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Abstract: Pinna nobilis populations, constituting the largest bivalve mollusk endemic to the Mediter-
ranean, is characterized as critically endangered, threatened by extinction. Among the various
factors proposed as etiological agents are the Haplosporidium pinnae and Mycobacterium sp. parasites.
Nevertheless, devastation of the fan mussel populations is still far from clear. The current work is
undertaken under a broader study aiming to evaluate the health status of Pinna nobilis population in
Aegean Sea, after the mass mortalities that occurred in 2019. A significant objective was also (a) the
investigation of the etiological agents of small-scale winter mortalities in the remaining populations
after the devastating results of Haplosporidium pinnae and Mycobacterium sp. infections, as well as
(b) the examination of the susceptibility of the identified bacterial strains in antibiotics for future
laboratory experiments. Microbiological assays were used in order to detect the presence of potential
bacterial pathogens in moribund animals in combination with molecular tools for their identification.
Our results provide evidence that Vibrio bacterial species are directly implicated in the winter mortal-
ities, particularly in cases where the haplosporidian parasite was absent. Additionally, this is the first
report of Vibrio mediterranei and V. splendidus hosted by any bivalve on the Greek coastline.

Keywords: Pinna nobilis; mass mortality; Vibrio spp.; Vibrio splendidus; Vibrio mediterranei; Haplosporid-
ium pinnae; Mycobacterium sp.; antibiotics

1. Introduction

Marine habitats constitute natural hosts for a plethora of microorganism communities,
which play key roles in fundamental functions among each ecosystem [1]. Microbes are
often engaged in a mutualistic symbiosis with many inhabitants in marine environments,
assisting them in mechanisms such as immune functions, physiological responses in
various factors, and nutrient uptake [2–4]. Apart from the beneficial properties sometimes
offered to the hosts, microbes can also act pathogenically under certain conditions and
may become opportunistic, leading to disease pathogenesis [5]. Stressful conditions as
a result of climate change can have a negative impact on the physiological responses of
hosts, as well as implicating with lower immune responses [6,7]. At the same time, an
increase in the average temperature can favor the colonization of bacterial genera such
as Vibrio spp., inducing their virulence factors [8]. However, parasitism can expose the
host species to secondary infections, which, together with the main causative agent, can
increase the pathogenicity at the expense of the host [9,10].

