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Abstract: The description of protein disordered states is important for understanding protein folding
mechanisms and their functions. In this short review, we briefly describe a simulation approach to
modeling protein interactions, which involve disordered peptide partners or intrinsically disordered
protein regions, and unfolded states of globular proteins. It is based on the CABS coarse-grained
protein model that uses a Monte Carlo (MC) sampling scheme and a knowledge-based statistical
force field. We review several case studies showing that description of protein disordered states
resulting from CABS simulations is consistent with experimental data. The case studies comprise
investigations of protein–peptide binding and protein folding processes. The CABS model has been
recently made available as the simulation engine of multiscale modeling tools enabling studies of
protein–peptide docking and protein flexibility. Those tools offer customization of the modeling
process, driving the conformational search using distance restraints, reconstruction of selected models
to all-atom resolution, and simulation of large protein systems in a reasonable computational time.
Therefore, CABS can be combined in integrative modeling pipelines incorporating experimental data
and other modeling tools of various resolution.

Keywords: coarse-grained; CABS model; MC simulations; statistical force fields; disordered protein;
protein structure

1. Introduction

There is a growing body of evidence that some proteins act in multiple structural states [1]. It has
been demonstrated that the ability of these proteins to switch between distinct structural states may
be crucial for their function and regulation [1]. Additionally, a number of key biological functions
have been proven to be performed by disordered or partially unstructured proteins [2]. Some proteins
fold and obtain their structure only upon binding to their partners, while others form so called “fuzzy
complexes” in which both proteins retain a certain degree of disorder [3]. These discoveries modified
the core biochemistry principle of “structure determines function”. As for now, a consensus has
been reached that protein function may be a result of an interplay between protein structure and its
dynamics [4,5].

Internal protein motions may be studied both experimentally and with computational
methods [6,7]. For example, nuclear magnetic resonance (NMR) spectroscopy is one of the richest
sources of information on protein structure and dynamics, especially when accompanied with assisting
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methods that enhance resolution or provide an additional insight into the dynamics of structures [8].
This approach, however, results in an averaged image of the structural ensemble.

A variety of computational techniques have been developed to assist these challenging
experimental studies [7,9]. In the last decades, molecular modeling was dominated by structure-based
models or Go-like models (approaches that are biased toward known folded conformations [10,11]).
These indeed lead to significant speedup of simulations but may result for example in an unrealistic
picture of protein folding, which in reality may also depend on non-native interactions [12–14].

Recent works show that methods combining experimental data and computational approaches
may produce the most promising pictures of protein equilibrium dynamics [15,16]. However, the
development of these methods poses a number of challenges—both in terms of the validity of the
approach and its computationally efficient implementation [17].

Molecular dynamics (MD) has been so far the most widespread computational method for the
investigation of protein motions [18]. However, standard all-atom MD implementations are limited to
sub-microsecond timescales and may suffer from limited sampling despite recent significant advances
in code optimization and hardware [19]. To overcome this problem various MD extensions have been
proposed. These extensions include for example replica-exchange MD, meta-dynamics, Markov state
models and simulated annealing algorithms [6,20–23].

A number of non-MD sampling methods have also been developed to provide a comprehensive
image of protein dynamics using limited computational resources. Of these, Monte Carlo (MC) is
perhaps the most commonly used and generally applicable sampling method [11]. Monte Carlo
randomly generates conformations and uses an energy-based acceptance criterion that promotes
pseudo-trajectory convergence to an energetic minimum. On the expense of losing a direct image of
the timescales or kinetics of the ensemble, MC manages to overcome some of the major limitations of
MD [24].

Aside from the sampling method, a further extension of effective timescales is possible by using
a simplified representation of protein structures to reduce the number of a system’s degrees of
freedom. The accuracy of the available coarse-grained (CG) models may vary from detailed, almost
atomistic representations (Primo [25], Rosetta [26]), medium resolution models (in which a single
amino acid is represented by three to five beads: UNRES [27], CABS [28], AWSEM [29], MARTINI [30],
PaLaCe [31]), and Scorpion [32]) to significantly simplified models like SURPASS [33,34]. Applications
and implementations of these and other CG models are described in detail in a recent review [11].

