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Abstract: Stamping is one of the most widely used processes in the sheet metalworking industry.
Because of the increasing demand for a faster process, ensuring that the stamping process is conducted
without compromising quality is crucial. The tool used in the stamping process is crucial to the
efficiency of the process; therefore, effective monitoring of the tool health condition is essential
for detecting stamping defects. In this study, vibration measurement was used to monitor the
stamping process and tool health. A system was developed for capturing signals in the stamping
process, and each stamping cycle was selected through template matching. A one-dimensional (1D)
convolutional neural network (CNN) was developed to classify the tool wear condition. The results
revealed that the 1D CNN architecture a yielded a high accuracy (>99%) and fast adaptability among
different models.

Keywords: stamping process; vibration; spectrum density; one-dimensional convolutional neural
network; classification

1. Introduction

Stamping remains one of the most widely used processes in sheet metalworking and
is the primary process in the manufacture of many products, such as automotive products,
electronics, and medical devices. To ensure the consistent quality of the manufactured
products, monitoring of the tools used in the stamping process is crucial. Therefore,
monitoring data are required to clearly understand factors affecting the conditions of
stamping tools [1].

Several studies have focused on monitoring the condition of tools that are used in
machining processes such as drilling, turning, and milling; nevertheless, studies that have
focused on monitoring the conditions of tools used in stamping processes are few, particu-
larly those involving data acquisition and data recognition or classification. Several studies
have proposed the use of force, strain, acoustic emission, vibration, and audio indicators for
monitoring the stamping process. However, the analyses executed in these studies did not
cover all monitoring processes; instead, such analyses were mostly centered on recognition,
classification, or regression processes. Wu et al. [2] proposed using vibration signals to
monitor the micropiercing process and logistic regression to predict damage. Sari et al. [3]
used acoustic emission to monitor the micropiercing process online. Shanbhag et al. [4]
investigated the galling wear of a stamping tool by evaluating acoustic emission frequency
characteristics. Ge et al. [5] modeled monitoring signals at different periods in the stamping
process by using several autoregressive models with residue as a feature, followed by
classification by using the Hidden Markov Model. Tian et al. [6] used machine vision to
detect tool surface defects engendered by the stamping and grinding of flat parts.

The strain signal is the most commonly used monitoring signal since it is proportional
to the stamping force. However, strain sensors can identify only certain faults and cannot
be applied to detect dynamic characteristics of the stamping operation, especially in the
high frequency band [7]. On the other hand, AE and vibration force sensors are suitable
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for detection of the changes in the process and wear. Nevertheless, they are difficult to
install and expensive. In terms of vibration sensors, they are easy to acquire and contain
ample information about the process dynamics. Although problem of low signal and noise
ratio was mentioned before, we applied PCB356A15 accelerometers with sensitivities of
100 mV/g in the present study to solve this issue and clear stamping signals were observed.

Vibration signals provide information crucial in determining dynamic behaviors at
high frequencies in the stamping process [7]. Zhang et al. [8] used piezoelectric strain
sensors to measure the strain on the press column surface through feature selection to
monitor and detect failures in the punching process. Sari et al. [9] demonstrated the
relationship between increasing the amplitude within a certain frequency range and the
appearance of burrs and onset of damage that leads to punch failure. Continuous use of
the tool can cause various problems, such as wear, variation in the quality of the product,
and damage to the machine. Cutting tools usually exhibit adhesive and abrasive wear at
contact zones [10]. Zhang et al. [11] used the bispectrum to analyze acceleration signals
during the online stamping operation, which helped detect tool failure or tool wear.

Vibration signal data captured during the stamping process exhibit different patterns,
which can be used to monitor tool health. Some studies have used various pattern matching
methods [12–15] to process vibration signals; the present study implemented these methods
for analysis. A template is required as a basis for capturing the vibration signals because
different parameters could affect the shape of the signal pattern, resulting in patterns with
varying shapes.

Zhao et al. [12] demonstrated the applicability of many deep learning methods to
machine monitoring. The success of classical machine learning techniques depends on
efficient feature extraction, which requires considerable resources and time. Recently
developed techniques in deep learning have enabled automatic feature extraction without
the need for an expert, thereby simplifying the final solution while obtaining high accuracy.
Recent studies on one-dimensional (1D) signals, especially vibration signals, have used
convolutional neural networks (CNNs) [16–21] for classification.

