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ABSTRACT: Blood is one of the most used biofluids in
metabolomics studies, and the serum and plasma fractions are
routinely used as a proxy for blood itself. Here we investigated the
association networks of an array of 29 metabolites identified and
quantified via NMR in the plasma and serum samples of two cohorts
of ∼1000 healthy blood donors each. A second study of 377
individuals was used to extract plasma and serum samples from the
same individual on which a set of 122 metabolites were detected and
quantified using FIA−MS/MS. Four different inference algorithms
(ARANCE, CLR, CORR, and PCLRC) were used to obtain consensus
networks. The plasma and serum networks obtained from different
studies showed different topological properties with the serum
network being more connected than the plasma network. On a global
level, metabolite association networks from plasma and serum fractions
obtained from the same blood sample of healthy people show similar topologies, and at a local level, some differences arise like in
the case of amino acids.

KEYWORDS: blood, serum, plasma, low molecular weight metabolites, correlations, mutual information, network inference,
differential network analysis, network topology

■ INTRODUCTION

A large variety of omics data can be collected from a sample,

providing information about the biological system under

investigation at different levels and from different angles; the

analysis and integration of these aspects is one of the hallmarks of

systems biology.

Metabolomics profiling and analysis of blood samples has been
successfully applied to investigate a variety of diseases, such as
cancer,1−3 kidney diseases,4 cardiovascular diseases,5,6 diabetes,
and celiac disease.7−9 Blood bathes every tissue and every organ
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in the body and collects and transports the molecules that are
being assimilated, secreted, excreted, or discarded by different
tissues.10

In most metabolomics studies, either plasma or serum
matrices are used as a proxy for blood. Blood is composed of
cellular components (red and white cells and platelets)
suspended in a straw-colored liquid carrier, the plasma, that
accounts for ∼50−55% of blood volume.10 Plasma is separated
from the cellular component via centrifugation after the addition
of anticoagulants. Serum is obtained by letting the blood
coagulate and removing the supernatant. Both plasma and serum
are aqueous solutions (∼95% water) and contain proteins and
peptides, carbohydrates, lipids, amino acids, electrolytes, organic
wastes, and a variety of other small organic molecules dissolved in
them. Many target clinical parameters, such as metal ions,
proteins, and enzymes, have been found to show different
concentrations11−13 in the two different media, but in terms of
small molecules the compositions of plasma and serum are
considered to be very similar.10 Recent studies have reported
higher metabolite concentrations in serum than in plasma10,14,15

but suggested that either matrix should generate similar results in
clinical and biological studies.15 However, to the best of our
knowledge, there are no available studies in which biological or
clinical results obtained using plasma have been confirmed using
serum or vice versa.
We are interested in the associations between the concen-

tration levels of metabolites in blood. Specifically, we wish to
determine how similar the association networks inferred using
metabolite concentration levels measured in plasma and serum
are. As already anticipated, a great deal of biological information
is encoded in the relationships among metabolite concentration
levels rather than in their levels alone.16 For these reasons, it is
important to understand which biological information is
contained in both plasma and serum and to what extent plasma
and serum contain unique or shared information.
In metabolomics, networks are usually reconstructed using

Pearson’s, Spearman’s, or partial correlations (referred to as
CORR).17−20 Here we complement a correlation-based
approach with methods adapted from gene network inference
to investigate metabolite association networks in blood samples.
Four alternative methods for network inference were applied to
avoid bias in network estimations, standard Pearson’s
correlation, two well-characterized algorithms to infer gene
regulatory networks, ARACNE (Algorithm for the Reconstruc-
tion of Accurate Cellular Networks),21 CLR (Context Likelihood
of Relatedness),22 and PCLRC (Probabilistic Context Like-
lihood of Relatedness on Correlations), which we recently
developed to infer metabolite associations.6

The aim of the present study is to investigate whether possible
(dis)similarity exists between serum and plasma metabolite
association networks obtained from the same blood samples or
from different samples obtained from equivalent populations of
healthy subjects. Two groups of ∼1000 healthy blood donors
each were sampled for either their plasma or serum and analyzed
using 1H nuclear magnetic resonance spectroscopy (NMR). An
additional study, formed by 377 individuals, was considered for
plasma and serum extracted from the same blood samples and
analyzed using flow injection analysis-tandemmass spectrometry
(FIA−MS/MS). For the purpose of investigating whether
(dis)similarity of plasma and serum profiles obtained from the
same sample was retained also in the presence of pathophysio-
logical conditions, a small study on subjects suffering from
various hematological malignancies was also considered.

■ MATERIALS AND METHODS

Studies Description

Studies Ia and Ib. The participating subjects were recruited
in collaboration with the Tuscan section of the Italian
Association of Blood Donors (AVIS) in the Transfusion Service
of Pistoia Hospital (Ospedale del Ceppo, AUSL 3 - Pistoia, Italy)
(Study Ia) and in the Service of Immunohematology and Blood
Transfusion of the Azienda Ospedaliero-Universitaria Careggi
(Florence, Italy) (Study Ib). In brief, a total of 864 adult healthy
volunteers (678 males, 186 females, mean age 41 ± 11 years)
were enrolled in Pistoia.6,23 994 adult healthy volunteers (723
males, 271 females, mean age 41 ± 12 years) were enrolled in
Florence.5 Plasma samples (study Ia) were obtained after
overnight fasting, and EDTA was used as an anticoagulant;
samples were stored at −80 °C immediately after collection. For
more details, see Bernini et al.23 Samples were collected,
preprocessed, and stored according to the standard operating
procedures previously described.24 All subjects in the study
provided informed consent.
Both studies Ia and Ib consisted of blood donors living in the