Mortalities in Pinna nobilis populations persist in threatening the species towards
extinction. This phenomenon started on the Spanish coastline in 2016 (Alicante, Spain),
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reaching mortalities at a ratio of 100%, infecting P. nobilis populations in all life stages,
and was directly associated with the presence of a new emerging Haplosporidan par-
asite [11,12]. Morphological and molecular characterization were performed one year
later alongside phylogenetic analysis, which confirmed the taxonomic status of the newly
emerged parasite in the order Haplosporida [13]. Mortalities are still spreading in the
Mediterranean Sea populations of P. nobilis, with the addition of a new potential candidate
causative agent of mortalities. Mycobacterium species were detected alongside H. pinnae in
the Tyrrhenian Sea (Mediterranean) in moribund individuals of P. nobilis, causing strongly
inflammatory lesions, and were proposed as a new potential threat for the populations of
fan mussels [14]. Meanwhile, the detection of H. pinnae persisted in mortalities in the Ionian
and Aegean Sea, having a great negative impact on populations of fan mussels and causing
the change of the ranking of the species in the Mediterranean Sea to Critically Endangered
according to the IUCN red list [15–21]. Both aforementioned pathogens have been detected
in P. nobilis populations suffering from mortalities on Croatian coastlines, thus invading
the last safe shelter of the species from the mortalities that occurred in the rest of Mediter-
ranean Sea [22,23]. The only parasite-free area is the Sea of Marmara, which was recently
referred as unaffected from the epidemic [24]. Apart from the presence of the pathogens
mentioned before, new potential pathogens were detected for the fan mussel in a survey
conducted in Italy (Campania, Tuscany, Sardinia, and Apulia) and Spain (Catalunya). The
presence of Vibrio spp. and Perkinsus sp. alongside mycobacteria and H. pinnae have been
suggested to represent a harmful combination in disease pathogenesis against the fan
mussel populations [25]. In a rescue project for P. nobilis conducted in Catalunya, a new
pathogen emerged in individuals free from the parasites mentioned above. V. mediterranei
was detected in dead individuals when the temperature rose between April and May
(17–19 ◦C) in stable animals, and was later demonstrated to be infectious with the presence
of specific virulence genes [26,27]. In the context of exploration in the P. nobilis microbiome,
identification of eight different bacterial taxa was performed and the results concluded
the presence of V. splendidus clade bacteria [28]. The multifactorial attributed mortality
scenario was strengthened by a molecular survey conducted in Italy, which demonstrated
that H. pinnae is not species-specific, but had occurred in marine bivalves since 2014, thus
challenging the finding that H. pinnae is the unique etiological agent of the mortalities
of P. nobilis in Mediterranean Sea [29]. In a recent study, investigating the biochemical
performance of the species, specimens collected before and after the mortality events were
compared, and the results provided evidence that Mycobacterium sp. existed in the species
long time ago before mortalities occurred [30]. The theory of a pathogenic cluster of agents,
which causes mortalities, was also supported in a study conducted using, for the first
time, the powerful tool of next-generation sequencing of the 16s-rRNA gene in P. nobilis
individuals. The microbiome of individuals from three different populations, previously
described to be infected from H. pinnae and Mycobacterium sp. [17], were analyzed, and
revealed the presence of 14 different bacterial OTUs, among which were bacterial genera
such as Vibrio sp., Mycoplasma spp., Pseudoalteromonas spp., Mycobacterium sp., Aliivibrio
spp., Photobacterium spp., and Psychrilyobacter spp. [31]. The aforementioned genera can be
symbiotic or pathogenic genera for bivalves, supporting the complexity of mass mortality
events. However, even before the onset of mortalities with pathogenic microorganisms as
causative agents, the P. nobilis population along the Mediterranean Sea faced human pres-
sure, which resulted in a serious decline in the population in the last few decades. Illegal
fishing for seafood or decorative purposes, anchoring, bycatches, and habitat destruction
have pushed the populations towards their lower survival limits [32,33].

In the context of continuous mortalities in Greece, the current study was conducted in
order to assess the status of the remaining P. nobilis populations in Greek territory. After
the collapse of fan mussel populations in Thermaikos gulf, Thessaloniki [19], the remain-
ing populations with the highest density, which were chosen for investigation, were the
populations in Kalloni gulf, Lesvos Island and Maliakos gulf, Fthiotis (Figure 1). The main
objectives of this study were (a) the monitoring of the two remaining populations in Greece
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regarding haplosporidian and mycobacteria parasites during the winter months; (b) identi-
fication of other harmful bacteria such as Vibrio spp. that have been detected by P. nobilis
microbiome analysis; (c) investigation of small-scale mortalities in the aforementioned
gulfs; and, furthermore, (d) to determine the most effective antibiotics that could possess
antimicrobial activity against the newly identified Vibrio species. Taken altogether, the
study aims to enlighten and contribute to the determination of the etiological agents of the
fan mussel P. nobilis mortalities.

1 

 

 

Figure 1. Sampling sites of P. nobilis specimens from Kalloni gulf, Lesvos Island (39.095818, 26.149199)
and Maliakos gulf, Fthiotis (38.805781, 22.613020), within the Aegean Sea.

2. Materials and Methods
2.1. Sampling

In order to evaluate the status of the remaining P. nobilis in the last refugia in Greece,
samplings of P. nobilis specimens were performed in 2 different marine areas in the Aegean
Sea, i.e., Kalloni gulf, Lesvos island and Maliakos gulf, Fthiotis during February 2020
and April 2020 (Figure 1). Thirty moribund samples were collected in 2020. Ten samples
originated from Kalloni gulf, Lesvos island, divided in two sampling efforts with equal
samples each, and the other twenty were from Maliakos gulf, Fthiotis, divided into ten
samples in each sampling effort.

All samplings were carried out in compliance with the terms of a particular license re-
ceived from the Greek Ministry of Environment and Energy (code: MEE//GDDDP89926/1117).
P. nobilis specimens were dissected immediately after collection in aseptic conditions. Each
tissue was divided in small parts and each part was placed in sterilized 1.5ml tubes and
stored in liquid nitrogen for further analyses. Additionally, a small part of the digestive
gland was kept and fixed for histological process.
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2.2. Histological Procedure

Histopathological examination of the samples was performed exactly as described in
Lattos et al. [17] in an effort to evaluate the pathological condition of the tissues, as well as
the potential differences in infections caused by different microorganisms.