In addition to the representation and sampling method, the choice of the force field to perform
the simulation determines the success of modeling. Traditionally, force fields are divided into
two main groups: physics-based, which involve (usually pairwise) interaction terms [35], and
those employing a statistical approach; however, most of the successful approaches are usually
a mixture of the two. A statistical force field is constructed using the probability of a chosen
observable (or a set of observables) in a given ensemble of structures [36]. Early attempts focused on
straightforward pairwise contacts [37]; however, with further development, more complex observables
were analyzed. This resulted in a generation of knowledge-based force fields, or scores, for various
representations, coarse-grained and all-atom: CABS [28], Rosetta [38], DOPE [39], GOAP [40],
QUARK [41], Bcl::Score [42] or BACH [36]. Newly developed approaches go a step further and improve
the results by combining these methods with experimental data [43,44]. An example of such approach
is RosettaEPR [45], which includes distance data from site-directed spin labeling electron paramagnetic
resonance experiments. It is generally agreed that statistical force fields frequently allow more accurate
scoring than physics-based potentials [11]. The combination of knowledge-based force fields or scores
with effective sampling schemes seems to be a promising approach to a number of problems [11],
such as protein structure prediction [43,44,46,47], investigation of protein interactions [48] or studies
of protein dynamics [17,49–51].

This review briefly describes one of these approaches: an MC-based and knowledge-based
interaction scheme for modeling protein–peptide interactions and unfolded states of globular proteins
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using the CABS coarse-grained protein model. Firstly, the main features of the CABS method will be
described, with a focus on their applicability for modeling disordered or unfolded proteins or their
fragments. Subsequently, representative case studies will be discussed to provide detailed insights
into the modeling results obtained for systems characterized by a varying level of disorder.

2. CABS Dynamics and Interaction Model

Since its development, the CABS model (C-alpha, C-beta and Side chain model) has been applied
to a variety of modeling problems, such as protein folding mechanisms [49,50,52–57], protein structure
prediction [58–61], protein–peptide docking including large-scale conformational flexibility [62–68]
and simulations of near-native fluctuations of globular proteins [69–73]. When combined with careful
bioinformatics selection of the generated models, CABS proved to be one of the two most accurate
structure prediction tools evaluated in the CASP (Critical Assessment of protein Structure Prediction)
experiment [60]. The CABS model uses up to four atoms or pseudo-atoms per residue (see the
description below), but outputs protein systems in C-alpha representation only. Therefore, for practical
applications, the obtained models need to be reconstructed to all-atom representation. In various
multiscale modeling tools discussed below, CABS has been integrated with the MODELLER-based
reconstruction procedure [74]. Other reconstruction scenarios are also possible to ensure the best
possible quality of local protein structure. This can be realized by combination of different tools for
protein backbone reconstruction from the C-alpha trace and side chain reconstruction, like BBQ [75] or
SCWRL [76] for example, and optionally further refinement [77].

In this review, we discuss the applicability of the CABS CG model and its knowledge-based
statistical force field [28] to the modeling of disordered or unfolded protein states. In the CABS
model the polypeptide chain representation is reduced to up to four unified atoms per residue (see
Figure 1). These interaction centers represent lattice-confined C-alpha atoms, C-beta atoms, the united
side chain pseudo-atom, and additionally, pseudo-atoms representing geometrical centers of peptide
bonds needed to define the hydrogen pseudo-bond. An example of a polypeptide chain in CABS
representation is presented in Figure 1b. Even though the restriction of the C-alpha trace to the
underlying low spacing (0.61 Å [28]) cubic lattice may appear to be a drastic simplification, it is not.
Allowing small fluctuations of the C-alpha, C-alpha distance enables hundreds of possible orientations
of this pseudo bond, and thereby the resulting model chains do not show any noticeable directional
biases. Furthermore, the averaged resolution of the C-alpha traces is acceptable and below 0.5 Å [28].
Additionally, the lattice representation enables pre-calculation of local moves and corresponding
changes of interactions, leading to a few times faster simulations in comparison with otherwise
equivalent continuous space CG models [11].