same geographical area (within a ∼50 km radius from Florence,
Tuscany in Italy) who must comply with the requirements for
blood donation according to the Italian legislation. Among
others: age 18−60 years, body weight >50 kg, systolic blood
pressure 110−148 mmHg, diastolic blood pressure 60−100
mmHg, absence of (manifested) infectious diseases, absence of
chronic diseases (such as diabetes, tumors, autoimmune
diseases), no current menstruation, no consumption of
medicines within 1 week before donation (bd), no common
diseases (such as flu, cold, bronchitis) within 2 weeks bd, no
surgery within 3 months bd, no endoscopic exams within 4
months bd, no pregnancy within 12 months bd, no abortion
within 4 months bd, no travels to tropical countries within 6
months bd, and no (heavy) sport activity within 24 h bd. All
samples were collected under a fasting condition. The two large
studies could then be considered to be rather homogeneous.
Plasma and serum samples were prepared for NMR analysis in
the same laboratory using the same standard protocols for blood
derivatives NMR analysis. EDTA was used on the plasma
samples, as the effect of EDTA on the quality of the samples for
NMR analysis has been found to be negligible.25 Samples were
analyzed on the same instrument operating with the same
operative setting. NMR spectra were postprocessed (phasing and
baseline correction) with automated routines. Under these
conditions, NMR experiments have been found to be extremely
reproducible in inter/intra laboratory comparative investiga-
tions.26−29 Metabolites were then quantified using the same
automated routine.

Study II. The subjects were recruited in the KORA
(Cooperative Health Research in the Region of Augsburg)
cohort, a population-based research platform with subsequent
follow-up studies in the fields of epidemiology, health economics
and health care research consisting of interviews in combination
with medical and laboratory examinations, as well as the
collection of biological samples.30

Plasma and serum samples from 377 individuals (180 females,
197 males, age range from 51 to 84 years) from the population-
based cohort KORA F331 were used. For each participant, fasting
blood was simultaneously drawn into serum and EDTA plasma
gel tubes between 8 and 10 a.m. Plasma tubes were shaken gently
and thoroughly for 15 min, followed by centrifugation at 2750g
for 15 min at 15 °C. In the meantime, serum tubes were gently
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inverted twice, followed by 45 min of resting at room
temperature to obtain complete coagulation before performing
the same centrifugation process as for plasma. All samples were
stored at −80 °C until the metabolomics analysis.15 All KORA
participants gave written informed consent. The KORA study
was approved by the ethics committee of the Bavarian Medical
Association, Germany.
Study III. We were also interested in investigating the

equivalence between plasma and serum profiles in the case of
pathophysiological alterations. For this we considered a third
study where serum and plasma were extracted from the same
blood of subjects affected by different various hematological
malignancies, and the samples were analyzed using NMR.
This data set comprises 30 patients (18 males, 12 females,

median age 45 years, range 18 to 68) suffering from various
hematological malignancies (9 acute myeloid leukemia, 7 acute
lymphoblastic leukemia, 9 lymphoma, 3 myelodysplastic
syndrome, 2 multiple myeloma) who underwent allogeneic (n
= 24) or autologous (n = 6) hematopoietic stem cell
transplantation at the Bone Marrow Transplantation Unit of
theUniversity Hospital of Patras, Greece. In addition, plasma and
serum samples were collected from 13 healthy individuals. In
total the study data set consisted of 43 serum and plasma samples
obtained from the same blood specimen. Samples were collected,

preprocessed, and stored according to the standard operating
procedures previously described.24 All subjects in the study
provided informed consent.

Metabolite Quantification and Analysis

Serum and plasma metabolite concentrations in the samples
from studies I and III were analyzed using 1H NMR using a
Bruker 600 MHz spectrometer (Bruker BioSpin) operating at
600.13 MHz using standard CPMG experiments and standard
protocols for sample preparation as previously described.23 All
resonances of interest were manually checked, and signals were
assigned on template 1D NMR profiles by using matching
routines of AMIX 7.3.2 (Bruker BioSpin) in combination with
the BBIOREFCODE (Version 2-0-0; Bruker BioSpin) reference
database and published literature when available. The relative
concentrations of each metabolite were calculated by integrating
the signals in the spectra. The 29 quantified metabolites are given
in Table 1. We refer the reader to the original publications for
more details of the experimental procedures.6,23

Plasma and serum metabolite concentrations in Study II were
quantified using a commercially available metabolomics kit
(AbsoluteIDQ p150 Kit, Biocrates Life Sciences AG, Innsbruck,
Austria), which is based on flow injection analysis-triple
quadrupole mass spectrometry (FIA-MS/MS). Out of the 10
μL sample, 163 metabolites were quantified simultaneously. Of

Table 1. List of Metabolites Measureda

no. p studies I and III - NMR1 study II FIA-MS/MS2

1 3-hydroxybutyrate arginine 33 SM OH C14:1b 65 PC aa C38:4b 97 PC ae C40:0b

2 acetate glutamine 34 SM OH C16:1b 66 PC aa C38:5b 98 PC ae C40:1b

3 acetoacetate glycine 35 SM OH C22:1b 67 PC aa C38:6b 99 PC ae C40:2b

4 alanine histidine 36 SM OH C22:2b 68 PC aa C40:1b 100 PC ae C40:3b

5 arginine methionine 37 SM OH C24:1b 69 PC aa C40:4b 101 PC ae C40:4b

6 citrate ornithine 38 SM C16:0b 70 PC aa C40:5b 102 PC ae C40:5b

7 creatine phenylalanine 39 SM C16:1 71 PC aa C40:6b 103 PC ae C40:6b

8 creatinine proline 40 SM C18:0b 72 PC aa C42:0b 104 PC ae C42:1b

9 dimethylglycine serine 41 SM C18:1b 73 PC aa C42:1b 105 PC ae C42:2b

10 formate threonine 42 SM C24:0b 74 PC aa C42:2b 106 PC ae C42:3b

11 glucose tryptophan 43 SM C24:1b 75 PC aa C42:5b 107 PC ae C42:4b

12 glutamine tyrosine 44 PC aa C24:0 76 PC aa C42:6b 108 PC ae C42:5
13 HDL valineb 45 PC aa C28:1 77 PC ae C30:0b 109 PC ae C44:3b