2.3. Microbiological Methods
2.3.1. Culture Media

Tryptic soy agar (TSA, Oxoid) was used as the nonselective media, and thiosulfate
citrate bile salts sucrose (TCBS, Oxoid) for the isolation of Vibrio strains. They were both
prepared according to the manufacturer’s instructions, with the addition of 2% NaCl
(Oxoid). Additionally, tryptic soy broth (TSB, Oxoid) with 2% NaCl was used for the
cryopreservation of the strains at −80 ◦C in a final dilution of 15% glycerol.

2.3.2. Bacterial Isolation

One gr of the different pen shell tissues (mantle, gill, digestive gland, and muscle)
were homogenized with 9 mL of sterile PBS buffer [26]. 100 µL of homogenate was used to
inoculate on TSA and TCBS agar supplemented with 2% NaCl. The plates were incubated
for 24–48 h at 25 ◦C and observed for bacterial growth. For isolation, single colonies were
picked and stroked onto new plates (Figure 2). Liquid cultures were incubated overnight
at 25 ◦C. All isolates that were used for further identification and analysis were the ones
found dominant in the first step of inoculation on TSA and TCBS.
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2.3.3. Antibiogram

The susceptibility of Vibrio species to various antimicrobials was determined through
the disk diffusion method, according to the guidelines of the Clinical and Laboratory Stan-
dards Institute [34]. The antibiograms in all strains isolated and identified were prepared
using 15 antibiotic disks: florfenicol (FFC, 30 µg), erythromycin (E, 15 µg), cephalothin (KF,
30 µg), cefotaxime (CTX, 30 µg), ampicillin (AMP, 10 µg), amoxicillin/clavulonate (AMC,
20 µg and 10 µg, respectively), kanamycin (K, 30 µg), neomycin (N, 30 µg), gentamycin
(GM, 10 µg), streptomycin (S, 10 µg), trimethoprim sulfamethoxazole (SXT, 1.25 µg and
23.75 µg, respectively), ciprofloxacin (CIP, 5 µg), flumequine (UB, 30 µg), norfloxacin (NOR,
10 µg), and tetracycline (TE, 30 µg).

The bacterial strains were inoculated into Mueller–Hinton broth (Oxoid) containing
2% NaCl and incubated overnight at 25 ◦C. Afterwards, each suspension was adjusted to
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the turbidity of a 0.5 McFarland standard and spread onto Mueller–Hinton agar (Oxoid)
plates containing 2% NaCl. The antibiotic disks were placed on the plates that were then
incubated for 24 h at 25 ◦C. The diameter of the inhibition zone around each disk was
measured and recorded. The results were classified as resistant (R), intermediately resistant
(I), or susceptible (S) according to the CLSI guidelines [34].

2.4. Molecular Identification of Pathogens

Pure cultures of bacteria stored at −80 ◦C were incubated onto TSB with 2% NaCl for
24–48 h for the extraction of DNA. DNA extraction was conducted using the DNAEasy
Blood and Tissue kit (QIAGEN, Germany) according to the manufacturer’s instructions.
The quality and quantity of the isolated DNA was evaluated spectrophotometrically in a
NanoDrop (Shimadzu, Japan). Approximately 50 ng of extracted DNA were subjected in
a 20 µL volume PCR using 10 µL of the FastGene Taq 2x Ready Mix (NIPPON Genetics,
Europe) and 0.6 pmol of each one of the primers 27f-CM and 1492r modified by Frank
et al. [35] that amplify a c. 1200 part of the 16Sr RNA gene in bacteria. The following
PCR conditions were applied: initially, a denaturation step of 2 min at 94 ◦C, followed
by 36 cycles of 40 s at 94 ◦C, 45 s at 50 ◦C, and 1 min at 72 ◦C, and, in the end, by a final
extension step of 5 min at 72 ◦C. After electrophoresis of the PCR products in agarose
gel stained with ethidium bromide, they were purified using the NucleoSpin Gel and
PCR Clean-up kit (Macherey-Nagel, Germany) and were sequenced bi-directionally in an
ABI-PRISM 3130xl genetic analyzer. Sequences were read, aligned, and phylogenetically
resolved using the MEGA 7.0 software [36]. Using the same software, two phylogenetic
dendrograms were constructed implementing the maximum likelihood methodology and
applying 1000 bootstrap iterations to evaluate the genetic relationships with closely related
haplotypes available in GenBank. Furthermore, to explore the disease pathogenesis of the
Vibrio identified bacteria, the presence of virulence factors was examined, i.e., vsm and outer
membrane protein (ompU) genes in V. splendidus strains and ompU and rtx toxin genes
in V. mediterranei strains, using the FastGene Taq 2x Ready Mix with the abovementioned
volumes, and primers and conditions as previously described [27,37].

