6.60 ×
10−36, tpsa_model_abcdf 7.06 × 10−29, tpsa_model_acdef 1.45
× 10−30, tpsa_model_abcdef_no_demos 1.89 × 10−4, tpsa_-
model_abcdef_no_sig 1.52 × 10−11 all below the common 0.05
threshold for significance.

■ DISCUSSION
This study provides a simple example of a molecular property
prediction that allowed a detailed examination of strategies to
reduce LLM hallucinations in scientific applications. The results
demonstrate the effectiveness of both RAG and MIPRO
individually and in combination to improve the accuracy and
reliability of LLMs in predicting molecular properties, a critical
aspect of drug research. By augmenting LLMs with both external
data retrieval and optimized prompt structures, we observed a
significant reduction in prediction errors. Specifically, the fully
optimized model achieved a median error of 0.02, closely
aligning with calculated TPSA values and outperforming models
that used only a simple prompt or incomplete prompt
components.
MIPRO iteratively identifies the optimal combination of

examples and instructions, creating a prompt that enables the
model to consider functional group contributions, functional
group details, and additive rules when making predictions. The
addition of MIPRO’s optimized prompts allowed the model to
better interpret molecular structure and contextual details, such

Figure 3. LLM prediction of TPSA values for a set of randomly selected SMILES codes from PubChem using GPT-4o-mini, excluding some RAG
components, either the (A) list of functional groups in the molecule, (B) table of TPSA contributions that match to the groups, or (C) both of these
elements omitted. GPT-4o-mini used in each case.
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as functional group contributions which are essential for
accurate predictions. Our ablation studies showed that removing
specific prompt components led to increased error rates,
confirming the importance of each element in minimizing
model hallucinations. For instance, omitting functional group
descriptions or atom counts resulted in poorer alignment, with
median error rising to 5.75 when both elements were removed.
These findings underscore the necessity of detailed molecular
context in LLM prompts, when property predictions depend on
molecular features.
By integrating a retrieval step that generates relevant

molecular properties and functional group information, the
RAG elements mitigate the risk of hallucinations. This approach
addresses the limitations of relying solely on static training data,
which may be unavailable for all possible inputs or insufficiently
detailed for specialized tasks. By integrating RAG and MIPRO,
the LLM’s applicability to the chemical task of TPSA prediction
was improved, without retraining or fine-tuning the LLM. These
results suggest that RAG and MIPRO can significantly improve
the utility of general-purpose LLMs in chemical and other
scientific research, providing a flexible, scalable solution that
enhances prediction accuracy and contextual relevance. This
combined approach offers a promising pathway for leveraging
LLMs in chemistry and other fields where accurate, context-
aware data interpretation is essential. By allowing the model to
retrieve relevant information for each query, RAG helps ensure
that its predictions are rooted in reliable data.
By combining RAG’s data-driven retrieval with MIPRO’s

prompt optimization, LLMs can be transformed into more
accurate and versatile tools for chemical research, capable of
delivering reliable predictions even in complex or unfamiliar
contexts.9,14 This approach holds promise not only for chemistry
but also for other scientific domains that require precise,
contextually informed data interpretation.2,19 Together, RAG
and MIPRO can enhance the utility of general-purpose LLMs
across a wide range of research applications, reducing the need
for specialized models and allowing researchers to leverage LLM
technology with greater flexibility and accuracy.7 This general
approach could be adapted, for example, to other molecular
properties including ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) properties of drug

molecules. It is important to keep in mind that these approaches
still do not provide perfect predictions and may not be sufficient
to prevent hallucinations for complex or out of distribution
molecules.
Training or fine-tuning models5 with up-to-date information

is another powerful approach but comes with drawbacks. Fine-
tuning requires significant advance work to prepare a model
tailored to a specific need. In contrast, approaches that can be
performed at inference time offer the advantage of being
applicable to any model without retraining the weights, thereby
preserving generalizability. This combination could be especially
useful in drug discovery, where accurate molecular property
predictions are crucial for assessing drug permeability and
potential efficacy early in the development pipeline.

■ CONCLUSIONS
As LLMs and their training data grow in size, their capabilities
can seem limitless, however, they cannot be trained on data that
does not exist yet. The approach described here takes an LLM
incapable of a specific molecular task and makes it substantially
more capable through augmented generation and prompt
optimization. This approach could allow LLMs to be used as
research assistants even when handling data outside of their
initial training while maintaining the utility of LLMs in handling
language.
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Distribution of TPSA values in data set (Figure S1);
outlier molecules from each of the models in the ablation
study that have >5 difference between the LLM predicted
TPSA and the calculated TPSA and a comparison of
molecular properties between the full data set and each

Figure 4. LLM prediction of TPSA values for a set of randomly selected SMILES codes from PubChem using GPT-4o-mini, excluding the (A)
signature developed by MIPRO and (B) bootstrapped examples produced by MIPRO.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c02322
J. Chem. Inf. Model. 2025, 65, 4274−4280

4279

https://github.com/scottmreed/chemistry-augmented-generation
https://github.com/scottmreed/chemistry-augmented-generation
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02322?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c02322?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model’s outliers (Figures S2 and S4−S9); and compar-
ison of prediction from DrugAssist7B (Figure S3) (PDF)
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