14 histidine xLeucine 46 PC aa C30:0b 78 PC ae C30:2 110 PC ae C44:4b

15 isoleucine C0 47 PC aa C32:0b 79 PC ae C32:1b 111 PC ae C44:5b

16 LDL C10b 48 PC aa C32:1b 80 PC ae C32:2 112 PC ae C44:6b

17 leucine C10:1b 49 PC aa C32:2b 81 PC ae C34:0b 113 lysoPC a C14:0
18 lysine C12b 50 PC aa C32:3 82 PC ae C34:1b 114 lysoPC a C16:0b

19 methionine C12:1b 51 PC aa C34:1b 83 PC ae C34:2b 115 lysoPC a C16:1
20 N-acetylglucosamine C14:1b 52 PC aa C34:2b 84 PC ae C34:3 116 lysoPC a C17:0
21 oxoglutarate C14:2 53 PC aa C34:3b 85 PC ae C36:1b 117 lysoPC a C18:0b

22 phenylalanine C16b 54 PC aa C34:4 86 PC ae C36:2b 118 lysoPC a C18:1b

23 proline C18b 55 PC aa C36:0b 87 PC ae C36:3b 119 lysoPC a C18:2
24 pyruvate C18:1b 56 PC aa C36:1b 88 PC ae C36:4b 120 lysoPC a C20:3b

25 serine C18:2 57 PC aa C36:2b 89 PC ae C36:5 121 lysoPC a C20:4
26 threonine C2 58 PC aa C36:3b 90 PC ae C38:0b 122 lysoPC a C28:0b

27 tyrosine C3b 59 PC aa C36:4b 91 PC ae C38:1b

28 valine C4b 60 PC aa C36:5b 92 PC ae C38:2b

29 VLDL C5b 61 PC aa C36:6b 93 PC ae C38:3b

30 C8b 62 PC aa C38:0b 94 PC ae C38:4b

31 C8:1 63 PC aa C38 1b 95 PC ae C38:5b

32 H1 64 PC aa C38 3b 96 PC ae C38:6b

a(1) Study I and III: Metabolites (p = 29) measured (NMR) in serum and plasma obtained from different blood specimens. (2) Study II:
Metabolites (p = 122) measured (FIA-MS/MS) in serum and plasma obtained from the same blood specimens. The metabolites common to both
data sets are in italics. xLeucine refers to the sum of leucine and isoleucine. bConcentrations are isotope-corrected.33
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these, n = 122 (25 quantified and 97 semiquantified metabolites
passed both criteria) passing the data quality control (see
material and methods in ref 15 for further details) were retained
for further analysis.
The assay procedures and the full biochemical names have

been described in more detail in previous publications.15,32

Metabolite concentrations in the original samples were updated
due to new insights according to the isotope correction, as
previously described.33

Network Reconstruction

In the graphical representation of a biological network, the
molecular components (here metabolite concentrations) are
represented as nodes and the edges (or links) represent their
interactions, either direct or indirect. Here interactions
represented coordinated changes in metabolite concentration
levels. In brief, three different methods for network inference
were used to infer metabolite network using default parameters
as previously detailed,34 together with the standard correlation
approach. We present here a brief description of the methods
based on ref 34. We refer to the original publications for more
details. All methods were used with default parameters.

Method Based on Correlations

The association between any pair of metabolites was measured
through the absolute value of Pearson’s correlation (the method
is referred to as CORR in this study).
CLR Algorithm

The CLR (Context Likelihood of Relatedness) algorithm22 uses
mutual information as a measure of the similarity between the
profiles of the two chosen variables data. Indicating with X and Y
the concentration of twometabolites, the mutual informationMI
between X and Y is defined as

∑=MI X Y p x y
p x y

p x p y
( ; ) ( , ) log

( , )

( ) ( )i j

n

i j

i j

i j, (1)

where p(xi,yj) is the joint probability distribution function of X
and Y and p(xi) (respectively, p(yj)) indicates the probability that
X = xi (respectively, Y = yj). It should be noted that to compute
MI continuous data are discretized. The relationships between
pairs of metabolites expressed by MI are then compared against
the local context for each possible interaction so that possible
spurious (indirect) associations are removed.

ARACNE Algorithm

As CLR, ARACNE (Algorithm for the Reconstruction of
Accurate Cellular Networks)21 uses MI as a measure of the
similarity between two chosen variables. The properties ofMI are
used to prune the network of spurious interactions: The weakest
edge of each triplet is interpreted as an indirect interaction and is
removed if the difference between the two lowest weights is
above a threshold γ. We used the ARANCE implementation
presented in the R package “minet”35 with default parameters (γ
= 0).

PCLRC Algorithm

PCRLC (Probabilistic Context Likelihood of Relatedness on
Correlations) was based on a modification of the CLR algorithm
(using correlation instead of MI to measure similarity between
profiles) and on iteratively sampling the data set, resulting in a
weighted adjacency matrix containing an estimate of the
likeliness of the association between any two metabolites
expressed as probability in the range 0 to 1. We deemed

significant those associations for which the probability was >0.95.
An ‘R’ implementation of this algorithm is available at semantics.
systemsbiology.nl. More details are provided in ref 6.

Construction of Serum and Plasma Metabolite Networks

The serum and plasma metabolite−metabolite association
networks were constructed taking a so-called wisdom of crowds
approach as detailed in ref 36. The following methodological
description is based on ref 36, to which we refer for more details.
For each set of samples obtained from Studies Ia, Ib, and II four
adjacency matrices {aij}m (with m = 1 to 4) were obtained using
the above-described methods. The entries of such matrices are
real numbers in the range [−1, 1] for correlation matrices, in the
[0, +∞) range for mutual information matrices, or [0, 1] for
probabilistic networks, indicating the strength or the likelihood
of the metabolite−metabolite associations. It should be noted
that each of the considered algorithms uses different approaches
to estimate the weight of the associations. As a result, the weights
produced by different methods cannot be directly compared.
These matrices are binarized to 0 and 1, imposing a threshold,

τm, on the {aij}m values

τ
→

>
⎪

⎪⎧⎨
⎩a

a
{ }

1 if

0 otherwise
ij m

ij m

(2)

The values of τm depend on the method considered: 0.95 for
PCLRC and 0.6 on the absolute value of the correlation for the
CORR method. ARACNE and CLR follow different approaches
to remove spurious correlations, and the weight of all
associations deemed spurious is already set to zero. As a result,
no further threshold is needed for these methods, and a τm value
of zero was selected, as further detailed in ref 34. The choice of
0.6 for the correlation is based on the threshold, as discussed by
Camacho et al.37 The four networks were then superimposed

∑→
=

a a{ } { }ij
m

ij m
1

4

(3)

The final adjacency matrix, representing the metabolite
network, was defined by retaining only those links inferred by
two or more methods.

