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Abstract: Softwood bark is an important by-product of forest industry. Currently, bark is under-utilized
and mainly directed for energy production, although it can be extracted with hot water to obtain
compounds for value-added use. In Norway spruce (Picea abies [L.] Karst.) bark, condensed tannins
and stilbene glycosides are among the compounds that comprise majority of the antioxidative
extractives. For developing feasible production chain for softwood bark extractives, knowledge on
raw material quality is critical. This study examined the fate of spruce bark tannins and stilbenes
during storage treatment with two seasonal replications (i.e., during winter and summer). In the
experiment, mature logs were harvested and stored outside. During six-month-storage periods,
samples were periodically collected for chemical analysis from both inner and outer bark layers.
Additionally, bark extractives were analyzed for antioxidative activities by FRAP, ORAC, and H2O2

scavenging assays. According to the results, stilbenes rapidly degraded during storage, whereas
tannins were more stable: only 5–7% of the original stilbene amount and ca. 30–50% of the original
amount of condensed tannins were found after 24-week-storage. Summer conditions led to the
faster modification of bark chemistry than winter conditions. Changes in antioxidative activity
were less pronounced than those of analyzed chemical compounds, indicating that the derivatives
of the compounds contribute to the antioxidative activity. The results of the assays showed that,
on average, ca. 27% of the original antioxidative capacity remained 24 weeks after the onset of the
storage treatment, while a large variation (2–95% of the original capacity remaining) was found
between assays, seasons, and bark layers. Inner bark preserved its activities longer than outer bark,
and intact bark attached to timber is expected to maintain its activities longer than a debarked one.
Thus, to ensure prolonged quality, no debarking before storage is suggested: outer bark protects the
inner bark, and debarking enhances the degradation.

Keywords: antioxidant; bark; condensed tannin; forestry side-stream; stilbene; timber

1. Introduction

Bark of coniferous trees is an important organic side-stream of wood processing industries. Bark is
produced when trees are debarked before sawmill timber production or in pulp mills. In Finland alone,
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forest industries’ roundwood consumption totaled 71.1 million cubic meters in 2019 [1]. The amount
of bark is about 10% of the roundwood volume [2]. The forest industry in Finland thus produces
ca. 7 million cubic meters of bark annually [1], which is mainly used to generate heat and energy.
Regarding the need for a transition from fossil-based economy to bioeconomy, bark has an untapped
potential as a sustainable source for biochemicals and -materials.

Bark of Norway spruce trees (Picea abies (L.) Karst.) contains high amounts of polyphenolic
compounds, including condensed tannins (CTs), stilbenes (mainly stilbene glycosides and their
aglycones), lignans, and flavonoids. These phytochemicals show multiple biological activities, such as
antifungal and antimicrobial protection and antifeedant activity, all known to be vital for tree
defense [3–5]. Due to their antioxidative and protective functions, these compounds are of commercial
interest. They could be valorized as antioxidants, antimicrobials, or preservatives in food and cosmetics,
techno-chemical products, or pharmaceuticals by applying environmentally friendly extraction and
fractionation, such as pressurized hot water extraction or supercritical fluid extraction, followed by
further purification and modification [6–10].

For example, CTs of Norway spruce bark have been tested for various purposes, such as carbon
foams, water purification and barriers, and preservatives in edible snacks. Carbon foams could
be produced from a crude tannin extract without purification [11]. Cationized tannins have been
used in water purification [12–14]. In preservative use, tannins efficiently prevented fat oxidation
and gave a unique taste to meat snacks [15]. Stilbene glycosides (trans-astringin, trans-isorhapontin,
and trans-piceid) of Norway spruce bark, on the other hand, structurally resemble resveratrol that
has gained an accumulating scientific evidence of its medicinal and other biological activities [16].
Bark-derived stilbenes with structural similarities to that of resveratrol are therefore of interest for
refining purposes [17].

Evidence exists that the content and composition of bark metabolites varies within bark layers,
between individual trees and forest stands, as well as among the geographical origins of tree
populations [18–20]. These biological variations in bark quality may, however, be rapidly exceeded
by the more pronounced property changes due to terminal and logistical operations, e.g., storage of
biomass [21]. The current chains of operations from timber harvesting to logistics and wood processing
at industrial sites are optimized for processes that utilize roundwood (i.e., sawing, pulping, energy
uses). In contrast to wood, bark is chemically more complex [22] and prone to substance losses or
changes in chemical composition during storage, i.e., after tree harvesting and post-debarking, the bark
matrix is exposed to environmental and biological factors that may deteriorate the raw material [21,23].
During storage, extractives are lost through the hydrolysis by plant enzymes, by the action of
wood colonizing organisms, and by oxidative processes. Volatile compounds, mainly monoterpenes,
evaporate from woody biomass. The nature, magnitude, and the rate of changes in the content and
composition of extractives depend on multiple factors including the types of harvesting, transportation,
storage and the inventory-control systems of the wood used at the mill. Environmental conditions and
properties of stored biomass, such as tree species, biomass assortment, and particle size all influence the
changes. Bark compounds may degrade, polymerize, leach out, or even form toxic derivatives. Phenolic
extractives are hydrophilic, and thus, in addition to microbial degradation reactions, they are also lost
due to leaching [24,25]. Photodegradation reactions of phenolic compounds, such as stilbenes, may
also occur during storage, as UV light and enzymatic activity catalyzes formation of phenoxy radicals,
which being very unstable, lead to polymerization and cyclization reactions [17,26,27]. However,
the changes in the composition and content of extractable phytochemicals within bark during storage
remain poorly elucidated [28]. Furthermore, the concurrent changes in biological activities of bark
extracts during storage are not fully understood. To create sustainable and economically feasible
bark-based biorefineries, it is important to improve our understanding on the effects of long-term
storage on the chemical quality of bark.