The CABS model uses a knowledge-based statistical force field that consists of generic,
sequence-independent interaction terms that favor protein-like conformations, and sequence-
dependent interaction terms that determine some structural details [11,28,78]. The generic force
field terms are derived from general features of polypeptide chains that result in protein-like behavior
of the model chains. They account for properties of protein chains such as local stiffness, their
biases toward secondary structures and packing compactness. The residue–residue interaction terms
are derived from contact geometry statistics derived from folded globular proteins (illustrated in
Figure 2a). Nevertheless, the local packing regularities in unfolded states appear to be very similar to
that observed in native structures [11,28,33]. Thereby, CABS simulations provided correct pictures of
protein folding [49,52–56,60] and flexibility of globular proteins [70,71].

The resulting force field takes a form of a precomputed matrix of contact pseudo-energies,
presented schematically in Figure 2b. Additionally, to allow successful modeling of membrane proteins
the CABS force field can be extended by introducing effective dielectric constant terms [79].
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Figure 1. A three-residue protein fragment in: all-atom (a) and CABS model (b) representation.
The spheres represent atoms: blue, C-alpha and C-beta atoms (the same in both representations);
yellow, side chain atoms (one pseudo-atom in CABS); red, atoms involved in the peptide bond (one
pseudo-atom in CABS placed in the geometric center of the peptide bond. A single slice (layer) of the
lattice that confines the C-alpha trace in the CABS model is also presented.
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Figure 2. Key elements of a residue–residue interaction term in the CABS model force field. Panel
(a) shows three examples of contact geometries in CABS representation: parallel (P), antiparallel
(A), and intermediate (M), used to derive contact statistics from experimentally-derived structures of
folded globular proteins. Panel (b) shows an example matrix of contact energies which depend on the
geometry of the contacting pair, main chain geometry (compact (C) or extended (E)) for both amino
acids (left part of the panel), and also on the amino acid identities (right part of the panel, the amino
acids are represented using the one-letter code). The PCC matrix is presented which shows interaction
energies between residues being in parallel orientation (P), where one residue belongs to a compact
type of structure (C) and the second one as well (C).

The main difference between CABS and other statistical force fields used in CG models of similar
resolution [11] is the context and orientation dependence of side chain interaction pseudo-energy that
encodes characteristic patterns observed in globular proteins. For instance, the oppositely charged
side chains in single globules mostly contact in an almost parallel fashion (usually on the surface of
a globule), while the antiparallel contacts (usually in the buried regions of the protein globule) are
very rare. Therefore, in the context dependent force field these antiparallel contacts of oppositely
charged residues are treated as repulsive. This way, the CABS force field implicitly incorporates
information on the complicated interaction patterns with the solvent (via contact statistics) and its
entropic contribution to system thermodynamics [11,28].

Using the mean-force force field derived from folded proteins to simulations of less-structured
systems raises justified questions about the validity of this approach in studies of the disordered
protein regions. The folding events observed in simulations performed using the CABS force field
are consistent with both the experimental data and all-atom MD simulations [49,52,80,81]. Thus, it is
hypothesized that unstructured (unfolded, partially unfolded or intrinsically disordered) proteins to
a significant extent share similar stabilizing interaction patterns with the patterns observed for their
well-structured counterparts [82,83].

The CABS method uses the MC asymmetric Metropolis sampling scheme that governs a set
of local motions as well as multi-residue, small distance moves of the C-alpha atoms (see Figure 3).
The method uses a replica exchange algorithm with simulated annealing to enhance the sampling of
conformational states. The simulation is organized as a set of nested loops, in which the s number of
MC steps are organized into the y number of MC cycles, and these in the a number of annealing cycles.
Each of the MC steps consists of a per-set number of attempts to perform each of the five standard
precomputed moves. The available motions and the details of implementation of the sampling scheme
are presented in Figure 3.
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Figure 3. Sampling scheme of the CABS model. Blue panels show implementation details of Monte
Carlo (MC) iterations (loops). The orange panel shows all motions that may be performed in a single
MC step. The simulation is organized as a set of nested loops, in which the s number of MC steps is
organized into the y number of cycles, and these in a annealing cycles (number of a, y or s cycles can be
controlled by the user in CABS-flex and CABS-dock standalone packages [72]). In the orange panel,
numbers 1 to 5 denote the available moves, presented together with the number of attempts to perform
a move in each of the MC steps. The resulting trajectory is comprised of simulation snapshots saved at
the end of each MC cycle.