→
≥

⎪

⎪⎧⎨
⎩a

a Q
{ }

1 if

0 otherwise
ij

ij

(4)

We set Q = 2, but other options were also explored as detailed
in the Results and Discussion. In total, four networks were
defined, two for studies Ia and Ib (plasma and serum obtained
from different subjects, respectively) and two for study II (serum
and plasma obtained from the same subjects). All networks were
constructed using a large sample size (>900 samples for studies Ia
and Ib and >350 for study II), ensuring the reliability of the
inferred networks, as previously described.34

The node degree δi for the ith metabolite is the number of links
connecting those particular metabolites and was obtained as

∑δ = a{ }i
j

ij
(5)

Indices for Assessing Network Differences

To compare analytically different networks we used the
Frobenius norm of a matrix X defined as38
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∑ ∑|| || = xX F
i j

ij
2

(6)

It holds that ∥X∥ = 0 if and only ifX = 0. It follows that ∥X−Y∥ =
0 if and only if the twomatrices are equal. In this case,X and Y are
two binary adjacency matrices representing metabolite−
metabolite association networks. The Frobenius norm was
used solely to conveniently quantify and summarize the
difference between two adjacency matrices. Network differences
were derived on the basis of different node (metabolite)-degree
observed in serum and plasma networks.

Pathway Enrichment Analysis

The MetaboAnalyst server 3.0 (www.metaboanalyst.ca)39 was
used to perform pathway enrichment analysis. For the over-
representation analysis, the hypergeometric test was chosen and
the pathway topology analysis was based on the relative-
betweenness centrality.

■ RESULTS AND DISCUSSION

Plasma is obtained from a blood sample, after the addition of an
anticoagulant (usually citrate, heparin, or, in the present case,
EDTA), by centrifuging the sample and removing or decanting
the most buoyant (noncellular) portion. Serum is obtained by

Figure 1. (A) Plasmametabolites association networks obtained using the four different methods. (B) Serummetabolites association networks obtained
using the four different methods. (C) Consensus association network for serum and plasma. Data from studies Ia (plasma) and Ib (serum) (NMR, 29
metabolites from different blood specimens). (CLR denotes Context Likelihood of Relatedness, ARACNE is Algorithm for the Reconstruction of
Accurate Cellular Networks, PCLRC is Probabilistic Context Likelihood of Relatedness on Correlations, and CORR is Pearson's correlation.)
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letting the blood clot and then collecting the supernatant. Recent
studies have addressed the problem of the stability, in plasma and
serum, of low-molecular-weight metabolites for metabolomics
studies with respect to sample handling and storing.
Serum and plasma extraction procedures have been

thoroughly investigated in the past, and variations in several
analyte concentrations were observed depending on extraction
and storage protocols.11−14

During the coagulation process, blood cells are metabolically
active, and this might lead to some changes in metabolite
concentrations. Thus it can be speculated that metabolite
association networks inferred in serummay also be influenced by
the undergoing coagulation process. For these reasons it is of
interest to construct and compare metabolite−metabolite
association networks considering serum and plasma fractions
extracted from different as well as from the same blood specimen.
Comparison of Reconstructed Networks from Plasma and
Serum from Different Blood Specimens

Using the samples collected within studies Ia and Ib (864 and
994 samples, respectively) we built metabolite association
networks using the four described methods. The networks are
shown in Figure 1 (panels A and B for plasma and serum,

respectively). It can be observed that for both plasma and serum
the networks obtained using different methods show different
topology. Figure 2A shows the relationship between the node
degree (i.e., the number of connecting metabolites) for
metabolites in serum and plasma as inferred from different
methods.

Figure 2. Scatter plot of metabolite degree (connectivity) observed in
the plasma and serum networks reconstructed with different methods.
(A) Serum and plasma networks reconstructed from different blood
samples (studies Ia and Ib, NMR data, 29 metabolites). (B) Serum and
plasma networks reconstructed from the same blood samples (Study II,
MS data, 122 metabolites). (CLR denotes Context Likelihood of
Relatedness, ARACNE is Algorithm for the Reconstruction of Accurate
Cellular Networks, PCLRC is Probabilistic Context Likelihood of
Relatedness on Correlations, and CORR is Pearson's correlation.)

Figure 3. Metabolite degree (connectivity) observed in the consensus
plasma and serum networks reconstructed by combining the results of
different network inference methods. (A−D) Networks obtained from
different blood specimens (Studies Ia and Ib, NMR data, 29
metabolites) using the consensus of 1, 2, 3, and 4 methods, respectively.
The best agreement between metabolites in serum and plasma is
obtained when the consensus of three methods is taken (r = 0.6, panel
C). (E−H) Networks obtained from different blood specimens (Study
II, FIA-MS/MS data, 122 metabolites) using the consensus of 1, 2, 3,
and 4methods, respectively. The best agreement betweenmetabolites in
serum and plasma is obtained when the consensus of two methods is
taken (r = 0.96, panel F).
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Within each data set, the association networks among
metabolites inferred using different methods have inherently
different topology: This means that edges between the same

nodes can be present in a network and absent in another and vice
versa. It can be argued that different connectivity patterns arise
because of the arbitrary choice imposed on the weighted

Figure 4. Transformation of the serum network into the plasma network (or vice versa) by varying the thresholds imposed on the weighted adjacency
matrices. The Frobenius norm is used to assess differences between the connectivity matrices. The Frobenius norm is always larger than 0; therefore, it
can be concluded that it is not possible to transform one network into the other: The metabolites association networks obtained from samples in studies
Ia and Ib (NMR, 29 metabolites, plasma and serum from different blood samples) are inherently different in plasma and serum. (CLR denotes Context
Likelihood of Relatedness, ARACNE is Algorithm for the Reconstruction of Accurate Cellular Networks, PCLRC is Probabilistic Context Likelihood of
Relatedness on Correlations, and CORR is Pearson's correlation.)