In addition, the potential presence of Mycobacterium sp. and H. pinnae was examined in
all tissue samples before bacterial isolation, using the exact same PCR conditions, primers,
and procedures as described in Lattos et al. [17].

3. Results
3.1. Molecular Identification of Pathogenic Bacteria

All examined samples were found positive to Mycobacterium sp., whereas only 3
out of the 17 were positive to H. pinnae infection (Table 1). In regard to bacteria cultures,
alignment was based on a 950 bp long partial sequence of the 16r RNA gene that defined ten
different haplotypes, all belonging to various species of the genus Vibrio (Table 1, Figure 3).
In particular, two phylogenetic trees were constructed, the first of which included all
new Vibrio haplotypes in comparison to congeneric haplotypes available in the GenBank
database (Figure 3a). The haplotype GR139 was identical with V. gigantis strains, whereas
the haplotypes GR252 and GR146 were very closely related with V. crassostreae clades.
The strains GR131, GR142, and GR147 were phylogenetically very closely related with—
and grouped among—V. splendidus haplotypes. Since V. mediterranei was not previously
reported in the Aegean Sea and has been characterized as an invasive emerging pathogen, a
second tree was also constructed comparing the haplotype GR246 with only V. mediterranei
sequences (Figure 3b). Sequence similarity of this haplotype was always more than 98.5%,
and up to 100% with V. mediterranei sequences obtained from the GenBank database,
and was therefore grouped within V. mediterranei haplotypes. All novel sequences were
deposited in the Genbank database under the accession numbers (MW715023–MW715032).
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Table 1. Sampling data of the animals analyzed and the results of microbiological analysis in animal tissues. M, P, G, and GA are the abbreviations for mantle tissue, posterior adductor
muscle, gill tissue, and digestive gland, respectively.

Sample
ID Code Tissue Sampling

Date
Sampling

Site

Geographical
Coordinates

(N)

Geographical
Coordinates

(E)

Sampling
Depth

Temperature
of Sampling

Site (◦C)
Habitat Type H. pinnae

PCR
Mycobacterium

sp. PCR
Vibrio spp.

PCR

Most
Probable

Taxonomy

Genbank
A.N.

1 GR129 M 25 February
2020

Maliakos
gulf 38.905781 22.613020 4–8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + + V. splendidus 1 MW715032

2 GR131 P 25 February
2020

Maliakos
gulf 38.905781 22.613020 4–8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + V. splendidus MW715032

5 GR132 G 25
February2020

Maliakos
gulf 38.905781 22.613020 4–8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + V. splendidus 2 MW715031

4 GR133 G 25 February
2020

Maliakos
gulf 38.905781 22.613020 4–8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + V. splendidus 3 MW715028

6 GR134 M, G, GA 25
February2020

Maliakos
gulf 38.905781 22.613020 4–8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + V. splendidus 2 MW715031

7 GR139 M, G 25
February2020

Maliakos
gulf 38.905781 22.613020 4-8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + V. gigantis MW715031

3 GR142 P 25 February
2020

Maliakos
gulf 38.905781 22.613020 4–8 m 14.2

Soft substrate
with C. nodosa

meadows
+ + + V.

alginolyticus MW715030

4 GR144 G, GA, P 17 March 2020 Kalloni gulf 39.095818 26.149199 4–8 m 15.5 Soft Substrate + + V. splendidus 2 MW715031

2 GR145 M, P, GA,
G 17 March 2020 Kalloni gulf 39.095818 26.149199 4–8 m 15.5 Soft Substrate + + V. splendidus 2 MW715031