The aim of this study was to analyze the storage-time dependent changes in the content of
major polyphenols of Norway spruce bark (i.e., CTs and stilbenes). We also analyzed the variation in
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antioxidative activity of the bark extracts during storage treatments. We tested the hypotheses that
(1) changes in bark properties differ between the outer and inner layers of bark during the storage
period (i.e., faster rate of changes in outer layer more prone to environmental factors); (2) seasonal
variability exists in the rate of bark chemical modification during storage (i.e., higher rate during
summer with warmer temperatures); and (3) bark stored on timber logs (i.e., before debarking)
preserves its chemical content and antioxidative activity better/longer than the debarked raw material
stored as industrial-scale bark piles. For the experiments, mature Norway spruce trees were harvested
in the Ostrobothnia area in Finland, and the logs with bark were stored outside for a six-month
monitoring period during winter and summer seasons. From individual sample trees, bark specimens
were periodically collected for chemical and antioxidative activity analysis of the extracts. The study
design is unique and to the best of our understanding, no similar long-term study has been conducted
to monitor the fate of hydrophilic extractives of Norway spruce bark during storage.

2. Results and Discussion

2.1. Pre-Trial: Stilbene Glycosides of Bark at Sawmill during Storage

For a preliminary study of storage experiment, freshly debarked and older bark stored for ca.
one year in the bark pile at sawmill were collected and their ethanol-water extracts qualitatively
analyzed by gas chromatography-mass spectrometry (GC-MS) for the presence of stilbene glycosides
(Figure 1a,b). According to the analysis, fresh bark contained all trans-stilbene glycosides typical of
Norway spruce bark, namely piceid, astringin, and isorhapontin [9]. However, these compounds were
not detected from the extracts obtained from the bark stored for a longer time period. Furthermore,
analysis by size-exclusion chromatography indicated formation of both larger and smaller structures
in bark that had been stored for ca. one year as compared to freshly collected bark from the sawmill
(Figure 1c).
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Figure 1. Gas chromatography–mass spectrometry (GC-MS) presenting the storage stability of stilbene
glycosides of Norway spruce (Picea abies [L] Karst) bark: fresh bark at sawmill (a); 1-year-stored bark
at a sawmill (b); and size exclusion chromatography results of fresh (blue line, unimodal) and 1-year
stored bark (red line, bimodal) (c).
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2.2. Yield of Stilbene Glycosides in Bark during Storage Experiment

According to our results from storage treatments, the total stilbene content in the bark of Norway
spruce saw logs (i.e., the sum of stilbene glycosides and stilbene aglycones in whole bark) significantly
declined during the storage (Figure 2, Table 1). It is known that environmental conditions have an
effect on the microbial degradation of wood [23], as well as chemical reactions and physical processes
(evaporation, leaching) leading to losses of extractives compounds [10,21]. Consequently, the rate of
change in stilbene content decrease was higher in summer than in winter. In winter, since storage
treatment onset, the total stilbene content was 73%, 26%, and 5% for weeks 4, 12, and 24 as compared
to week 0 (Figure 2, Table 1). In summer, in contrast, the corresponding values were 77%, 14%,
and 7%, respectively. Furthermore, the average stilbene glucoside amount was 2.8 times higher in
winter samples than in summer samples (Figure 2, Table 1). For stilbene aglycons, the same trend
was observed, with 1.5-fold amount in winter samples as compared to summer samples (Figure 2,
Table 1). The reasons for the observed decline in the content of stilbene glycosides and aglycones
in Norway spruce bark may include trans to cis - isomerization of the double bond and subsequent
photocyclization reactions, as stilbenes are well-known for their reactivity and photosensitivity [9,17].
The stilbene compounds may also leach out, as they are water soluble and mostly located within the
soft tissue layers of inner bark [18–20].
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Figure 2. Yield of stilbene glycosides and aglycons in bark of Norway spruce saw logs during storage
treatments in winter and summer 2017. The colors of bars indicate the stilbene compounds: green,
sum of stilbene glycosides; blue, sum of stilbene aglycones. The whole bark was analyzed without
separation into inner and outer layers.

Table 1. Results (p-values) from testing the statistical differences between storage time (i.e., weeks
after the treatment onset), season (i.e., winter and summer 2017), and the layers within bark (i.e., inner
and outer bark) in terms of the quantitative amounts of stilbene glycosides and aglycones, condensed
tannins analyzed with HPLC and spectrophotometric methods (CTs HPLC, CTs UV); and the analysis
of antioxidative activities of bark extracts (70% EtOH) of Norway spruce saw logs analyzed with ORAC,
FRAP, and SCAV tests. Interaction terms are indicated by x.

p-Values, Saw Logs

Factor Stilbene Glycosides Stilbene Aglycones CTs HPLC CTs UV ORAC FRAP SCAV

Storage time 0.003 0.007 0.005 0.000 0.001 0.000 0.031
Bark layer n.d. n.d. 0.000 0.000 0.001 0.001 0.025

Season 0.009 0.010 0.140 0.052 0.526 0.386 0.275
Storage time × Bark layer n.d. n.d. 0.001 0.003 0.145 0.002 0.465

Storage time × Season n.d. n.d. 0.061 0.152 0.089 0.006 0.737
Bark layer × Season n.d. n.d. 0.003 0.001 0.177 0.287 0.543

Storage time × Bark layer
× Season n.d. n.d. 0.021 0.030 0.730 0.399 0.563
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2.3. Yield of Condensed Tannins in Bark during Storage Experiment

