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The complexity of the frictional dynamics at the microscopic scale makes difficult to identify all of its
controlling parameters. Indeed, experiments on sheared elastic bodies have shown that the static friction
coefficient depends on loading conditions, the real area of contact along the interfaces and the confining
pressure. Here we show, by means of numerical simulations of a 2D Burridge-Knopoff model with a simple
local friction law, that the macroscopic friction coefficient depends non-monotonically on the bulk elasticity
of the system. This occurs because elastic constants control the geometrical features of the rupture fronts
during the stick-slip dynamics, leading to four different ordering regimes characterized by different
orientations of the rupture fronts with respect to the external shear direction. We rationalize these results by
means of an energetic balance argument.

F
rictional forces between sliding objects convert kinetic energy into heat, and act in systems whose size ranges
from the nanometer scale, as in some micro and nanomachines, up to the kilometer scale, typical of
geophysical processes. The microscopic origin of frictional forces is therefore deeply investigated, and

strategies to tune their effects are actively sought1–5. In the classical description of frictional processes6, the
transition from the static to the sliding regime occurs as the applied shear stress overcomes the product of the
normal applied force and the friction coefficient m (Amontons–Coulomb law). However, experiments conducted
in the last decade7,8 have shown that this transition is driven by a local dynamics of frictional interfaces, which
occurs well before macroscopic sliding. In addition, studies on the systematic violation of Amontons–Coulomb
law and the dependence on the loading conditions have clarified that the static friction coefficient is not a material
constant9,10. This is consistent with numerical studies based of 1D11–13 spring-block models that have clarified the
influence of the loading conditions on the nucleation fronts. In particular they have shown that the friction
coefficient decreases with the confining pressure and the system size. While the effect of the elasticity of the slider
in the direction perpendicular to the driving one has been recently addressed via the study of 2D spring-block
models14, the role of the elasticity of the contact surface has not yet been clarified.

In this study we show that the elasticity of the contact surface influences the features of the fracture fronts
leading to a non-monotonic behaviour of the friction coefficient. These results are obtained via numerical
simulations of a 2D (xy) spring-block model (Fig. 1a), and are supported by analytical arguments. Our model,
fully described in the method section, is a simple variation of the Burridge–Knopoff15,16 (BK) model that is
commonly used in seismology to describe a seismic fault under tectonic drive, and that reproduces many
statistical features of earthquake occurrence17–20. The model is represented by a series of blocks, interconnected
by springs of elastic constant kb and interacting with the substrate with a frictional force characterized by a
uniform friction coefficient ms, initially arranged on a two dimensional square lattice of size Lx 3 Ly.

We study its properties as a function of the parameter w 5 kb/Dkd, where Dkd is the variance of the distribution
of the elastic constant kd with which each block is coupled to the drive (see Fig. 1a). Accordingly, w measures the
relevance of the elastic heterogeneity, the w R 0 limit corresponding to a system elastically homogeneous. We
show that, even if the Amontons–Coulomb law is locally satisfied for each contact, violations at the macroscopic
scale are observed, due to the interplay between the elasticity of the material and the local frictional forces. This
interplay influences the macroscopic friction coefficient as it determines how the ordering properties of the
system change under shear: Stiff systems keep their ordered structure, while soft systems disorder more easily. We
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report four different shear–induced ordering regimes, each one
characterized by rupture fronts with specific geometric features.
The macroscopic friction coefficient �m does not vary monoton-
ically with the degree of order of the system or with the degree of
elastic heterogeneity: Indeed �m exhibits a minimum when the
periodic order of the system is broken in the direction perpendic-
ular to the shear, which occurs at intermediate heterogeneities.
This leads to a �m that is larger both for highly ordered (homogen-
eous) and highly disordered (heterogeneous) systems. We there-
fore find a non-monotonic relationship between �m and the
ordering of the material which, in our study, is controlled by
elastic heterogeneity. More generally, the ordering degree can be
affected by different physical mechanisms, such as for instance the
jamming or cristalization transitions21,22.