On the basis of the findings and limitations indicated by the aforementioned studies,
the present study focused on developing a system for capturing vibration signals and a 1D
CNN model for classifying such signals to achieve end-to-end monitoring of stamping tool
wear. This study’s contributions are detailed as follows.

• The study developed of a system for processing vibration signals by using a template
matching algorithm in order to identify tool wear conditions.

• The study applied a deep 1D CNN along with a fully connected neural network
(FCNN) for feature extraction to classify tool wear conditions. The optimal configura-
tion was determined through the comparison of 1D CNN and FCNN configurations.

• The study applied real data from a mass production workpiece to evaluate the devel-
oped methods and algorithms.

• The proposed method not only enables the reliable and real-time monitoring of
stamping tools through processes involving data acquisition and data classification;
the method also minimizes computational time throughout these processes. The ex-
perimental results demonstrated the applicability of our method to actual machines,
with the method exhibiting high signal acquisition rates and excellent classification
efficiency.

The remainder of the paper is organized as follows. In Section 2, the proposed methods
and data acquisition process are presented. In Section 3, the signal acquisition rate and tool
wear classification performance are described. Finally, Section 4 presents the conclusion of
this study.

2. Materials and Methods

The flow of the proposed system’s operation is shown in Figure 1. Raw data obtained
from sensors at specific time intervals are first preprocessed and then divided into two sig-
nal domains, the time-based domain, and frequency-based domain. After data processing,
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template matching is used to compare the processed data with the template data. If the
required conditions are satisfied, the signal data are selected and then recognized.
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2.1. Experimental Data

The experimental data used in this study were obtained from an actual working
stamping process. Specifically, progressive stamping tools were placed into a reciprocating
stamping machine, and an automatic sheet metal feeder fed the metal sheet to be stamped
into the stamping tool, which pressed the metal sheet to the intended shape.

Stamping involves various processes, such as blanking, piercing, drawing, forming,
and bending, that are executed using distinct tools. In this study, the piercing process,
which tends to yield the most tool wear, was monitored at several positions where the tool
comes in contact with the material. Figure 2 presents the wear monitoring points inside a
progressive tool used for piercing. Figure 3 depicts the finished product, with the numbered
boxes indicating the location at which the tool die was applied. The stamping tool, metal
sheet workpiece and stamping machine used in this study are illustrated in Figure 4.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 23 
 

 

2. Materials and Methods 
The flow of the proposed system’s operation is shown in Figure 1. Raw data ob-

tained from sensors at specific time intervals are first preprocessed and then divided into 
two signal domains, the time-based domain, and frequency-based domain. After data 
processing, template matching is used to compare the processed data with the template 
data. If the required conditions are satisfied, the signal data are selected and then recog-
nized. 

 
Figure 1. Overall system operation. 

2.1. Experimental Data 
The experimental data used in this study were obtained from an actual working 

stamping process. Specifically, progressive stamping tools were placed into a recipro-
cating stamping machine, and an automatic sheet metal feeder fed the metal sheet to be 
stamped into the stamping tool, which pressed the metal sheet to the intended shape. 

Stamping involves various processes, such as blanking, piercing, drawing, forming, 
and bending, that are executed using distinct tools. In this study, the piercing process, 
which tends to yield the most tool wear, was monitored at several positions where the 
tool comes in contact with the material. Figure 2 presents the wear monitoring points in-
side a progressive tool used for piercing. Figure 3 depicts the finished product, with the 
numbered boxes indicating the location at which the tool die was applied. The stamping 
tool, metal sheet workpiece and stamping machine used in this study are illustrated in 
Figure 4. 

 
Figure 2. Tool monitoring positions. Figure 2. Tool monitoring positions.

After manually inspecting six sets of vibration data from the two sensors, we decided
to use the y-axis vibration data from the lower accelerometer because this accelerometer
produced distinctive stamping vibration signals and the least data noise. We observed two
stages of wear (mild and heavy) at each tool position (Table 1). Detailed conditions are
shown in Appendix A. Table 2 presents the classification of the experimental data regarding
the various tool conditions, indicating seven class types; only one class represented the
healthy condition, three represented the heavy wear condition, and the remaining three
represented the mild wear condition. This table also indicates the number of samples and
average stamping time for each class.
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Table 1. Tool wear figure and name tagging.