The total condensed tannin content measured by UV-absorbance at 280 nm was clearly higher
than the content determined by thioacidolysis (Figure 3) but a high correlation (p < 0.001) existed
between the results from the two methods (Figure 4). This is understandable due to differences
in the methods. The measurement of absorbance at 280 nm is commonly known as total phenolic
index (TPI) since largely all plant phenolics have an absorption band at 280 nm and often with much
stronger absorption intensity than tannins. However, both methods indicated quite a similar fate for
tannins/phenolics during the storage. Generally, inner bark had higher tannin content than outer bark,
which agrees with the results published by Krogell et al. [22] (Table 1). During winter, the tannin
content remained rather steady for the first 12 weeks of storing but was considerably decreased after
24 weeks. During the last 12 weeks the decrease was especially notable for the tannin content of inner
bark (Figure 3). During summer, the tannin contents appeared to decrease earlier than winter and
outer bark tannins begun to fade immediately (Figure 3, Table 1). After 4 weeks, less than half of the
original tannin content was determined in the outer bark after which the content remained quite stable.
The tannin content of inner bark was quite stable for the first 4 weeks but decreased remarkably during
the next 8 weeks and continued to decrease until the end of the storage (Figure 3).
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Figure 3. Yield of condensed tannins in inner and outer bark of Norway spruce saw logs during
storage treatments in winter and summer 2017 as measured by the methods of UV spectrophotometry,
λ = 280 nm (a) and high performance liquid chromatography (HPLC) after thiolytic degradation (b).
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It seems that the summer conditions accelerate the tannin degradation compared to winter
conditions. Environmental factors in summer, i.e., higher temperature and higher relative humidity,
may enhance chemical reactions involved in tannin degradation. Furthermore, metabolic activity of
bark utilizing microbes is undoubtedly higher in summer than winter, and microbial degradation of
tannins is likely to occur mostly in summer. The results also showed that during summer, tannins in
outer bark degraded faster than in inner bark (Table 1). Obviously, outer bark gives a protective shield
on inner bark which delays the degradation of tannins.

2.4. Composition of Condensed Tannins in Bark during Storage Experiment

Condensed tannins in spruce bark were mostly made of (epi)catechins but also (epi)gallocatechins
were detected as minor subunits, especially in outer bark (Table 2). Already previous studies have
shown that condensed tannins in Norway spruce are mostly procyanidins along with small proportions
of prodelphinidins [15,29–31]. The average degree of polymerization was generally higher for tannins
in inner bark than in outer bark (Table 2). Small proportions of condensed tannins with A-type linkages
were detected in some samples. Proportion of (epi)gallocatechins (i.e., prodelphinidins) increased
in the condensed tannins of outer bark during summer storing (Table 2). This may indicate that
procyanidins in outer bark were more vulnerable to degradation than prodelphinidins. Other changes
in the tannin profiles were not noticed during the storage period.

Table 2. Composition and properties of proanthocyanidins in Norway spruce bark (saw logs) samples
during the storage treatments in winter and summer 2017.

Season Time Weeks Sample DP 1 PC 2 (%) PD 3 (%) A-type 4 (%)

W 0 IB 8.2 ± 0.7 100.0 n.d. n.d.
W 2 IB 8.7 ± 0.8 100.0 n.d. n.d.
W 4 IB 7.4 ± 1.0 99.9 0.2 n.d.
W 12 IB 8.0 ± 1.8 100.0 n.d. n.d.
W 24 IB 8.3 ± 2.8 95.5 4.5 n.d.
W 0 OB 6.1 ± 0.4 83.4 16.6 1.5
W 2 OB 6.4 ± 0.4 90.5 9.5 n.d.
W 4 OB 6.2 ± 0.8 83.8 16.2 n.d.
W 12 OB 6.9 ± 1.8 84.8 14.2 n.d.
W 24 OB 6.6 ± 0.4 86.0 14.1 1.3
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Table 2. Cont.

Season Time Weeks Sample DP 1 PC 2 (%) PD 3 (%) A-type 4 (%)

S 0 IB 7.1 ± 0.1 100.0 n.d. 2.8
S 2 IB 5.6 ± 0.6 99.2 1.6 5.6
S 4 IB 6.2 ± 0.7 100.0 n.d. 3.6
S 12 IB 8.0 ± 0.4 97.1 2.9 2.2
S 24 IB 6.2 ± 0.3 95.2 4.8 n.d.
S 0 OB 5.9 ± 0.4 93.6 6.5 2.6
S 2 OB 5.5 ± 0.6 91.2 8.8 2.7
S 4 OB 7.0 ± 0.2 80.4 19.7 1.6
S 12 OB 7.5 ± 0.5 84.1 16.0 n.d.
S 24 OB 6.7 ± 0.1 81.7 18.3 n.d.

1 DP = mean degree of polymerization; 2 PC (%) = procyanidins, i.e., (epi)catechin units proportion; 3 PD (%) =
prodelphinidins, i.e., (epi)gallocatechin units proportion; 4 A-type (%) = A-type bonding proportion from all bonding
types (A-type + B-type); W, winter season; S, summer season; IB, inner bark; OB, outer bark; n.d., not detected.