3 GR146 M, P, GA,
G 17 March 2020 Kalloni gulf 39.095818 26.149199 4–8 m 15.5 Soft Substrate + + V. gigantis MW715029

5 GR147 GA, P 17 March 2020 Kalloni gulf 39.095818 26.149199 4–8 m 15.5 Soft Substrate + + V. splendidus MW715028
1 GR180 M, GA 17 March 2020 Kalloni gulf 39.095818 26.149199 4–8 m 15.5 Soft Substrate + + V. owensii MW715027
1 GR181 M, G 17 March 2020 Kalloni gulf 39.095818 26.149199 4–8 m 15.5 Soft Substrate + + V. harveyi MW715026

9 GR245 GA, P 15 April 2020 Maliakos
gulf 38.905781 22.613020 4–8 m 16.5

Soft substrate
with C. nodosa

meadows
+ + + V. splendidus 3 MW715028

8 GR246 GA 15 April 2020 Maliakos
gulf 38.905781 22.613020 4–8 m 16.5

Soft substrate
with C. nodosa

meadows
+ + V.

mediterranei MW715025

2 GR247 GA 5 May 2020 Kalloni gulf 39.095818 26.149199 4–8 m 16.1 Soft Substrate + + V.
crassostreae MW715024

4 GR252 P 5 May 2020 Kalloni gulf 39.095818 26.149199 4–8 m 16.1 Soft Substrate + + V.
crassostreae MW715023

1 Haplotype of the same sample as GR131, 2 haplotype of the same sample as GR145, 3 haplotype of the same sample as GR147.
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Eventually, to explore the perspective of disease pathogenesis, the presence of viru-
lence factors was investigated in V. splendidus and V. mediterranei infected samples. Five out
of the nine V. splendidus strains were positive for both vsm and ompU virulence factor genes,
three only for ompU, and one was negative for both virulence factor genes, whereas the V.
mediterranei strain was positive for both ompU and rtx virulence factor genes (Table 2).
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Table 2. Presence of virulence factors in V. splendidus and V. mediterranei identified bacteria. Positive samples are indicated
with “+” and negative samples are indicated with “-“.

Code Vibrio Species
Virulence Genes

ompU Vsm ompU rtx

GR129 V. splendidus + +
GR131 V. splendidus - -
GR132 V. splendidus + -
GR133 V. splendidus + +
GR134 V. splendidus + +
GR144 V. splendidus + +
GR145 V. splendidus + -
GR147 V. splendidus + -
GR245 V. splendidus + +
GR246 V. mediterranei + +

3.2. Antibiograms

All strains were susceptible to the sulfonamide, phenicol, fluoroquinolones, tetra-
cycline, and third generation cephalosporin tested, while they exhibited variable results
considering the first-generation cephalosporin, penicillins, macrolide, and aminoglyco-
sides tested. The results are shown in Table 3. There were only 2 strains out of the 17
showing resistance to the first generation cephalosporin or cephalothin, 9 out of the 17
resistant to ampicillin, and 5 to amoxicillin/clavulonate. From the aminoglycoside group,
six resistances to neomycin, three to streptomycin and two to kanamycin were recorded.
Finally, 2 out of 17 were resistant to erythromycin. All tested strains were susceptible to the
sulfonamide, the phenicol, the fluoroquinolones, and the tetracycline. Seven of the strains
tested were sensitive to all antibiotics used, while 3 out of the 17 strains tested were the
ones with the most resistances encountered. These strains were identified as V. mediterranei
and V. crassostreae, all of which originated from Maliakos gulf, Fthiotis and Kalloni gulf,
Lesvos island, respectively.

Table 3. List of the strains and the antibiotics used for the antibiograms (KF: cephalothin, CTX: cefotaxime, AMP: ampicillin,
AMC: amoxicillin/clavulonate, K: kanamycin, N: neomycin, GM: gentamycin, S: streptomycin, E: erythromycin, SXT:
trimethoprim sulfamethoxazole, FFC: florfenicol, CIP: ciprofloxacin, UB: flumequine, NOR: norfloxacin, TE: tetracycline).
The results are depicted by R: resistant and S: susceptible.