Figure 5. (A) Score plot for a PCA model on the data set obtained from union of the plasma and serum metabolite data sets from studies Ia and Ib
(NMR, 29 metabolites, plasma and serum obtained from different blood specimens). The separation between the two blood fractions is evident as a
result of different concentration levels of the same metabolites. (B) Score plot for a PCA model on the union of the plasma and serum metabolites
(studies Ia and Ib), which have been independently centered to remove the concentration offset: The separation is removed and the two groups overlap.
However, differences in the networks remain; See the text for more details.
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adjacency matrices, but it can be shown34 that by varying the
thresholds it is not possible to transform the connectivity matrix
obtained with onemethod into another. A pragmatic approach to
arrive at serum and plasma specific association networks is to take
a so-called wisdom of crowds approach, that is, aggregating the
results of the four methods, as suggested in the comparative
study from the DREAM challenge.40 Figure 3A−D shows scatter
plots of the serum metabolite degree versus the plasma
metabolite degree as a function of the number of methods
considered to obtain a consensus: The best agreement is
obtained, in this case of NMR data (studies Ia and Ib), when the
consensus network (see eq 3) is obtained by considering the
results of at least three methods; in this case, the correlation
between node degree in the two matrices is r = 0.6 (Pearson’s
correlation, P value <10−6). Consensus networks are presented in
Figure 1C. However, some differences in the topology of the
networks still remain that are worthy of comment: Metabolite
degrees are given in Supporting Table S1. Consistent changes in
metabolite connectivity can be observed: Alanine, citrate, and
proline are disconnected in the serum network but not in the
plasma network; conversely, VLDL is disconnected in plasma but
not in serum. Other metabolites, like NAG1, creatine, valine, and
formate, are densely connected in serum but not in plasma,
indicating a substantially differential behavior.

It can again be argued that different connectivity patterns arise
because of the arbitrary choice imposed on the weighted
adjacency matrices: As shown in Figure 4, it is not possible to
transform the serum network into the plasma one (or vice versa)
by varying the thresholds τm (see eq 2) imposed on the weighted
adjacency matrix.

Exploring Differences between the Plasma and Serum Data
Sets

The differences observed in the plasma and serum networks
obtained using NMR on studies Ia and Ib may be attributed to
the two fractions being extracted from different biological
specimens (see description in the Material and Methods). By
performing principal component analysis (PCA) on the two
large combined data sets we found separation between the
plasma and serum samples (Figure 5A), as already noted in other
studies, even when plasma and serum were extracted from the
same samples.14,41 Independent centering of the two data sets
removed the separation, indicating differences in the average
concentrations (Figure 5B): We found that 23 out of the 29
measured metabolites had lower levels in plasma with respect to
serum (two-tailed t test with adjustment for unequal variances,
with P value <0.0001 after Bonferroni correction42), whereas for
the others (formate, pyruvate, alanine, threonine, and
oxoglutarate) the concentrations were significantly higher in
plasma than in serum (results are summarized in Supporting
Table S2). Only 3-hydroxybutyrate showed no significant
difference between the two data sets. However, given the large
sample size, the analysis may be overpowered and the result,
although statistically significant, may not be also biologically
relevant because these may be trivial effects.43−45 Moreover, the
difference observed in the networks originates from a multi-
variate data analysis approach, which does not necessarily reflect
differences observed in the univariate analysis.16 However, an
increased level of metabolites in serumwith respect to plasma has
also been observed in previous studies.15,46

Although the two study populations are highly homogeneous
being blood donor volunteers (see Study Ia and Ib description in
the Materials and Methods section), we may be observing a
possible batch effect, probably due to the procedures for blood
withdrawal and processing performed in the two distinct clinical
units. Differences in laboratory conditions, reagent and
consumables lots, and personnel habits could affect the final
measurements with behaviors that are unrelated to the biological
or scientific variables in the study.47 To compensate for these, we
applied a correction method for the removal of batch effects
based on a mixed model with simultaneous estimation of the
correlation matrix48 before re-estimating the metabolite−
metabolite association networks. We observed a slight reduction
in the dissimilarity between the serum and plasma networks (not
shown): However, the overall topology of the two networks
remained different.

Comparison of Reconstructed Networks from Plasma and
Serum from the Same Blood Specimen

We sought experimental validation of the existence of a
difference between the two networks using the samples obtained
from study II, where serum and plasma were obtained from the
same blood specimens. The resulting networks are shown in
Figure 6 (panels A and B for plasma and serum, respectively).
When a consensus is sought using the same strategy, the

overall topologies of the plasma and serum networks are very
similar: The best agreement in terms of metabolite degree is
obtained, in this case, when two methods are considered, as

Figure 6. (A) Plasma metabolites association networks obtained using
the four different methods. (B) Serummetabolites association networks
obtained using the four different methods. (C) Consensus association
network for serum and plasma. (CLR denotes Context Likelihood of
Relatedness, ARACNE is Algorithm for the Reconstruction of Accurate
Cellular Networks, PCLRC is Probabilistic Context Likelihood of
Relatedness on Correlations, and CORR is Pearson's correlation.)
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derived from the scatter plots in Figure 3E−H. The correlation
between the metabolite degree is rather high (r = 0.96; Pearson’s
correlation, P value < 10−10), indicating an almost perfect
equivalence between serum and plasma metabolite association
networks. This suggests that from a network analysis point of
view the two fractions carry essentially the same information and
can be used interchangeably. It is interesting to note that the best
consensus here is obtained with twomethods, while in the case of
the NMR data (studies Ia and Ib, plasma and serum from
different blood specimens) the best consensus was obtained with
three methods. This difference may arise from the use of different
analytical platforms: Data obtained using NMR and MS have
different characteristics49,50 especially concerning the error
structure and its correlation, and this may hamper network
inference and reconstruction,18 leading to both false-negatives
and false-positives; the latter could indeed be avoided by
deploying different methods that exploit different data character-
istics. We also remark here that no preprocessing, such as

normalization, was applied to the data because normalization
affects the correlation data structure and ultimately network
inference,51 and we wanted to avoid artifacts in the inferred
networks. However, some local topological differences remain
that are worthy of further investigation, as in the case of amino
acids.