The dynamics exhibits the typical stick-slip behaviour with phases
of slow stress accumulation interrupted by an abrupt energy release.
Fig. 1b shows for different values of w the time evolution of the

shear stress sx tð Þ~
XN

i
ki

d xi tð Þ{Vdtð Þ
.

LxLy , where xi(t)2Vdt is

the elongation of the i-th particle. The stress drop amplitude exhibits
a power law distribution19,20 that can be related to the Gutenberg-
Richter law of experimental seismicity. We define the macroscopic
friction coefficient as the average over many slips of the steady state
shear stress right before failure (symbols in Fig. 1b), divided by the
confining pressure �m~ sfailh i=sn. The dependence of �m on w in Fig. 2
is clearly non–monotonic, with a minimum corresponding to a , 40/
% reduction of the friction coefficient with respect to the microscopic
value ms 5 0.2. This minimum is observed for all values of N, and
becomes more pronounced for larger N.

Next, we show that the minimum of �m is related to changes of the
ordering properties of the elastic surface, and, to this end, we consider

the w dependence of the bond–orientation ordering parameter23. This
is defined as

Y tð Þ~ 1
N
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where the second sum runs over all nj nearest neighbors of particle i
and hij measures the orientation of each bond at time t with respect to
the shear direction. When the configuration preserves its original
ordered square lattice configuration Y 5 1, whereas in the opposite
limit of a fully disordered configuration Y^0:5. Fig. 3 (inset) shows
that as the systems is sheared Y(t) decreases from Y(0) 5 1 to a
limiting value Y(‘). The main panel shows that this asymptotic value
is a continuously decreasing function of w, that approaches its ordered
and disordered limits for large and small w, respectively. This behavior
is consistently observed for different system sizes N.

Concerning the dependence of Y on the system size N, we observe
that for w $ 102 the parameterY(‘) is N independent. Conversely, at
smaller w we notice Y(‘) is a weakly decreasing function of N,
indicating that the larger is N the more disordered is the configura-
tion. This behaviour can be attributed to heterogeneities of the local
stress. Indeed, for larger systems the probability to find local instabil-
ities is higher, which favors the occurrence of local rearrangements
leading to more disordered configurations. The same argument can
be also used to explain the weak decrease of the macroscopic friction
with N (Fig. 2a), but does not account for the presence of the min-
imum in �m. Indeed, �m is not a monotonic function of Y.

Here we show that �m variations can be related to the geometrical
properties of clusters of slipping particles. We define as ‘‘slipping
particle’’ the one with a displacement in the shear direction larger
than a given threshold Sx 5 0.01 l, where l is the lattice constant. We

Figure 1 | The 2D Burridge-Knopoff model. (a) Schematic representation

of the model: An elastic layer of red particles connected by yellow springs is

in contact with a bottom-flat substrate (gray). The system is driven by an

external spring mechanism along the x-direction at constant velocity Vd

and each particle is confined by a constant pressure sn. (b) Time

dependence of the shear stress sx(t) during the stick-slip dynamics for two

systems with different values of w. Filled black squares and open red circles

indicate the values of the shear stress that, divided by sn, are used to

estimate the macroscopic friction coefficient �m. The horizontal dash-

dotted (blue) line indicates the value of the stress corresponding to the

Amontons-Coulomb threshold.