The combination of the key features of CABS—its representation, force field and the scale
of the movements used in the MC scheme—makes it suitable for the investigation of protein
pseudo-dynamics. As mentioned above, the fine-grained lattice improves sampling efficiency,
achieving effective timescales of milliseconds. As compared with MD, this is a considerably broader
time range (in the study of flexibility of folded proteins [71] the CABS dynamics was estimated
to be around 6 × 103 cheaper in terms of computational cost than the classical MD). The chosen
micro-motions allow (via accumulation over simulation steps) cooperative, large-scale motions. The
ensemble of structures produced by the CABS method resembles a dynamic ensemble averaged over
the effective timescale. Due to the nature of the method, the picture of local dynamics is distorted
(on the level of local moves); however, it may be argued (based on the works mentioned above that
compared our simulations with experimental data) that the long-time pseudo-dynamics recovers the
realistic picture of protein motions averaged over time.

The timescale of the CABS simulations is not a priori defined and depends on the CABS simulation
temperature, due to hidden entropic contributions in the force field, accounting for implicit solvent
effects and multi-body interactions encoded in the statistical force field. Nevertheless, the effective
timescale of MC dynamics can be approximately identified by comparison with MD trajectories from
sufficiently long simulations. This comparison was thoroughly discussed previously, and the results
were compared to MD results [69] and NMR ensembles [71].

The CABS model is presently used as a simulation engine of a few multiscale modeling tools
that merge CABS with models reconstruction to all-atom resolution. Those include the CABS-dock
method for flexible protein-peptide docking (available as a web server [62] at http://biocomp.chem.
uw.edu.pl/CABSdock and a standalone application [84] at https://bitbucket.org/lcbio/cabsdock/)

http://biocomp.chem.uw.edu.pl/CABSdock
http://biocomp.chem.uw.edu.pl/CABSdock
https://bitbucket.org/lcbio/cabsdock/
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(accessed on 30 January 2019). In comparison to other protein–peptide docking tools, reviewed
recently [85], CABS-dock offers a unique opportunity for modeling large-scale rearrangements of
protein receptor structure during on-the-fly docking of fully flexible peptides. Another CABS-based
tool, CABS-flex, enables fast simulations of protein flexibility (available as a web server [73] at http:
//biocomp.chem.uw.edu.pl/CABSflex and a standalone application [72] at https://bitbucket.org/
lcbio/cabsflex/, accessed on 30 January 2019). This approach has been also incorporated as the module
in the Aggrescan3D method for prediction of protein aggregation properties (available as a web
server [86] at http://biocomp.chem.uw.edu.pl/A3D and a standalone application at https://bitbucket.
org/lcbio/aggrescan3D, accessed on 30 January 2019). By using CABS-flex predictions, Aggrescan3D
enables predicting the impact of protein conformational fluctuations on aggregation properties. Finally,
the CABS model is used in the CABS-fold method for protein structure prediction: in the de novo
fashion (from an amino acid sequence only), guided by user-provided templates or user-provided
distance restraints (available as a web server [58] at http://biocomp.chem.uw.edu.pl/CABSfold/,
accessed on 30 January 2019). The access to CABS-based tools, together with the tools description, is
also available from websites of the laboratories: http://biocomp.chem.uw.edu.pl/ and http://lcbio.pl/
(accessed on 30 January 2019).

3. CABS Applications to Simulation of Disordered or Unfolded Proteins

In this section, we review CABS applications to simulations of protein–peptide binding
(Section 3.1) and folding of globular proteins (Section 3.2). We briefly discuss modeling results
for the binding of three protein–peptide systems and protein folding of one protein system. Figure 4
shows native conformations of these systems determined by X-ray crystallography or NMR. In the
figure, they are arranged according to the size of a fully flexible fragment of the modeled system,
effective timescales required for a meaningful simulation of their motions, and thus the modeling
difficulty: (1) modeling of FxxLF motif peptide docking to an androgen receptor (AR), (2) investigation
of binding and folding of an unstructured pKID protein to KIX protein, (3) modeling of p53-derived
peptide docking to the MDM2 protein receptor with partially unstructured regions, and (4) simulation
of the de novo folding of barnase. The simulations were performed using the CABS-dock method
for protein–peptide docking [62] and CABS-flex methodology [72,73] that enable running de novo
folding simulations.
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3.1. Protein–Peptide Binding