Identification Number Process Location Mild Wear Heavy Wear

1. Piercing Position A
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In general, in stamping, each vibration signal cycle represents three actions (Figure 5):
(1) contact of the stamping tool with the metal sheet, (2) shear force in the metal sheet that
is engendered by the impaction of the tool against the metal sheet, and (3) separation of
the tool from the metal sheet.
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However, because a real environment was considered in this study, the conditions
under which data were extracted could not be adjusted. Therefore, some classes did
not include signals that exhibited a typical cycle with the three actions. Instead, shock
vibration was produced only when the sheet was cut through shear force. Examples of
vibration signals obtained from classes 4 and 5 are illustrated in Figure 6, indicating slight
or nonexistent shock vibrations when the tool came into contact with the metal sheet
and separated from the metal sheet. Accordingly, we randomly selected a signal with or
without action 1 or 3 as the template signal.
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2.2. Signal Acquisition

Tool condition data were obtained from an LCP-60H press machine (Ing Yu Machinery,
Taichung, Taiwan) with a capacity of 60 tons and an automatic sheet metal feeder. The sheet
material was 1.5 mm thick SPCC. Table 3 lists the experimental parameters for the stamping
process. Two multiaxis PCB356A15 accelerometers with a sensitivity of 100 mV/g and
measurement precision of ±50 g were mounted at the top and bottom sections of the tool
(Figure 7) to measure vibrations at a sampling rate of 25,600 Hz; NI 9234 served as the data
acquisition module. Throughout the stamping process, signal data were recorded for 10 s
whenever a vibration shock was detected; all classes had more than 1 h of raw data on
stamping vibrations (comprising more than 92 million data points).

Table 3. Experimental parameters for the stamping process.

Lubrication Anti-Corrosive Oil
Sheet material SPCC

Sheet thickness (mm) 1.5
Stamping speed (rpm) 40

Die material SKD 11
Average Blanking force 29.5 kN

Number of parts formed 1960
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2.3. Data Processing

The obtained vibration signals were then analyzed visually. Figure 8 presents a
flowchart of the data preprocessing procedure. This procedure involved two stages: signal
acquisition and 1D CNN model execution. For signal acquisition, the raw data were
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first transformed to a resolution of n values by using root mean square (RMS) values to
expedite the template matching process. After the acquisition of a signal, the raw data
were processed for the 1D CNN model. Such processing is necessary because it prevents
extreme input values, which lead to poor results, and because a 1D CNN model cannot
process data with inconsistent input lengths. The data set used in this study contained a
collection of data objects (samples) whose lengths differed between classes. Because a CNN
model requires input data with a fixed length, the data samples were transformed to ensure
that they had the same length. Moreover, the power spectral density (PSD) was used as a
measure of the signal’s power content versus frequency to account for the possible length
variation of the data entered into the system. The frequency range was set to 50% of the
sampling rate, which was maintained at 25.6 kHz. We did not split the signal because
doing so may obscure meaningful features in the signal itself. In general, the PSD is used
to transform time-domain signals of different lengths into frequency-domain signals of
the same length. Moreover, it can be used to analyze the frequency of signals x(t) as the
ordinary Fourier transform x̂(ω) with a finite interval of (0, T). The truncated Fourier
transform can be obtained as follows:

x̂(ω) =
1√
T

∫ T

0
x(t)e−iωtdt (1)
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A uniform resolution was not obtained even after the data were transformed to have
a fixed frequency range. This problem can be resolved using simple linear interpolation,
which is mathematically expressed as follows:

y− y0

x− x0
=

y1 − y0

x1 − x0
(2)

The PSD generally represents a very low power amplitude. If such values are entered
into the CNN algorithm without normalization (i.e., conversion to a value between 1 and
0), the CNN activation function will not function as intended, thus preventing the model
from learning effectively. The normalization equation is expressed in Equation (3):

Normalized (ei) =
ei − Emin

Emax − Emin
(3)
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2.4. Template Matching

To simplify the comparative evaluation of several distance metrics, template matching
was used. This technique is designed to be sufficiently simple to avoid confusion and
accelerate the computation process.