Comparison of Plasma and Serum Amino Acids Association
Networks

The array of metabolites measured on the same study spans a
different class of compounds than those measured using NMR,
but 11 amino acids have been measured in both studies I and II
(see Table 1), and the association networks can be directly
compared across the two situations, where serum and plasma
have been obtained from different and from the same blood
specimens. The networks are shown in Figure 7 (panels A and B
different specimens; panels C and D same specimens).

Figure 7. Association network for serum and plasma amino acids obtained from the different blood specimens (networks A and B, Studies Ia and Ib,
NMRdata) and from the same blood specimens (networks C andD, Study II, FIA-MS/MS data, 122metabolites). Note that here Leu (= xLeu) refers to
the sum of leucine and isoleucine).(E) Consensus networks between plasma and serum extracted from different specimens (Studies Ia and Ib). (F)
Consensus networks between plasma and serum extracted from the same specimens (Study II). (G) Plasma consensus networks among different
analytical platforms. (H) Consensus networks between plasma and serum extracted from different specimens (Study I).
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In general, if amino acids are or share common substrates, then
they can be expected to be correlated, like, for instance, proline/
arginine, whose association we observed only in the plasma
network derived from study Ia (NMR data) and not in the other
networks. In contrast, an association between leucine and valine
(that share enzymes for catabolizing the first two steps in their
metabolism and that can be metabolically interconverted) is
observed in all the networks. Arginine was found to be connected
only in the networks obtained from study I, with several
associations found in both serum and plasma networks (see
consensus network shown Figure 7E). It is also important to note
that correlations between amino acids might be a result not only
of their common biosynthetic pathways and their tight regulation
but also of their coordinated participation in protein synthesis or
conversely a result of amino acids release after protein
degradation.52 The consensus network for plasma and serum
derived from the same blood specimen given in Figure 7F shows
a core of conserved metabolite−metabolite associations, such as
the strong connectivity among proline, valine, serine, methio-
nine, leucine (here signifying both leucine and isoleucine, which
were not distinguishable), and glutamine and threonine with
serine, methionine, and glutamine. Differences mostly arise in the
connectivity patterns of histidine, where no association was
found to be in common between the two networks: those
metabolites (histidine, tyrosine, threonine, serine, phenylalanine,
methionine, and glutamine). Overall, network differences related
to these amino acids can be associated with differences in
aminoacyl-tRNA biosynthesis pathways (P value = 2.1 × 10−11,
Holm-corrected P value = 1.7 × 10−9). These results point to the
hypothesis that the representation of this pathwaymay be not the
same in the two blood fractions. It is interesting to note that
aminoacyl-tRNA synthetases have been recently associated with
inflammation,53,54 which are also triggered by the blood
coagulation process: In this respect the differences observed
between serum and plasma could be explained. Differences in
amino acid correlation patterns have been observed in different
tissues, a behavior that we observed in serum and plasma.55 The
reliability of metabolite measurements was higher in serum
compared with plasma samples and was good for most saturated
short-and medium-chain acylcarnitines, amino acids, biogenic
amines, glycerophospholipids, sphingolipids, and hexose;
however, serum amino acids may become unstable,46 and this
may explain some of the differences observed in networks.

Comparison of Plasma and Serum Amino Acids Profiles in
the Presence of Pathophysiological Alterations

Owing to the limited number of samples and their heterogeneity,
we did not attempt to infer networks or covariance/correlation
matrices for these data. Instead, samples from study III were
subject to PCA to investigate possible differences in metabolites
concentration patterns. The two biofluids bear significant
metabolic profile similarities at the local level, as shown in
Figure 8, where the considerable overlap of the NMR spectra of
serum and plasma sample obtained from the same blood
specimen is displayed. This is also confirmed by the PCA
performed on the data set of the metabolites quantified in the
serum and plasma of the same subjects, as shown in Figure 9A.
Pearson’s correlation of the first principal component for the

serum and plasma is r = 0.995, P value <10−12, indicating the high
similarity of plasma and serum profiles. (Similar results hold for
higher order components.) Working in the PCA subspace
defined by the first three components (which explain >99% of
the variation in the data), we observe that the average Euclidean

Figure 8. Superimposition of the NMR spectra (aliphatic region) of a
plasma (top) and a serum (bottom) sample obtained by the same blood
specimen.

Figure 9. (A) Score plot for the PCA model of the data set containing
the metabolite concentrations measured in serum and plasma extracted
from the same blood sample: The profiles of serum and plasma samples
are very similar, as indicated by the closeness of the point representing
serum and plasma profiles from the same sample. (B) Violin plot of the
distribution of the distances between profiles of different subjects
(plasma and serum, denoted as Interplasma and Interserum,
respectively) and the distribution of the distance between the plasma
and serum profile of each subject (Intra). The average Intra distance is
one order of magnitude smaller than the interdistance. Data are scaled
by a factor of 10−3 for better visualization.
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distance between the serum and plasma sample of each subject
(∼2.5 au) is one order of magnitude smaller than the average
distance between the serum (or plasma) sample of two different
subjects (∼26 and ∼29 au, respectively). The distribution of the
distance values is shown in the form of violin plots in Figure 9B.
These differences are statistically significant (P value <1.3 × 10−8

for both comparisons using a Wilcoxon test).
However, it is possible that this equivalence may not be

observed in other types of pathophysiological alterations given
the large spectrum of disease manifestation, which often results
in very nonhomogeneous clinical samples. In fact, that serum and
plasma may not be biologically equivalent under pathological
conditions is not a new concept. For instance, they are not
equivalent for what concerns inflammation markers. The clotting
of blood stimulates blood cell eicosanoid biosynthesis,56 and thus
serum levels of these metabolites do not reflect physiological
concentrations.10 Moreover, results can be affected by the choice
of the algorithm used. Although, here we presented an approach
that should reduce the bias toward a given network inference
method.