The CABS-dock method has been extensively tested using the PeptiDB benchmark set of
protein–peptide complexes [62,65,87]. One of the benchmark cases is the androgen receptor ligand
binding domain (AR) in complex with a peptide with the FxxLF motif [88] (PDB code: 1T7R). To
further analyze the interaction details of this complex, we performed blind global docking (using no
knowledge about the binding site and peptide conformation) using CABS-dock [62]. As the input we
used information on peptide sequence (incorporating the FxxLF motif: SSRFESLFAGEKESR), peptide
secondary structure information assigned by the DSSP method [89] and the structure of the AR protein
receptor. In this docking study, the peptide structure was simulated as fully flexible, while fluctuations
of the protein receptor were limited to small backbone movements around the input structure (around
1 Å). The docking simulation started from random peptide conformations placed in random positions
around the receptor structure. During simulation, the peptide remained unstructured until it was
bound to the receptor binding site (Figure 5a). The docking simulations provided a set of high-quality
models—the best model was characterized by a peptide-RMSD (root-mean-square deviation) value
of 1.97 Å—and contact maps in strong agreement with the experimental data. As expected from the
experimentally obtained structures and sequence analysis [88] the FxxLF interaction motif residues
were most frequently involved in stabilizing hydrophobic interactions with the receptor. These
high-frequency contacts are clearly visible in Figure 5a.

The study of the pKID/KIX system [63] involved performing a folding simulation of an
intrinsically disordered protein (pKID) and its binding to a well-structured KIX receptor (Figure 5b).
According to the experimental studies, the pKID structure is disordered in its unbound form with a
slight propensity toward a helix (for detailed description on how one-dimensional secondary structure
information is used in the CABS model see [78]). In the complex with the KIX protein, pKID adopts
a characteristic conformation of two perpendicular helices that wrap around the receptor. However,
most simulation results for the coupled folding and binding of this system published prior to the
CABS-based study used models which biased pKID toward its native conformation (see the discussion
in [63]). Using our method for studying this system enabled fully flexible treatment of the pKID protein.
The obtained results [63] suggested the binding mechanism that involve two encounter complexes and
were in well agreement with the available NMR experimental data. The predicted models presented
high fractions of native contacts and allowed identification of residues essential for the binding and
stabilization of the complex.

In the simulation of MDM2/p53 binding [64], the most challenging task was to adequately model
the flexibility of the relatively long, unstructured regions of the protein receptor in addition to the
fully flexible peptide [64,90] (Figure 5c). To provide a detailed insight into MDM2/p53 binding, we
performed CABS-dock simulations and captured system behavior in agreement with the experimental
data [64]. During the simulation, the flexible N- and C- terminal MDM2 fragments remained
significantly disordered. The best resulting model was characterized by a peptide-RMSD value of 2.76 Å
and 54% of the native contacts while the top ranked model by 3.74 Å and 60%, respectively. During
simulations, we observed ensembles of models in which the peptide adopted different conformations
loosely bound to the binding site and models in which the N-terminal highly flexible MDM2 fragment
was interacting with the binding site. These findings are in agreement with the experimental data
suggesting that p53-MDM2 binding is affected by significant rearrangements of the N-terminal MDM2
fragment (see discussion in [64]).
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Figure 5. Case studies of modeling disordered or unfolded structures of proteins with CABS-based
tools. In the figures, red or cyan marks structure fragments simulated as fully flexible (cyan was used
to mark regions of interest discussed in the text), while beige marks regions whose motions were
confined to small backbone movements (around 1 Å from the input structure). (a) Modeling of the
dynamics of a flexible peptide representing the FxxLF motif in the proximity of the binding site of AR
protein together with an averaged contact map showing frequency of residue–residue contacts during
the docking simulation. (b) Modeling of coupled folding and binding of the disordered pKID to the
KIX domain [63]; the map presents the frequency of contacts of near-native conformations obtained
in the simulation. (c) Modeling of p53 peptide binding to the MDM2 receptor [64], which includes
fully-flexible regions of the protein receptor (shown in cyan) interacting with a fully-flexible peptide
(shown in red). (d) Modeling of barnase folding [52] in the de novo fashion (using no knowledge
about the structure); the map is a residue–residue contact map showing relative contact frequencies in
denaturing conditions; the protein fragments that form the folding nucleation site are colored in cyan
in the presented folded structure of barnase.
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3.2. Folding and Flexibility of Globular Proteins