This technique mainly involves calculating the distance between templates and the
testing signal and determining the boundary-dependent similarity decisions (Figure 9).
In this process, vibration data signals are continuously extracted using sliding windows,
which are then converted to a length equal to the length of the template used. Finally,
the value of each incoming data point is calculated.
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Furthermore, several classes of signals can be extracted. These signals are calculated
in terms of distance metrics; specifically, the local minima are calculated to determine the
signal that is closest in value to the signal template. The local minima must be smaller than
a predetermined threshold value. Signal templates are obtained from manual observations
and random selection to avoid possible bias against one method or type of data.

2.5. Distance Metrics

This study used several distance metrics, namely, the root mean square error (RMSE),
correlation coefficient, kurtosis, skewness, and mean, on the assumption that the shape of
the target pattern remained constant. Consider signals A and B with signal lengths PA and
PB, respectively. The equations for the distance metrics for these signals are as follows:

RMSE :

drsme =

√
1
P ·

P
∑

n=1
{A(n)− B(n)}2.

(4)

Correlation Coe f f icient :

dcorr =
∑P

n=1{A(n)−A}·{B(n)−B}√
∑P

n=1{A(n)−A}2·
√

∑P
n=1{B(n)−B}2 . (5)
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Kurtosis :

dkur =

∣∣∣∣∑
PA
n=1{A(n)−A}4

PA ·σA
4 − ∑

PB
n=1{B(n)−B}4

PB ·σB4

∣∣∣∣ .
(6)

Skewness :

dskew =
1
P ∑P

n=1{(An−Bn)−(A−B)}3(√
1
P ∑P

i=1{(An−Bn)−(A−B)}2
)3

(7)

Mean :

dmean = ∑n
i=1(Ai−Bi)

n
(8)

A(n) and B(n) represent the nth data points of signals A and B, respectively, and P represent
the length of the signals.

2.6. Autothreshold

The signal matching protocol (Figure 7) includes a step wherein a threshold is defined
for the algorithm to search for the local minima. The algorithm comprises an autothreshold
value from the template used, a standard deviation equation for the RSME metric Equation
(9), and the variance for the mean distance metric Equation (10). The signals are captured
after a comparison between the incoming signals and template signals; if an incoming
signal has the same shape and magnitude as the template signal, the value of the distance
metric decreases or increases, as discussed in Section 3.1.

Standard Deviation :

σ =

√
∑(xi−µ)2

P

(9)

Variance :

V = 1
P−1

P
∑

i=1
|xi − µ|2 (10)

xi = value from the template signal; µ = mean value of the template signal; P = template
signal length.

2.7. Convolutional Neural Network

Deep CNNs are designed to be operate on 2D datasets of images and videos; however,
1D CNNs have clear advantages over 2D CNNs for capturing signals. Like 2D CNNs,
1D CNNs also serve as trainable filters that can learn to filter important features from 1D
data. The output from 1D CNNs can then be used in an FCNN (Figure 10) to perform
conventional classification operations. 1D CNNs differ from 2D CNNs in that they use a 1D
array for feature maps and kernels; hence, the kernel size and parameters for subsampling
are in the form of scalars. The FCNN uses the conventional backpropagation (BP) method.
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1D forward propagation from convolution layer l − 1 to the input of a neuron in layer
l is expressed as shown in Equation (11).

xl
k = bl

k +
Nl−1

∑
i=1

conv1D
(

wl−1
k , sl−1

k

)
(11)

where xl
k represents the input, bl

k is the bias of the kth neuron at layer l, and sl−1
k is the

output of the ith neuron at layer l − 1. Moreover, wl−1
k represents the kernel (“mask” or

“weight”) from the ith neuron at layer l − 1 to the kth neuron at layer l. Therefore, if yl
k is

defined as the output, it can be expressed by a function of xl
k, as shown in Equation (12):

yl
k = f

(
xl

k

)
sl

k = yl
k ↓ ss

(12)

where sl
k denotes an output of the kth neuron in the l layer and ↓ ss denotes a downscaling

factor for the output with a scale factor of ss. In an FCNN, BP is performed starting from
the multilayer perceptron if it has NL classes. The mean square error (MSE) is expressed as
follows:

Ep = MSE
(

tp,
[
yL

1 , . . . , yL
NL

])
=

NL

∑
i=0

(
yL

i − tp
i

)2
(13)

where L = 1 represents the input layer, l = L represents the identity between an input
and output, p represents the input vector, tp

i represents the corresponding target, and[
yL

1 , . . . , yL
NL

]
represent the output vectors.