Figure 2 | The friction coefficion depends non-monotonically on the
degree of elastic heterogeneity. (a) the macroscopic friction coefficient as a

function of the parameter w. The value of �m is defined as Æsfailæ/sn, where

sfail is the maximum shear stress right before large stress drops (symbols in

Fig. 1b) and sn is the confining pressure. Different symbols refer to

different system sizes. The dashed vertical lines indicate four regimes:

crystalline C, laminar crystalline LC, disorder-parallel DP and disorder-

transverse DT. Bottom panel: the asymmetry factor of the clusters of

slipping particles as a function of the parameter w.
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observe compact clusters of slipping particles (rupture fronts) whose
geometrical features are characterized by their sizes along the dir-
ection parallel, lx, and perpendicular, ly, to the shear, lx:
B{1P

i,j Dxij and ly:B{1
X

i,j
Dyij. Here, Dxij (Dyij) is the distance

between particles i and j along the x (y) direction and the sum is
extended to all Nc(Nc 2 1) particle couples belonging to a cluster. The
normalization factor B 5 Nc(Nc 2 1)/4 insures that for a cluster
involving the whole system lx 5 Lx and ly 5 Ly.

In Fig. 4a we present a parametric plot of ly/Ly vs lx/Lx for four
different values of w. Cluster configurations can be distinguished into
four classes, determined by w, whose typical shape is reported in
Fig. 4b. For w?1 we have the crystalline regime (C), represented
by black circles in the region with lx^Lx. In this case, the system
behaves as a rigid body and slips involve all particles, keeping the
original crystalline order. For smaller value of w we have the laminar
crystalline regime (LC, red squares) where lx^Lx and ly with values
in the range [1, Ly]. In this regime, a typical slip involves the motion
of one or few parallel lines. This is consistent with the ordering
features observed in this regime (LC lower panel), characterized by
order along the direction of the shear and disorder along the trans-
verse direction. A further reduction of w first breaks order in the
shearing direction, giving rise to the disorder–parallel regime (DP,
green diamonds), and then fully disorders the system, giving rise to
the disorder–transverse regime (DT, blue triangles). The shape of the
clusters in both these regions are asymmetric with lx/Lx . ly/Ly in the
DP whereas lx/Lx , ly/Ly in the DT. This information can be directly
extracted from Fig. 4a where we observe that the DP and the DT
regimes respectively populate regions above and below the diagonal.
We characterize the asymmetry of the cluster shape comparing their
average longitudinal and transverse sizes, lx/ly. As shown in Fig. 2b,
this ratio varies non–monotonically with w, and has a maximum
corresponding to the minimum of �m. This suggests that the lowest
value of �m is obtained when slips involve the horizontal displacement
of the smallest number of lines.

An explanation of this result and the presence of different regimes
is given by a simple energetic argument. Let us suppose that at given
time an amount of energy ER provided by the external drive is relaxed
via a slip of length d such that the relaxed energy is ER , kdd2. This
energy can be released through the motion of a rectangular cluster of
particles of size nxl 3 nyl. Assuming that all the particles of the cluster

slip rigidly by the same distance, the amount of energy released in the
slip comes only from the perimeter particles and is given by

DE~kbnyd2H Lx{nxlð Þzkbnx d2zl2
� �1=2

{l
� �2

H Ly{nyl
� �

, ð2Þ

where the Heaviside theta function takes into account that, because
of periodic boundaries, if a side of the cluster becomes as large as the
system size, the interface contribution vanishes. Eq. 2, in the limit of
small slips d=l, becomes

DE^kbnyd2H Lx{nxlð Þz 1
4

kbnxd2 d

l

� �2

H Ly{nyl
� �

: ð3Þ

As a consequence, for a rigid system (kb?kd) in order to have DE ,
ER the first term in Eq.(3) must be zero (nxl 5 Lx) and also the

condition d=l must be satisfied so that kbnx
d

l

� �2

*kd . This corre-

sponds to the slip of entire rows (C regime in Fig. 4a). However, these
slips are possible only if the configuration is ordered. When kb

becomes smaller, as indicated by the behavior of W (Fig. 3), fluctua-
tions appear in the lattice organization preventing slips in the form of
entire rows. In this case, since d , l, configurations with ny , nx are
still energetically favored. This situation corresponds to the LC
regime in Fig. 4a. On the other hand, as soon as kb (and w) becomes
sufficiently small so that nyl 5 Ly, the second term in Eq. 3 vanishes
and the configurations corresponding to the DT regime in Fig. 4a are
energetically favored. Summarizing, slipping clusters show different
geometries for decreasing kb, with preferential order along the dir-