The CABS model has been applied to de novo simulations of protein folding (using no knowledge
about the protein structure) for several model systems that have been extensively studied by experiment
and simulation tools. Those studies include barnase [50,52], chymotrypsin inhibitor [50,52], B1 domain
of protein G [49,50], B domain of protein A [53], and others [50,54]. The CABS modeling protocol
was also extended to enable studies of the chaperonin effect on the folding mechanism [55]. In these
works, various parameters have been studied, including residue–residue contact frequency, radius
of gyration, residual secondary structure and others. The obtained pictures, which covered protein
dynamics from highly denatured states to ensembles close to the folded states, agreed well with
available experimental data.

For example, simulation of barnase folding resulted in the adequate reproduction of the folding
pathway in strong agreement with NMR data for denatured states and phi-value analysis [52]. The
performed simulations show that barnase folding starts with developing a folding nucleation site that
consists of protein fragments corresponding to two strands of a beta sheet and one of the helices in
the folded structure (presented in Figure 5d). In addition, the characteristic patterns of hydrophobic
interactions that are crucial for the initiation and sustenance of folding are in agreement with the
experimental data (see discussion in Reference [52], the contact map resulting from these simulations
is presented in Figure 5d).

4. Conclusions

The presented case studies review the applications of the CABS model in simulations of disordered
or unfolded protein states. As discussed, the method succeeded in capturing the experimentally
determined features of the investigated systems, such as binding site localization, key contacts, peptide
hot-spot areas, distinctive conformational states of the system, transient encounter complexes and
intermediate states in protein folding [49,52,63,64]. Additionally, CABS enables an investigation of
fluctuations of globular proteins around the native (input) structure [69–73].

There is a number of tools commonly used for sampling of disordered protein states, which
predictions agree with the experimental studies [91–95]. The CABS method is complementary to
these and provides a unique approach allowing for effective modeling both ordered and disordered
elements of the system. As observed in many previous studies, these features of CABS method allow
for providing accurate pictures of folding pathways [49,52–56,60] and near-native dynamics [70,71].
Obviously, due to its coarse-graining, the geometric details are missed, and their reconstructions is
approximate [11,28]. The main distinctive feature of CABS method as compared to the available tools
is that the ensemble generation is (pseudo-)energy driven and thus may provide some information on
the dynamics on the system. This is not the case in the above-mentioned examples of methods based
on random-walk [91,92,95].

On the other hand, CABS force field side-chain interactions escape a clear interpretation, which
may be a disadvantage compared to physics-based approaches that allow for straightforward and
detailed description of each of the terms [93,94].

It is, however, noteworthy that statistical force fields suffer from inherent limitations, depending
on the chosen method of derivation. The most commonly discussed challenges include the
transferability, solvent interactions and integration of experimental data. Here, we briefly summarize
these topics, a detailed discussion of the limitations of this approach, and possible workarounds may
be found in review works [11,17]. The transferability of statistical force fields may be limited as they
are applicable always to a certain subset of proteins. Therefore, the performance of knowledge-based
approaches may be poor for rare or atypical structures, for which appropriate statistics of contact
patterns could not be collected. It should also be noted that interactions with solvent are averaged and
treated implicitly, which may lead to significant discrepancies if the method is applied to non-standard
solvent conditions (such as extreme pH values). The CABS force field is derived assuming averaged
effect solvent conditions for folded globular proteins. Therefore, a subtle effect of small molecules, such
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as pH, cannot be simulated in a strict fashion, although averaged effects (see modeling the chaperonin
effect [55]) can be approximately taken into considerations.

One of the most challenging tasks in modeling protein systems is the effective incorporation of
sparse experimental data to drive the modeling procedure. In the CABS model, the experimental
data may be readily introduced into the simulation as geometry distance restraints and weighted
according to their certainty. A thorough discussion of this possibility is presented in the documentation
of CABS-based tools for the fast modeling of protein flexibility and protein–peptide docking [66,72,73].
On a similar basis, CABS simulations can be guided by computational predictions from other sources
or integrated with other modeling tools of various resolution. Therefore, the CABS model can be
incorporated into integrative modeling pipelines that would benefit from its effective sampling scheme.
The recently published standalone application and web server tools are available for integration with
external pipelines (access links are presented in the last paragraph of Section 2).
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