In this study, batch normalization (BN) was used after the application of the convolu-
tion filters. Suppose that the data contain m training examples; the mean can be calculated
using Equation (14):

µB ←
1
m

m

∑
i=1

xi (14)

Then, the variance of these training examples or the mini batch can be calculated as
follows:

σ2
B ←

1
m

m

∑
i=1

(xi − µB)
2 (15)

After the variance is obtained, the formula for BN can be applied, as shown in Equation
(16), where γ and β are trainable parameters.

yi ← γ
xi − µB√

σ2
B + ε

+ β = BNγ,β(xi) (16)

Moreover, LeakyReLU nonlinearity can be used, as expressed in Equation (17):

f (x) =

{
x, i f x > 0

ax, otherwise
(17)

The reference model of 1D CNN used in this study is shown in Figure 11. It com-
bines convolutional filters, batch normalization, following by performing LeakyReLU and
MaxPooling to attain downsampling.
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work (FCNN).

3. Results

The main results of this study pertained to two aspects, namely, signal acquisition
and signal recognition. Results pertaining to signal acquisition revealed the system’s
signal acquisition accuracy, and those pertaining to signal recognition revealed the 1D
CNN model’s performance in classifying the stamping signals. Template matching were
conducted using the 64-bit version of LabVIEW 2019, whereas 1D CNN modeling was
conducted using Tensorflow in Python. These systems were run on a Windows computer
with an AMD Ryzen 7 3750H processor, 24 GB of RAM, and NVIDIA GeForce RTX 2060.

3.1. Distance Metrics Performance

Five algorithms were compared with respect to two key indicators. The first indicator
was the distinctive distance, which was evaluated in the absence of a signal, in the presence
of a noise signal, and in the presence of a stamping signal.

Figure 12 presents the performance of each distance metric. All three algorithms could
detect vibration signals to some degree, and the kurtosis, RMSE, skewness, and mean
values indicated that the algorithms could distinguish between time points with a noise
signal, without a signal, and with a stamping signal. However, the correlation coefficient
tends to fluctuate with a small change in input value. This is because the calculation of
the correlation coefficient ignores the magnitude and only focuses on the “shape” of each
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vector. Therefore, the correlation coefficient is unsuitable as a distance metric for signal
matching after acquiring a vibratory signal because determining the optimal threshold
value would be difficult. The second indicator was the computation time.
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Figure 12. (a) Root mean square (RMS) of signals from the vibration in the stamping process. Sliding windows were
applied from the template signal across the RMS signal, resulting in (b) the correlation coefficient, (c) kurtosis, (d) RMSE,
(e) skewness, and (f) mean metrics.

The vibration signal obtained in the stamping process could be as short as 0.1 s.
Therefore, to capture such short signals, the computation time should be measured for
each distance metric in order to determine the metric that yields the shortest computation
time. Figure 13 presents the computation time of each distance metric. As expected,



Sensors 2021, 21, 262 13 of 21

the RMSE and mean had the shortest computation time because only simple mathematical
operations are used. Although the correlation coefficient, kurtosis, and skewness had
short computation times, they required the data length to be scaled, which lengthened the
computation time. Accordingly, the RMSE and mean was indicated the be most suitable
(i.e., best performing) distance metric.
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3.2. Autothresholding Performance

In this study, autothresholding performance was tested in terms of the RMSE and
mean. These tests involved assessments of sensitivity or recall, miss rate, and precision
or positive predicted value. In this experiment, template signals of random size were
manually selected from random sections in each class; the selection process was repeated
four times in each class. All the signals were obtained when the tool cut the metal sheet.
Three measures were used: true positive (TP), false positive (FP), and false negative (FN).
Figure 14b shows a TP classification; that is, the algorithm could fully capture a signal.
Figure 14c presents an FP classification; that is, the algorithm failed to capture the whole
signal, with one or more parts missing. Figure 14d shows an FN classification; that is,
the algorithm could not capture the signal of interest. The TF signal is not presented in
Figure 14 because it is only applicable in the condition when no stamping signal is present.