2.5. Molar Mass Distribution of Bark Extracts during Storage Experiment

The ethanol extracts of inner and outer bark of saw logs were studied for their molar mass profiles
during the storage experiments (Figure 5). The results showed that both in inner and outer bark,
most of the compounds were of smaller molar mass (i.e., 1500–500 g/mol (region ‘B’) and 500–50 g/mol
(region ‘C’) (Figure 6). Inner bark contained significantly less high molar weight compounds (i.e.,
15,000–1500 g/mol, region ‘A’) than outer bark (Table 3). The storage of bark resulted in higher
proportions of high molar weight compounds (region ‘A’), especially in the case of inner bark (Figures 5
and 6, Table 3). For inner bark, the rate of change in compound ‘A’ proportion was also higher than
that in outer bark during the experiment (Table 3). No significant difference in the average proportion
of region ‘A’ compounds was found between winter and summer (Table 3). In summer, however,
significantly higher proportion of compounds ‘A’ was found already on week 12 as compared to
treatment onset (i.e., week 0), whereas in winter, a significant difference was found only after 24 weeks
since the onset (Figure 7). Especially inner bark seemed to be prone to chemical reactions forming
oligomeric and polymeric aromatic structures.
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Figure 5. Example of size exclusion chromatogram of samples taken (a) 0-weeks (blue), (b) 4 weeks
(red), (c) 12 weeks (green), or (d) 24 weeks (purple) after the onset of storage treatment.
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Figure 6. The relative distribution of compounds with different molar weights in 70% ethanol
(70% EtOH) extracts of inner (a) and outer (b) bark of Norway spruce saw logs during storage
treatments during winter and summer 2017 analyzed by HP-SEC. Regions A (yellow), B (blue), and C
(green) represent the oligomeric and polymeric structures with molar masses of 15,000–1500 g/mol,
1500–500 g/mol, and 500–50 g/mol, respectively.

Table 3. Results (p-values) from testing the statistical differences between storage time (i.e., weeks after
the treatment onset), season (i.e., winter and summer 2017), and the layers within bark (i.e., inner and
outer bark) in terms of relative distribution of compounds with different molar weights in 70% ethanol
(70% EtOH) extracts of Norway spruce saw logs during storage treatments in winter and summer 2017
analyzed with HP-SEC. Regions A, B, and C represent the oligomeric and polymeric structures with
molar masses of 15,000–1500 g/mol, 1500–500 g/mol, and 500–50 g/mol, respectively. Interaction terms
are indicated by x.

p-Values, Saw Logs

Factor A B C

Storage time 0.002 0.568 0.143
Bark layer 0.001 0.002 0.138

Season 0.337 0.141 0.257
Storage time × Bark layer 0.059 0.192 0.382

Storage time × Season 0.171 0.279 0.248
Bark layer × Season 0.186 0.540 0.350

Storage time × Bark layer × Season 0.452 0.225 0.257
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Table 4. Results (p-values) from testing the statistical differences between storage time (i.e., weeks after
the treatment onset), season (i.e., winter and summer 2017), and the layers within bark (i.e., inner and
outer bark) in antioxidative activities of bark extracts (70% EtOH) of Norway spruce pulpwood logs
analyzed with ORAC, FRAP, and SCAV tests. Interaction terms are indicated by x.

p-Values, Pulpwood

Factor ORAC FRAP SCAV

Storage time 0.000 0.000 0.018
Bark layer 0.323 0.225 0.006

Season 0.014 0.001 0.399
Storage time × Bark layer 0.644 0.357 0.412

Storage time × Season 0.001 0.546 0.052
Bark layer × Season 0.765 0.577 0.043

Storage time × Bark layer × Season 0.421 0.452 0.385
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Figure 7. Relative distribution of oligomeric and polymeric compounds with molar weights of
15,000–1500 g/mol (i.e., region ‘A’ in Table 4 and Figure 6) in 70% ethanol (70% EtOH) extracts of
Norway spruce saw logs during storage treatments during winter and summer 2017. IB, inner bark;
OB, outer bark.

The reasons for changes in bark chemical quality during the storage and weathering include
enzymatic reactions (e.g., living cell respiration) and biological degradation (due to various bacteria
and fungi), as well as thermo-chemical oxidative reactions at the presence of adequate oxygen
and moisture [23,24,26,32]. Day-light-induced processes may also have taken place, leading to the
formation of polymers and smaller oligomers but also degradation of structures, especially in the case
of photosensitive stilbenes [9,17,33,34].

2.6. Antioxidative Activity of Bark Extracts during Storage Experiment

The antioxidative capacity of extracts of Norway spruce bark (70% EtOH) obtained from saw logs
(Figures 8 and 9) and pulpwood (Figure S1) were analyzed by using three different techniques (i.e.,
ORAC, FRAP, and SCAV), which differ in their objectives [35]. All the studied bark extracts posed
high antioxidant power. The results are consistent with previously published research indicating that
spruce bark has much potential as a source of antioxidants amongst the studied wood species [9,36,37].

The storage of saw logs and pulpwood logs for several weeks during winter and summer resulted
in significantly lower antioxidant capacity of bark extracts as observed with all the applied methods
(Tables 1 and 4; Figure 8 and Figure S1). In general, inner bark of saw logs exhibited significantly higher
antioxidant capacity than outer bark (Table 1, Figure 8). The results also clearly indicate that inner bark
of saw logs was able to maintain its antioxidative capacity for longer than outer bark did. Outer layers
of bark may thus provide protection from the deteriorative factors (e.g., microbial, weather, mechanical)
during the storage. For pulpwood, in contrast, no such a clear difference in antioxidative capacity was
observed between the bark layers (Table 4, Figure S1).
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Figure 8. Oxygen radical absorbance capacity (ORAC; a), ferric ion reducing antioxidant power
(FRAP; b), and hydrogen peroxide (H2O2) scavenging activity (SCAV; c) in inner and outer bark of
Norway spruce saw logs after 70% ethanol (70% EtOH) extraction during storage treatments during
winter and summer in 2017.
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analyzed by HPLC, UV and GC-MS methods during storage treatments in 2017.

No statistically significant difference was found in antioxidant activity between winter and
summer; however, significant interactions for ‘season*storage time’ were found (Tables 1 and 4). That is,
during summer, the antioxidative capacity of bark extracts decreased with more accelerated rate as
compared to winter conditions (Tables 1 and 4; Figure 8).