STRAIN
Cephalosporins Penicillins Aminoglycosides Macrolide Sulfonamide Phenicol Fluoroquinolones Tetracycline

KF CTX AMP AMC K N GM S E SXT FFC CIP UB NOR TE

144 S S R S S S S S S S S S S S S
245 S S S S S S S S S S S S S S S
131 S S S S S S S S S S S S S S S
132 S S S S S S S S S S S S S S S
139 S S R S S R S S S S S S S S S
129 S S S S S S S S S S S S S S S
142 S S S S S S S S S S S S S S S
146 S S R S S R S S S S S S S S S
181 S S R R S S S S S S S S S S S
180 S S R R S S S S S S S S S S S
133 S S S S S R S S S S S S S S S
134 S S S S S S S S S S S S S S S
145 S S R S S S S S S S S S S S S
147 S S S S S S S S S S S S S S S
246 S S R R R R S R S S S S S S S
247 R S R R S R S R R S S S S S S
252 R S R R S R S R R S S S S S S

3.3. Histological Evaluation of the Inflammatory Responses

Despite the absense of H. pinnae (Figure 4B), specimens infected with V. splendidus
showed histopathological lesions to a similar degree as specimens hosting the haplosporid-
ian parasite in the digestive gland (Figure 4A). In the same way, heavy inflammatory
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responses were observed in all specimens, whether or not the H. pinnae was present.
Diffuse type inflammation was observed in all specimens.
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Figure 4. Histological display of the digestive gland of two different P. nobilis specimens. (A)
Digestive gland of fan mussel infected with Mycobacterium sp., H. pinnae, and V. splendidus. (B)
Digestive gland of fan mussel infected only with Mycobacterium sp. and V. splendidus. Both exhibit
heavy inflammation responses and heavy lesions in the connective tissue of the digestive gland. A
degenerative process was also indicated in the epithelium of the digestive tubules of both specimens,
regardless of the presence of H. pinnae.

4. Discussion
4.1. Molecular Characterization of Vibrio Species

The strain GR246, found in Maliakos gulf, was grouped within V. mediterranei clade
strains (Figure 3b), providing evidence for its identification as V. mediterranei. V. shilloni, which
was also very closely phylogenetically related with this group, is a coral pathogen [38,39],
whereas V. mediterranei is a pathogen of bivalves that was recently found infecting P. nobilis
as well. Keeping this in mind, we can propose that the derived Vibrio haplotype in the
specimens originating from Maliakos gulf belongs to the species V. mediterranei. To the
best of our knowledge, this is the first report of V. mediterranei in the Aegean Sea isolated
from P. nobilis.

At least three different Vibrio haplotypes were clustered within the V. splendidus
group. Specifically, haplotype GR139 was identical to several V. splendidus, V. gigantis,
and V. crassostreae strains, while haplotypes GR252 and GR146 represent newly described
sequences, more closely phylogenetically related to V. chagasi than to V. splendidus and
V. crassostreae. Although, in this case, the phylogeny is too complicated to extract safe
conclusions regarding the molecular taxonomy of this strain; based on the life history and
geographic distribution of each species, we can postulate that it is probably V. splendidus.
Notably, this is also the first report of V. splendidus hosting P. nobilis in the Greek seas.

Furthermore, the isolate GR247 detected with P. nobilis specimens from Kalloni gulf,
Lesvos island was genetically close within the same clade, and particularly in the same
branch as V. toranzoniae. This species was first described in 2013, hosting healthy reared
individuals of the clams Venerupis philippinarum and Venerupis decussata originating from
Galicia, Spain [40].

Finally, two different isolates, phylogenetically very closely related, were grouped
within the V. harveyi group. Both isolates represent novel haplotypes. Despite the fact that,
similarly to the case of V. splendidus clade, no safe conclusions can be considered regarding
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their molecular identification; it should be pointed that these strains were genetically
distinct from all the remaining ones.