Figure 15 shows the autothresholding performance as assessed in terms of the standard
deviation of the RMSE and the variance of the mean. The thresholds are indicated by the
red dotted line, and the RMSE and mean values were obtained using sliding windows. This
figure indicates that autothresholding could be used to determine whether local minima
should be calculated. This reduces computation time while ensuring that the stamping
signal is captured. Although the standard deviation of the RMSE and variance of the mean
can be used as the autothreshold, we found some inconsistency when using the variance
as the autothreshold (Figure 16) for some cases where the template signal was long; if the
variance autothreshold is below its mean value, local minima cannot be detected.

Thus, we only used the RMSE as the distance metric and the standard deviation as
the autothreshold.

We observed that classes with the same degree of wear also had the same type of
signal in terms of shape and amplitude (Figure 17); heavy but not mild wear was associated
with continuous vibration to some degree. We conducted an autothresholding experiment
by using class 1 (the healthy condition), by randomly selecting one of classes 2 to 4 (heavy
wear conditions), and by randomly selecting one of classes 5 to 7 (mild wear conditions).
Table 4 shows the results for data from the same class, and cross-class. Detailed results
are shown in Appendix B. The results revealed a high sensitivity (0.950) and precision
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(0.876). Cross-class examination is required because, in real-time monitoring, the incoming
signals can be from any class. Table 4b presents the results of cross-class examination,
meaning that a template from another class is used to capture signals from other classes.
The sensitivity and precision exceeded 0.8 in some cases but were very low for other cases.
An investigation was conducted for cases with poor precision, and these cases were found
to involve very narrow template signals, which resulted in very narrow windows for the
acquisition of the correct signal, resulting in poor sensitivity and precision.
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Figure 17  1 Figure 17. Vibratory signal from (a)–(f) represent class 2 to 7, respectively.

Table 4. Average sensitivity, precision, and miss rates for data acquisition (a) within the same class
and (b) cross various classes.

(a) (b)

Class Sensitivity
Rate Precision Miss Rate Class Sensitivity

Rate Precision Miss Rate

1 1 0.892 0 1→4 1 0.892 0
3 1 0.821 0 3→1 0.922 0.815 0.077
7 0.851 0.917 0.148 7→2 0.797 0.866 0.202

Average 0.95 0.876 0.049 Average 0.9067 0.8583 0.093

3.3. Tool Condition Classification Using a 1D CNN and Model Optimization

The proposed CNN was tested using data obtained according to the description in
Section 2.1. These input data were then preprocessed to have the same data length by using
the method described in Section 2.3 (Figure 18).
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Figure 19 presents the classification results produced by the model (referenced in
Section 2.7) when testing data were used. For every class, the predicted values matched
the actual values. We could analyze misclassifications using a confusion matrix; this matrix
was also used to evaluate classification accuracy. An accuracy rate of 100% was obtained,
but many previous studies have reported that adaptive 1D CNNs can perform better than
other classification algorithms, such as support vector machine (SVM), k-nearest neighbors,
SVM ensemble, and artificial neural network architectures. In this study, hyperparameter
optimization was used because the model must be as simple as possible to reduce the
computation time while maintaining a high accuracy for classifying each class correctly.
The total numbers of parameters obtained by the reference model described in Section 2.7
are shown in Figure 20. The parameters comprised weights and biases that were either
trainable or not trainable in the 1D CNN model.

The number of nodes in the FCNN and CNN filters was reduced to decrease the
number of parameters, but other hyperparameters, such as the alpha value for LeakyReLU
and the dropout, were not altered because they did not significantly reduce the size of the
model. Of the data available, 30% and 70% were validation and training data, respectively.
The results obtained after the training process indicated significant differences between
models with respect to the total number of parameters (Table 5). Although the number
of parameters decreased sequentially from the reference model to the smallest model,
the ccuracy did not decrease significantly. Furthermore, the second smallest model with
200,000 parameters exhibited a high level of accuracy; although, it had only 1/137 of the
parameters in the reference model; however, when that model had only 100,000 parameters,
the accuracy decreased, and we thus did not decrease the number of parameters further.