As presented in Figure 9, antioxidative activity appeared to be well correlated with the content
of phenolics (stilbenes and CTs) in bark extracts. The fairly high level of remaining antioxidative
power of the bark extracts even after 12 to 24 weeks of storage treatment (especially in the case of
inner bark in winter samples) indicates that despite hydrophilic bark extractives possibly leach out
due to rainfall to some extent, a majority of the compounds still remained in the bark and may have
been transformed into derivatives through oxidation, degradation, or polymerization, as indicated by
our results (Figures 5 and 6; Table 3). Our results thus provide evidence that the derivatives of bark
hydrophilic extractives also have antioxidative properties.

Our study concentrated on the changes in bark chemical and antioxidative properties during the
storage of un-barked saw logs and pulpwood (i.e., bark intact). In the parallel study of this, ca. 40%
more extractives were found in the whole bark intact on saw logs than in the bark that had been
removed from the logs and then stored separately in a bark pile for 24 weeks [38]. Furthermore,
the content of stilbene glycosides (piceid, astringin, and isorhapontin) in bark pile decreased from
ca. 17 mg/g DW to undetectable levels in only four weeks, while the stilbenes were still observed from
the intact bark of saw logs [38]. More research is still needed on bark properties after the debarking
process and during the storage of feedstock at industrial sites. It has been shown that conifer bark
(Picea abies, Pinus sylvestris, and Pinus radiata) collected from pulp mills gave lower yields of CTs than
the bark collected at sawmills [39]. In addition, the preprocessing of bark—milling and drying—can
modify bark quality, e.g., fractionation according to bark particle size also led to fractionation of
chemical composition [39]. In addition, the requirements for feedstock quality depend on the selected
processing chain and end-use purposes of bark [40].

3. Materials and Methods

3.1. Bark Material

3.1.1. Sample Trees and Experimental Design for Storage Treatments

Sample trees (altogether 40 trees) were harvested in 2017 from western Finland, Ostrobothnia
region near Kokkola (63◦54′44.0′′ N, 23◦25′17.0′′ E). Norway spruce (Picea abies (L.) Karst.) trees were
felled for the winter storage experiments on 6 February and the construction of experimental setup for
storage study was finalized on 7 February. Similarly, for the summer storage study Norway spruce
trees were felled on 29 May and the experimental setup was constructed on 30 May. All the trees for
winter storage were cut by a harvester (incl. delimbing and cross-cutting). Saw logs for summer storage
were similarly cut and delimbed by a harvester, whereas pulpwood trees were cut by a harvester
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and delimbed manually. The trees in saw log experiments were 56–119 years old, with an average
diameter of 32 cm at 1.3 m stem height and a height of 206–270 dm (Table 5). The trees in pulpwood
experiments were 38–103 years old, with an average diameter of 14 cm at 1.3 m stem height and a
height of 100–153 dm (Table 6). The tree ages were calculated from the sample discs, which were taken
from the remaining tree stumps. The saw logs and pulpwood stems were bucked to approximately
4.5 m and 5.0 m, respectively. The logs were numbered randomly and placed on a frame build of
tree trunks so that their contact to the ground as well as their being buried under snow or vegetation
during winter and summer, respectively, was prevented (Figure 10). The meteorological data (i.e., air
temperature and precipitation) of the site during the experiment are presented in Figure 11. The data
were obtained from the service by the Finnish Meteorological Institute [41].Molecules 2020, 25, x FOR PEER REVIEW 15 of 22 
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Table 5. Tree ages and dimensions of saw log samples of the storage studies. Samples from two stems were taken each sampling time.

Storage Sample Sampling Date Storage Time Tree Age Tree Height D1.3 m Log Length
Log Diameter

Butt End Middle Top

Number Weeks Years dm mm mm dm mm mm mm mm mm mm

Winter
Storage

3 7.2.2017 0 119 225 362 345 47 310 319 290 306 261 270
33 7.2.2017 0 96 223 321 272 46 273 255 242 249 215 227
12 21.2.2017 2 95 221 282 291 45 257 275 235 251 221 223
15 21.2.2017 2 110 222 323 345 46 302 291 293 277 255 243
1 7.3.2017 4 97 210 301 299 47 260 258 234 238 216 219
2 7.3.2017 4 94 215 280 277 46 282 279 257 263 235 232
30 2.5.2017 12 73 206 260 263 46 234 226 204 207 191 185
34 2.5.2017 12 56 213 362 362 45 317 305 282 290 254 262
14 25.7.2017 24 96 224 323 341 46 264 269 238 244 207 210
31 25.7.2017 24 78 256 305 299 46 282 281 256 261 247 240

Summer
Storage

41 30.5.2017 0 67 243 307 310 48 279 272 262 254 243 237
51 30.5.2017 0 70 245 362 357 44 310 311 300 291 292 289
47 12.6.2017 2 84 259 360 345 44 300 292 287 285 273 265
50 12.6.2017 2 108 233 317 327 47 272 287 251 249 232 219
44 26.6.2017 4 100 270 392 399 43 350 342 324 326 313 305
49 26.6.2017 4 95 255 360 364 49 303 310 281 284 254 256
45 22.8.2017 12 94 260 326 326 47 284 290 274 267 290 246
46 22.8.2017 12 58 225 304 300 48 256 239 225 219 206 199
42 13.11.2017 24 89 262 359 358 46 329 318 316 305 290 284
43 13.11.2017 24 93 252 285 278 48 271 260 246 242 226 224
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Table 6. Tree ages and dimensions of pulpwood samples of the storage studies. Samples from two stems were taken each sampling time.