■ CONCLUSIONS

Networks and network analysis are being extensively used in
systems biology, and they have proven to be valuable tools to
investigate and understand many aspects of the complex
biological machinery underlying the function of living organisms.
Through a comparative approach and using well-assessed and
recently developed methods for network inference, we have
shown that plasma and serum metabolite networks possess the
same topological characteristics. To the best of our knowledge
this is the first study to address plasma and serum differences
from a network analysis perspective. Our findings suggest that
plasma and serum may be biologically equivalent at a global
network level. Nevertheless, some local differences arise, as in the
case of amino acids, which should be taken into account when
analyzing, comparing, and interpreting blood metabolite
association networks.
However, when the plasma and serum fractions are extracted

from different samples (even when samples are collected,
processed, and analyzed under controlled conditions), the
topological characteristics of the two networks are different.
Further validation of these results should also be sought
considering samples frommore heterogeneous studies involving,
for instance, broader age span of the participants and
pathophysiological conditions.
Through a standard multivariate analysis, we also observed

that the difference between serum and plasma profiles obtained
from the same blood specimen is on average an order of
magnitude smaller than the average difference between serum/
plasma samples from different blood specimen. However, this
result was observed on a rather small data set and will require
further validation in a larger study.
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Universitaẗ, as part of LMUinnovativ. Part of this project was
supported by EU FP7 grant HEALTH-2013-2.4.2-1/602936
(Project CarTarDis).

■ REFERENCES
(1) Oakman, C.; Tenori, L.; Claudino, W.; Cappadona, S.; Nepi, S.;
Battaglia, A.; Bernini, P.; Zafarana, E.; Saccenti, E.; Fornier, M.; et al.
Identification of a serum-detectable metabolomic fingerprint potentially
correlated with the presence of micrometastatic disease in early breast
cancer patients at varying risks of disease relapse by traditional
prognostic methods. Ann. Oncol. 2011, 22, 1295−1301.
(2) Wen, H.; Yoo, S. S.; Kang, J.; Kim, H. G.; Park, J.-S.; Jeong, S.; Lee,
J. I.; Kwon, H. N.; Kang, S.; Lee, D.-H.; et al. A new NMR-based
metabolomics approach for the diagnosis of biliary tract cancer. J.
Hepatol. 2010, 52, 228−233.
(3) Carrola, J.; Rocha, C.M.; Barros, A. S.; Gil, A. M.; Goodfellow, B. J.;
Carreira, I. M.; Bernardo, J. O.; Gomes, A.; Sousa, V.; Carvalho, L.; et al.
Metabolic signatures of lung cancer in biofluids: NMR-based
metabonomics of urine. J. Proteome Res. 2011, 10, 221−230.
(4)Weiss, R. H.; Kim, K. Metabolomics in the study of kidney diseases.
Nat. Rev. Nephrol. 2011, 8, 22−33.
(5) Tenori, L.; Hu, X.; Pantaleo, P.; Alterini, B.; Castelli, G.; Olivotto,
I.; Bertini, I.; Luchinat, C.; Gensini, G. F. Metabolomic fingerprint of

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00106
J. Proteome Res. 2017, 16, 2547−2559

2557

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.7b00106
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.7b00106
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00106/suppl_file/pr7b00106_si_001.pdf
mailto:esaccenti@gmail.com
mailto:maria.suarezdiez@wur.nl
http://orcid.org/0000-0001-5845-146X
http://orcid.org/0000-0001-9259-0199
http://orcid.org/0000-0003-2271-8921
http://orcid.org/0000-0001-8284-4829
http://dx.doi.org/10.1021/acs.jproteome.7b00106