3.4. Data Reduction for Model Training

The case in this study only used one type of progressive stamping tool; however,
in actual case scenarios, the proposed model architecture could be used for other types of
stamping tools. Figure 21 illustrates a graph that can serve as a reference for determining
the quantity of data required to retrain the model. The graph depicts the behavior of the
two smallest models when they were trained using different quantities of data. The data
shown in the figure include data that were used for training and validation; the remaining
data were used for testing. Because the accuracy of each model was tested using the
test data, these data had not been used during model training. As stated in Section 3.3,
the model with 200,000 parameters yielded the lowest accuracy, which can be confirmed
by the results shown in Figure 21.
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Table 5. Model size and accuracy.

Total Parameters Accuracy (%)

14,025,991 100
13,040,311 99.8
13,026,135 99.8
3,260,943 99.8
3,257,007 99.8
1,631,599 99.8
817,231 99.8
204,495 99.7
204,387 99.8
102,291 98.0

The majority of one cycle monitoring were composed by signal acquisition, data
preprocessing, and prediction using 1D CNN. In the present study, the actual computation
times of one cycle monitoring period of the 1960 samples were 0.14–0.18 s, and it depended
on the data length of template signal. For example, in this study case, the stamping speed
was 40 rpm which equals to 1.5 s of one cycle stamping process time. The computation
times of one cycle monitoring period was 0.18 s; therefore, there was enough time to
real-time monitoring and classify the condition of tool wear during every cycle stamping



Sensors 2021, 21, 262 18 of 21

process. The proposed method could be applied for stamping speed up to 100 rpm and
satisfy the industrial specifications of most metal stamping.
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4. Conclusions

In this study, a method of capturing vibratory signals during the stamping process
was proposed and verified using real-case data. Several distance metrics were compared,
and the results revealed that the RMSE was the most suitable distance metric due to
its effectiveness and speed. An autothresholding method was also employed to help
determine the local minimum threshold from different template signals. The proposed
method was validated based on sensitivity and precision. A sensitivity of >0.9 (indicating
favorable performance) was obtained from experimental results for the same-class and
cross-class configurations, and a precision of >0.85 was obtained for both configurations.
The results of this study can serve as a reference for the extraction of signals with periodic
characteristics and shape similarity.

The use of an adaptive 1D CNN for classifying stamping-induced vibration signals
was extensively studied. Localized raw data of vibration signals were normalized using
the PSD and then entered into the 1D CNN Model. The 1D CNN presents the advantages
of adaptability and rapid feature learning. Moreover, the effectiveness of the 1D CNN
was assessed using a real-case scenario. The size of the model in this study was reduced
greatly owing to the rapid adaptability of the 1D CNN, and an accuracy of up to 99.8% was
achieved. The amounts of training and validation data were also investigated. An accuracy
of >90% could be achieved with only 90 data points from each class. These findings show
that the 1D CNN can be used in real time for classifying vibration signals during stamping.
Although the effectiveness of the proposed 1D CNN was verified, problems remain to be
addressed for its application in mass production. The proposed 1D CNN is not flexible in
terms of the number of classes. Future studies should aim to overcome this problem by
using Siamese neural networks.

This study’s findings can serve as a reference for manufacturers in developing strate-
gies for reducing the cost of tool maintenance and improving product quality.
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Appendix B

Table A1. (a) True positive signal, (b) false negative signal, (c) false positive signal.

(a)

Sensitivity Rate

Class
Trial

1 2 3 4

1 1 1 1 1
3 1 1 1 1
7 0.714 1 0.833 0.857

(b)

Precision

Class
Trial

1 2 3 4

1 1 0.857 0.857 0.857
3 0.857 0.857 0.857 0.71
7 0.833 1 0.833 1

(c)

Miss Rate

Class
Trial

1 2 3 4

1 0 0 0 0
3 0 0 0 0
7 0.285 0 0.166 0.142

Table A2. (d) sensitivity, (e) precision, (f) and miss rate for cross-class capture. “1→4” means that
signals were obtained from class 1 and templates were from class 4.

(d)

Sensitivity Rate

Class
Trial

1 2 3 4

1→4 1 1 1 1
3→1 0.857 1 1 0.833
7→2 0.833 0.857 0.833 0.667

(e)

Precision

Class
Trial

1 2 3 4

1→4 0.857 1 0.857 0.857
3→1 1 0.428 1 0.833
7→2 0.833 1 0.833 0.8

(f)

Miss Rate

Class
Trial

1 2 3 4

1→4 0 0 0 0
3→1 0.142 0 0 0.167
7→2 0.167 0.142 0.167 0.333
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