Storage Sample Sampling Date Storage Time Tree Age Tree Height D1.3 m Log Length
Log Diameter

Butt End Middle Top

Number Weeks Years dm mm mm dm mm mm mm mm mm mm

Winter
Storage

22 7.2.2017 0 69 114 121 124 46 133 143 113 113 98 97
23 7.2.2017 0 65 124 127 131 50 136 146 119 125 102 103
8 21.2.2017 2 103 114 132 125 48 152 145 122 120 97 97
29 21.2.2017 2 38 129 151 145 50 153 160 145 136 110 110
10 7.3.2017 4 86 142 155 153 50 177 175 149 152 130 125
16 7.3.2017 4 82 125 126 129 51 150 150 120 122 103 103
18 2.5.2017 12 81 121 129 121 51 180 157 120 115 100 109
25 2.5.2017 12 50 * 130 130 137 53 153 155 130 129 104 108
4 25.7.2017 24 87 143 139 140 48 150 153 133 131 118 118
27 25.7.2017 24 49 114 136 137 51 143 144 126 129 105 101

Summer
Storage

54 30.5.2017 0 90 117 147 134 51 165 195 134 137 106 109
56 30.5.2017 0 87 112 119 131 52 141 145 121 120 93 92
58 12.6.2017 2 62 121 125 119 51 143 140 113 108 90 91
59 12.6.2017 2 55 100 124 124 52 144 143 112 109 75 79
55 26.6.2017 4 85 130 157 155 55 184 184 154 143 126 121
61 26.6.2017 4 70 128 145 137 53 132 136 119 120 98 96
53 22.8.2017 12 70 127 164 162 51 187 199 159 157 135 136
60 22.8.2017 12 56 127 147 144 47 186 176 139 143 124 124
52 13.11.2017 24 79 134 158 170 51 202 193 157 150 132 135
57 13.11.2017 24 98 153 145 144 51 165 163 140 130 124 115

* Possible inaccuracies in tree age determination due to the sample condition.
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3.1.2. Industrial Bark

Norway spruce bark was provided by the sawmill (Timo Timber Oy) at Utajärvi (Northern
Ostrobothnia region, Finland) in February 2017 (64◦45′ N 026◦25′ E). Both fresh bark and bark stored
ca. one year in an industrial bark pile outside were collected. The fresh bark was obtained immediately
after debarking. The one-year stored debarked bark was collected from underneath the uppermost
layers of in the industrial bark pile. All the sampled material was kept at−20 ◦C prior to further analysis.

3.2. Sampling Design in Storage Treatments

Bark samples were repeatedly collected from sampling locations (with no faults and defects)
along the stem logs, as shown in Figure 12. The 10-cm wide sample discs were sawn with a chainsaw
without chain oil. At each sampling time, three sample discs per tree were taken from four individual
trees (i.e., two saw logs, two pulpwood logs) (Tables 5 and 6). The samples were directly placed into
the freezer as soon as possible and stored at −20 ◦C.
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the bark sampling from individual saw logs (b) and pulpwoods (c) for chemical and antioxidative analysis.

3.3. Preparation of Bark Extracts

For the chemical analysis of bark stilbenes and tannins, bark from frozen discs were separated
and then first freeze-dried, after which bark was milled with a grinder (Moulinex, Groupe SEB, Ecully
Cedex, France) into a smaller particle size of 0.5–1 mm for the analyses. Prior to the analysis, bark
powder was stored at −80 ◦C. Industrial bark was milled and freeze-dried before analysis using a
similar procedure. The extractions were carried out by using an accelerated solvent extraction (ASE)
apparatus (Thermo Scientific Dionex ASE 350, Sunnyvale, CA, USA). The bark powder was extracted
with hot water (75 ◦C, 100 MPa, 1 × 30 min static cycle) to yield extracts rich in CTs and stilbenes for
their quantitative analysis. The bark powder was also separately extracted with EtOH/H2O (95:5, v/v)
(EtOH, Altia, Rajamäki, Finland) to yield hydrophilic extracts (75 ◦C, 100 MPa, 1 × 30 min static cycle)
for the analysis of the molar mass distribution.

For the quantitative analysis of bark stilbenes by GC-FID, bark from frozen discs were separated and
freeze-dried, after which the bark was milled with a Retsch SM 100 cutting laboratory mill (Retsch GmbH,
Haan, Germany) equipped with a bottom sieve with trapezoidal holes (perforation size <1.0 mm).
Prior to the analysis, bark powder was stored at –20 ◦C. The extractions were carried out by using a
Dionex ASE 100 instrument. The bark powder was extracted with hot water (120 ◦C, 100 MPa, 1 × 10 min
static cycle) yielding extracts rich in hydrophilic CTs and stilbenoids for their quantitative analysis.
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3.4. Chemical Analysis of Extracts

3.4.1. Yield of Condensed Tannins

The phenolic concentration was expressed as milligrams of purified quebracho tannin equivalents
to milligrams of dry extracts. It was assumed that the phenolic compounds in conifer bark extracts
measured by spectrophotometric measurement primarily correspond to tannins, as reported by
Bianchi et al. [30] and the expression “tannin yield” was used for the total phenolic compounds. Highly
purified quebracho tannins (FINTAN QP, Silvateam S.p.A., San Michele Mondovì, Italy) was dissolved
in 0.1 M NaOH. A series of different tannin concentration was prepared, and a calibration curve was
plotted against UV absorbance measured at 280 nm using a UV-Vis spectrophotometer (Shimadzu
UV-2600, Kyoto, Japan). The extract powder was dissolved in 0.1 M NaOH and the absorbance at
280 nm was measured and the tannin content was calculated.