heart failure in humans: a nuclear magnetic resonance spectroscopy
analysis. Int. J. Cardiol. 2013, 168, e113−e115.
(6) Saccenti, E.; Suarez-Diez, M.; Luchinat, C.; Santucci, C.; Tenori, L.
Probabilistic networks of blood metabolites in healthy subjects as
indicators of latent cardiovascular risk. J. Proteome Res. 2015, 14, 1101−
1111.
(7) Bertini, I.; Calabro,̀ A.; De Carli, V.; Luchinat, C.; Nepi, S.; Porfirio,
B.; Renzi, D.; Saccenti, E.; Tenori, L. The metabonomic signature of
celiac disease. J. Proteome Res. 2009, 8, 170−177.
(8) Calabro,̀ A.; Gralka, E.; Luchinat, C.; Saccenti, E.; Tenori, L. A
metabolomic perspective on coeliac disease. Autoimmune Dis. 2014,
2014, 1−13.
(9) Bernini, P.; Bertini, I.; Calabro, A.; La Marca, G.; Lami, G.;
Luchinat, C.; Renzi, D.; Tenori, L. Are patients with potential celiac
disease really potential? The answer of metabonomics. J. Proteome Res.
2011, 10, 714−721.
(10) Psychogios, N.; Hau, D. D.; Peng, J.; Guo, A. C.; Mandal, R.;
Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.;
et al. The human serum metabolome. PLoS One 2011, 6, e16957.
(11) Boyanton, B. L.; Blick, K. E. Stability studies of twenty-four
analytes in human plasma and serum. Clin. Chem. 2002, 48, 2242−2247.
(12) Miles, R. R.; Roberts, R. F.; Putnam, A. R.; Roberts, W. L.
Comparison of serum and heparinized plasma samples for measurement
of chemistry analytes. Clin. Chem. 2004, 50, 1704−1706.
(13) Oddoze, C.; Lombard, E.; Portugal, H. Stability study of 81
analytes in human whole blood, in serum and in plasma. Clin. Biochem.
2012, 45, 464−469.
(14) Liu, L.; Aa, J.; Wang, G.; Yan, B.; Zhang, Y.; Wang, X.; Zhao, C.;
Cao, B.; Shi, J.; Li, M.; Zheng, T.; Zheng, Y.; Hao, G.; Zhou, F.; Sun, J.;
Wu, Z. Differences in metabolite profile between blood plasma and
serum. Anal. Biochem. 2010, 406, 105−112.
(15) Yu, Z.; Kastenmüller, G.; He, Y.; Belcredi, P.; Möller, G.; Prehn,
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K.; Adamski, J. Procedure for tissue sample preparation and metabolite
extraction for high-throughput targeted metabolomics. Metabolomics
2012, 8, 133−142.
(33) Eibl, G.; Bernardo, K.; Koal, T.; Ramsay, S. L.; Weinberger, K. M.;
Graber, A. Isotope correction of mass spectrometry profiles. Rapid
Commun. Mass Spectrom. 2008, 22, 2248−2252.
(34) Suarez-Diez, M.; Saccenti, E. Effects of sample size and
dimensionality on the performance of four algorithms for inference of
association networks in metabonomics. J. Proteome Res. 2015, 14, 5119.
(35) Meyer, P.; Lafitte, F.; Bontempi, G. minet: A R/bioconductor
package for inferring large transcriptional networks using mutual
information. BMC Bioinf. 2008, 9, 461.
(36) Saccenti, E.; Menichetti, G.; Ghini, V.; Remondini, D.; Tenori, L.;
Luchinat, C. Entropy-based network representation of the individual
metabolic phenotype. J. Proteome Res. 2016, 15, 3298−3307.
(37) Camacho, D.; de la Fuente, A.; Mendes, P. The origin of
correlations in metabolomics data. Metabolomics 2005, 1, 53−63.
(38) Schott, J. R. Matrix Analysis for Statistics; Wiley: Hoboken, NJ,
2005.
(39) Xia, J.; Sinelnikov, I. V.; Han, B.; Wishart, D. S. Metaboanalyst
3.0making metabolomics more meaningful. Nucleic Acids Res. 2015,
43, W251.
(40) Stolovitzky, G.; Prill, R. J.; Califano, A. Lessons from the Dream2
challenges. Ann. N. Y. Acad. Sci. 2009, 1158, 159−195.
(41) Barri, T.; Dragsted, L. O. UPLC-ESI-QTOF/MS and multivariate
data analysis for blood plasma and serum metabolomics: effect of
experimental artefacts and anticoagulant. Anal. Chim. Acta 2013, 768,
118−128.
(42) Bonferroni, C. E. Il calcolo delle assicurazioni su gruppi di teste. In
In Studi in Onore del Professore Salvatore Ortu Carbon, 1935; pp 13−60.
(43) Friston, K. Ten ironic rules for non-statistical reviewers.
NeuroImage 2012, 61, 1300−1310.
(44) Lindley, D. V. A statistical paradox. Biometrika 1957, 44, 187−
192.
(45) Ioannidis, J. P. Why most published research findings are false.
PLOS Medicine 2005, 2, e124.
(46) Breier, M.; Wahl, S.; Prehn, C.; Fugmann, M.; Ferrari, U.; Weise,
M.; Banning, F.; Seissler, J.; Grallert, H.; Adamski, J.; Lechner, A.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00106
J. Proteome Res. 2017, 16, 2547−2559

2558

http://dx.doi.org/10.1021/acs.jproteome.7b00106


Targeted metabolomics identifies reliable and stable metabolites in
human serum and plasma samples. PLoS One 2014, 9, e89728.
(47) Leek, J. T.; Scharpf, R. B.; Bravo, H. C.; Simcha, D.; Langmead, B.;
Johnson, W. E.; Geman, D.; Baggerly, K.; Irizarry, R. A. Tackling the
widespread and critical impact of batch effects in high-throughput data.
Nat. Rev. Genet. 2010, 11, 733−739.
(48) Jauhiainen, A.; Madhu, B.; Narita, M.; Narita, M.; Griffiths, J.;
Tavare,́ S. Normalization of metabolomics data with applications to
correlation maps. Bioinformatics 2014, 30, 2155−2161.
(49) Karakach, T. K.; Wentzell, P. D.; Walter, J. A. Characterization of
the measurement error structure in 1D 1H NMR data for metabolomics
studies. Anal. Chim. Acta 2009, 636, 163−174.
(50) Coombes, K. R.; Koomen, J. M.; Baggerly, K. A.; Morris, J. S.;
Kobayashi, R. Understanding the characteristics of mass spectrometry
data through the use of simulation. Cancer Inf. 2005, 1, 41−52.
(51) Saccenti, E. Correlation patterns in experimental data are affected
by normalization procedures: consequences for data analysis and
network inference. J. Proteome Res. 2017, 16, 619−634.
(52) Szymanski, J.; Jozefczuk, S.; Nikoloski, Z.; Selbig, J.; Nikiforova,
V.; Catchpole, G.; Willmitzer, L. Stability of metabolic correlations
under changing environmental conditions in escherichia coli − a
systems approach. PLoS One 2009, 4, e7441.
(53) Yao, P.; Fox, P. L. Aminoacyl-tRNA synthetases in medicine and
disease. EMBO Molecular Medicine 2013, 5, 332−343.
(54) Park, S. G.; Schimmel, P.; Kim, S. Aminoacyl tRNA synthetases
and their connections to disease. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,
11043−11049.
(55) Noguchi, Y.; Zhang, Q.-W.; Sugimoto, T.; Furuhata, Y.; Sakai, R.;
Mori, M.; Takahashi, M.; Kimura, T. Network analysis of plasma and
tissue amino acids and the generation of an amino index for potential
diagnostic use. Am. J. Clin. Nutr. 2006, 83, 513s−519s.
(56) Fischer, S. Analysis of cardiovascular eicosanoids in man with
special reference to HPLC. Chromatographia 1986, 22, 416−420.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00106
J. Proteome Res. 2017, 16, 2547−2559

2559

http://dx.doi.org/10.1021/acs.jproteome.7b00106