Figure 3 | The degree of elastic heterogeneities controls the ordering
properties of the system. Main panel: the asymptotic value of Y(t) as a

function of the parameter w. Systems are initially prepared in the same

ordered state. Depending on w, structural changes can occur as revealed by

the order parameter, which drops from 1 (rigid bond) to ,0.5 (very elastic

bond). Error bars are comparable to symbol sizes. Inset: Time evolution of

Y(t) for systems with N 5 400 and w 5 103 (black filled squares), w 5 102

(open red circles), w 5 10 (green diamonds) and w 5 1 (blue triangles).

Figure 4 | The morphology of the clusters of slipping particles depends
on the elastic heterogeneitiy. (a) Scatter plot of the clusters dimensions,

along the directions parallel and transverse to the shear, for system having

different values of w. By reducing the stiffness of the system we observe

regions with different cluster shapes, indicated by the letters C, LC, DP,

DT. (b) Schematic representations of the geometry of the clusters

corresponding to the regions reported in the scatter plot. Here we show a

system of dimension Lx 5 20 and Ly 5 5, the same behaviour is also

observed for larger systems.
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ection parallel (perpendicular) to the drive at high (low) values of kb.
Obviously, the transition from ordered to disordered configurations
also depends on the degree of heterogeneity of the local shear stress:
for larger values ofDkd the transition is expected at larger values of kb.
Moreover, if one changes the shape of the system with Lx # Ly, the
DT regime is never observed. The last statement has been verified for
systems with different values of the ratio Lx/Ly.

In conclusion, we have found that frictional properties depend on
the geometry of the rupture fronts, which are determined by the
ordering of the contact interface. These features result from interface
deformation occurring during the shearing process, and thus depend
on the elasticity of the material. Future developments will investigate
the stability of this scenario by tuning interface ordering through
different physical mechanisms.

Methods
We consider a two dimensional BK model, where a layer of particles of mass m is
placed on a square lattice with lattice constant l, and nearest neighbor particles are
connected by harmonic elastic springs with constant kb (Fig. 1a). Each particle i is
connected to a plate moving with constant velocity along the x axis by a spring whose
stiffness ki

d is uniformly distributed in the range (kd 2 Dkd, kd 1 Dkd). Dkd is a
parameter allowing to control the heterogeneity of the local shear stress. A granular–
like approach24 is used to model the interaction of a particle with the bottom plate. At

time t the frictional force acting on a particle is given by~Fs~keD~r, where D~r~
ðt

t0

~vdt

is the shear displacement of the particle due to creep motion, and t0 the last time of
contact formation. Indeed, each contact breaks and reforms as soon as the
Amontons–Coulomb threshold criterion ~Fs

�� ��ƒmssnA is violated. Here sn is the
confining normal force acting on each grain, A 5 l2 the lattice cell area, and ms the local
coefficient of static friction. The grain motion is also damped by a viscous term
{mc~v. Mass, spring constants and lengths are expressed in units of m, kd and l,
respectively. We fix FN 5 5 kdl, ms 5 0.2, ke 5 10 kd, Dkd 5 kd, sn 5 5 kd/l, Vd 5 2 ?

1022 (m/kd)1/2 and c 5 0.2 (kd/m)1/2. These values insure that simulations are in the
quasi-static regime. Periodic boundary conditions are considered in both directions.
The number of particles N equals the system size Lx 3 Ly, with Ly 5 Lx/4 and assumes
the following values, N 5 100, 400, 900. We have investigated the frictional properties
of the system as a function of the parameter w 5 kb/Dkd that we vary by changing kb.
This parameter measures the relevance of the stiffness of the system with respect to
the heterogeneity of the shearing forces.
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