3.4.2. Chemical Composition of Condensed Tannins

Condensed tannin, i.e., proanthocyanidins, was determined by HPLC after thiolytic degradation
according to Mattila et al. [42]. Briefly, freeze-dried samples were weighed (20–30 mg) into 1.5 mL
Eppendorf vials and 1 mL of depolymerization reagent (3 g cysteamine/4 mL 13 M HCl/56 mL methanol)
was added. The vials were sealed and incubated for 60 min at 65 ◦C, after which the degradation
products, i.e., free flavan-3-ols (terminal units) and their cysteaminyl derivatives (extension units),
were separated on Zorbax Eclipse Plus C18 column (Agilent Technologies, Inc.; Espoo, Finland,
2.1 × 50 mm, 1.8 µm) and determined by HPLC (Agilent 1290 Infinity, Agilent Technologies, Inc.,
Espoo, Finland) equipped with diode array detection (DAD) and fluorescence detection (FLD).

3.4.3. Yield of Stilbene Glycosides

After extraction, approximately 3 mg of extract was placed in a test tube and evaporated to dryness
under N2-stream. After drying, 0.5 mL of pyridine and 0.3 mL of the silylation reagent N-trimethylsilyl
imidazole (TMSI in pyridine, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) was added and the
sample was kept in a block heater at 70 ◦C for 60 min. The silylated extracts were analyzed qualitatively
by GC–MS (Hewlett-Packard 5973 MSD, EIMS 70 eV; Agilent, Santa Clara, CA, USA) equipped with a
Zebron ZB-5MSi capillary GC column (30 m × 0.25 mm × 0.25 µm). Identification of the peaks was done
by comparing the fragmentation patterns with a commercial (NIST14/Wiley11) library, as well as the
MS libraries available at our laboratory. Quantification of the identified stilbene glycosides (astringin,
isorhapontin, piceid), and stilbene aglucones (sum of resveratrol, isorhapontigenin, and piceatannol)
was done by GC-FID (Agilent Hewlett-Packard 6850) equipped with an Agilent HP-5 19091J-413 column
(30 m × 0.32 mm × 0.25 µm) on silylated samples, using heneicosanoic acid (0.1 mg/mL; Sigma-Aldrich
Chemie GmbH, Steinheim, Germany) and betulinol (0.1 mg/mL; Sigma-Aldrich, St. Louis, MO, USA) as
internal standards. The samples were injected at 290 ◦C and were detected at 300 ◦C. The temperature
program was at 100 ◦C (1.5 min), 6 ◦C/min to 180 ◦C, 4 ◦C/min to 290 ◦C (13 min), 4 ◦C/min to 300 ◦C
(20 min).

3.4.4. Analysis of Molar Mass Distribution of Extracts

The molar weight profile of the ethanol extracts was determined by High Pressure
Size-Exclusion Chromatography (HP-SEC) using an Agilent 1100 Series HPLC instrument (Agilent
Technologies, Waldbronn, Germany) equipped with a G1315B DAD-detector, 2 × Jordi Gel DVB 500A
(300 mm × 7.8 mm) columns (Columnex LLC, New York, NY, USA; 40 ◦C), and a 50 mm × 7.8 mm guard
column. This setup allows selective analyses of aromatic (polyphenolic) compounds. One percent
AcOH (J.T. Baker, Deventer, Holland) in THF (Riedel-de Haën-Honeywell, Seelze, Germany) served as
eluent at a flow rate of 0.8 mL/min with 35 min analysis time/sample. The samples stored in a freezer
were first allowed to thaw 2 h before sample preparation. The samples (3 mg) were dissolved in the
eluent solution (1.5 mL) to yield a concentration of 2 mg/mL. The samples were then vortexed for
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0.5–1 min and filtered with a 45 µm PTFE-filter to remove any insoluble particles prior to analysis.
It should be noted that only the soluble part of the extract is analyzed, and the results cannot represent
the molar weight profile of the whole physical sample as all sample contained minor insoluble particles.

The relative distribution of compounds with different molar weights was calculated from the
integrals of the HP-SEC chromatograms. The whole signal from ranging from 15–27 min were split
into region A (15–20 min) representing oligomeric and polymeric structures with molar masses
15,000–1500 g/mol, region B (20–22 min) representing molar weights 1500–500 g/mol and region C
(22–27 min) representing molar weights 500–50 g/mol. For the calibration of molar weight, a commercial
polystyrene standard was used.

3.5. Antioxidative Analysis of Extracts

Antioxidant properties of the extracts were assessed by indirect methods to cover different
antioxidant mechanisms. Indirect methods included a single electron transfer-based (SET) and a
hydrogen atom transfer-based (HAT) (FRAP and ORAC) and radical scavenging assays (SCAV).

3.5.1. FRAP

Differences in the antioxidant activity between inner and outer bark extracts obtained from the
storage experiments were measured using a SET-based FRAP (Ferric ion reducing antioxidant power)
method, which measures the ability of an antioxidant to reduce ferric (FeIII) to ferrous (FeII) ions [43].
The reaction mixture contained the sample, 20 mM FeCl3·6H2O (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany) and 10 mM 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ) (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany) in 300 mM acetate buffer pH 3.6. The formation of ferrous-tripyridyltriazine
complex in the reaction mixture is measured by absorbance at 593 nm in 96-microplate format with
three technical replicates of each sample on the plate and series of dilutions to fit the sample to the
standard curve. FeSO4·7H2O (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was used as a
standard compound and l(+)-ascorbic acid (150 µM and 800 µM) (VWR Chemicals) as a control and
the results are expressed as µmol/L Fe(II) equivalents.

3.5.2. ORAC

The Oxygen Radical Absorbance Capacity (ORAC) assay is a HAT based method, which measures
the oxidative dissociation of fluorescein at the presence of peroxyl radicals (R-O-O%), which causes
reduction in the fluorescence signal. The antioxidant’s protective ability is based on the inhibition
of the breakdown of fluorescein caused by the peroxyl radicals. The assay was modified from the
method described by Huang et al. [44] and Prior et al. [45] and carried out in 96-well format with two
technical replicates of each sample on the plate. Each reaction mixture contained 25 µL of the sample in
0.075 M phosphate buffer pH 7.5 (Merck), 150 µL of 8.16 × 10−5 mM fluorescein (Sigma-Aldrich Chemie
GmbH, Steinheim, Germany) and 25 µL of 2,2′-Azobis(2-methylpropionamidine) dihydrochloride
(Sigma-Aldrich Chemie GmbH, Steinheim, Germany). For each sample, a protocol with a series of five
dilutions (1:1–1:320) was used and additional dilutions if needed to adjust the sample concentration
to the standard curve. 0.153 mM Trolox ((±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic
acid, vitamin E analog) (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was used as a standard
compound and the results are expressed as Trolox equivalents (µmol/L TE). Vitamin C (l(+)-ascorbic
acid; Merck KGaA, Darmstadt, Germany) was used as a reference compound.

3.5.3. SCAV/FOX Reagent Method

The hydrogen peroxide (H2O2) scavenging activity, based on transition metal chelation,
was determined by using a method modified from Hazra et al. [46] and Jiang [47] with microplate
reader in 96-well format with four technical replicates on each plate. An aliquot of 2 mM H2O2 (Merck
KGaA, Darmstadt, Germany) was added to the reaction mixture with the sample, 2.56 mM ammonium
iron (II) sulphate·6H2O (BDH Prolabo) and 111 µM xylenol orange disodium salt (Sigma-Aldrich
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Chemie GmbH, Steinheim, Germany). After 30 min incubation, the absorbance of ferric-xylenol orange
complex at 560 nm was measured. The assay measures the ability of the sample to scavenge H2O2

and prevent the oxidation of Fe(II) to Fe(III) which is indicated by the formation of ferric-xylenol
orange complex. The H2O2 scavenging ability is expressed as inhibition percentage (%) of Fe(II)
oxidation to Fe(III). Sodium pyruvate (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was used
as a reference compound.

3.6. Statistical Analysis

To analyze the statistical differences in chemical constituents and antioxidative activities of the
bark extracts between storage times (i.e., storage time in weeks since the onset of the experiment),
seasons (winter vs. summer), and bark materials (inner vs. outer bark), a hierarchical linear mixed
models were fitted to the data with the assumption of the normal distribution for CTs, distributions
of molar mass of the compounds (i.e., regions ‘A’, ‘B’, and ‘C’). Logarithmic transformation (ln) was
used for skewed dependent variables, and also to normalize variation within time points (stilbenes,
ORAC, FRAP, and SCAV assay data). The analysis of stilbenes was simplified because of the small
data set having only both main effects in the model. Tree was used as a random variable to account
the variation within two bark materials of a single tree avoiding pseudo-replication. The method of
Bonferroni was used in multiple comparisons with a significance level of α = 0.05. The residuals were
checked for normality using graphical figures. The models were fitted using the MIXED procedure of
IBM SPSS STATISTICS (v. 25) with a restricted maximum likelihood estimation method (REML).

4. Conclusions

To conclude, our results clearly demonstrate that the analyzed hydrophilic extractives of Norway
spruce bark (i.e., condensed tannins and stilbene glycosides and aglycons) rapidly declined in content
during the storage of timber logs. This was the case for both larger dimensional saw logs and smaller
diameter pulpwood. Outer bark appeared to protect the inner bark, thus decelerating degradation,
modification, and possible leaching of the valuable compounds during storage. Therefore, debarking
would lead to more rapid degradation processes of the valuable compounds. Based on the results, we
conclude that for optimizing bark quality prior to its processing in bark-based biorefineries, debarking
should be postponed, and bark stored intact on logs instead of debarked feedstock in piles. In order
to prolong the quality of bark feedstock for recovery of value-added compounds via, e.g., extraction
processes, no debarking before the storage is therefore suggested. Our study showed that stilbenes
rapidly degraded during storage, whereas tannins were more stable. Only ca. 5–7% of the original
stilbene amount was detected after 24-week storage (whole bark analyzed). On average, ca. 44%
of the original amount of condensed tannins (analyzed by HPLC) were found after the 24 weeks of
storage (ca. 34% and 62% of the original amount in inner and outer bark, respectively). The weather
conditions during summer with higher atmospheric temperature and higher precipitation seem to
accelerate the deterioration processes of bark chemical properties during storage as compared to winter
with lower temperature and moisture level. For example, on average 35% and 61% of the original
amount of condensed tannins (by HPLC) remained in the bark in summer and winter, respectively,
after 24-week-storage period. Changes in antioxidative activity of the bark extracts were analyzed
by three different assays in order to cover the different antioxidant mechanisms more widely than by
relying on a single method only. The results of the assays showed that on average, ca. 27% of the
original antioxidative capacity remained 24 weeks after the onset of storage treatment, while a large
variation (ca. 2–95% of the original capacity remaining) in results between the different assays, seasons
and bark materials (i.e., inner vs. outer layers) was detected. In summer, the remaining antioxidant
power after 24-week storage was on average 15% of the original one, while that for the winter season
was even as high as 38%. Furthermore, it seems that the changes in antioxidant activities were, at least
partly, less pronounced than the changes obtained for analyzed chemical compounds, indicating that
the derivatives of the compounds also contribute to the antioxidant capacity of bark.
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Supplementary Materials: The following are available online: . Figure S1: Oxygen radical absorbance capacity
(ORAC; a), ferric ion reducing antioxidant power (FRAP; b), and hydrogen peroxide (H2O2) scavenging activity
(SCAV; c) in inner (green) and outer (blue) bark of Norway spruce pulpwood logs after 70% ethanol (70% EtOH)
extraction during storage treatments in 2017. Winter and summer samples are pooled together.
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