4.2. Microbiological Characterisation of Vibrio Species and Susceptibility in Antibiotics

As far as the antibiograms that were conducted in this study are concerned, we did
not record important resistances in the strains tested. Antimicrobial resistance among
halophilic Vibrio species isolated from oysters, mussels, and clams was studied in Canada
for 6 years and reported that only 4.9% of the strains used were sensitive to all drugs
tested, while in our study, fewer resistances were reported [41]. According to the same
authors, similar antimicrobial resistance patterns to ours were detected reporting ampicillin,
cephalothin, erythromycin, kanamycin, and streptomycin to be the antibiotics with the
higher recorded resistances. Additionally, it has been reported that more than 90% of
the Vibrio isolates tested showed resistance to streptomycin, whereas many strains (50%)
were resistant to penicillin, carbenicillin, ampicillin, cephalothin, and kanamycin [42].
These resistances are attributed to the environmental pressure posed by various human
activities [41].

The antibiotic profile of the strains was conducted not only for a possible selection
of a drug to be used in order to treat an infection, but also represents a marker of the
dominant spatial environmental conditions, considering the antibiotic resistance genes
that are exchanged between the most dominant bacteria, such as bacteria belonging to the
Vibrio species.

It is interesting to note that, for the Ampicillin, there is a significant difference between
the two populations. However, this is at the limits of Bonferroni correction. Additionally,
there is a valid statistical difference between the two sites regarding the resistance to
antibiotics in general, with the bacteria detected in fan mussels originating from Kalloni
being more resistant to antibiotics (p: 0.000, G-test: 185.5, df = 3). This is of particular
importance on account of the continuous efforts to detect healthy fan mussel populations
to be used in regeneration attempts.

4.3. Potential Impacts on Mortalities

Coastal and estuarine environments constitute marine mollusk habitat areas, which, due
to their filter-feeding behavior, accumulate a large amount of bacterial microbiota [43]. In the
marine environment, bivalve mollusks constitute habitats for the Vibrionaceae family and for
other bacterial species [8]. To date, 142 species have been reported within the Vibrionaceae
family, classified in seven genera, with the genus Vibrio representing the most variable
one [44,45]. However, members of the genus Vibrio have been described and characterized as
causative agents for many mass mortality episodes worldwide, affecting all the life stages of
bivalves [43]. Bacteria have formed symbiotic relationships with their hosts, benefiting them in
digestion, in nutrient absorption, in defense mechanisms against infectious pathogens, and in
the formation of reproduction strategies. Conversely, the host provides a stable environment
with a constant supply of nutrients for the symbiotic bacteria [46–48]. Some of them are also
vital for natural systems, including the carbon cycle and osmoregulation [49]. There is a wide
diversity of pathogenic bacteria belonging to the genus Vibrio associated with mass mortalities
in marine bivalve mollusks [50]. Among the pathogenic Vibrio spp., vibrios belonging to the
splendidus clade have been described many times as causative agents of pathogenicities in
marine organisms, and, in particular, to bivalves. V. splendidus has been reported worldwide
hosted by the Pacific oyster, Crassostrea gigas, causing mortalities of up to 100% of the infected
population in several cases [10,51–54]. However, V. splendidus clade bacteria have a wide
range of bivalve mollusk hosts, such as scallops, mussels, and clams, causing similar
harmful effects as in oysters [55–60]. Vibriosis in bivalve mollusks, caused by bacteria
belonging to the splendidus clade, is associated with histopathological lesions, such as the
disorganization of muscle fibers and strong inflammatory responses, as well as the general
depression of the physiology [56,61]. Another pathogenic agent, belonging to Vibrionaceae
family, causing mortalities in a wide variety of aquatic animals is V. harveyi, although it has
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been shown to belong to the microbiome of most of the infected hosts [62]. V. harveyi strains
have been detected in many hosts such as crabs, teleosts, crustaceans, and bivalve mollusks,
causing immune and physiological depression and mortalities [63–68]. V. mediterranei is
considered to be an emerging pathogen, being abundant in aquatic environments, infecting
hosts such as corals and seaweeds and causing mortalities synergistically with other
pathogens [69,70]. This Vibrio species was from plankton, sediments, and seawater samples
from two coastal areas in south Valencia, Spain [71].

Concerning the mortalities in fan mussel populations in the Mediterranean Sea, two
potential pathogens were firstly identified as the etiological agents causing the mortalities.
These pathogens were H. pinnae and Mycobacterium sp.; many other potential pathogens
were also detected in samples originating from areas where mortalities occurred, making
it more difficult to fully understand the phenomenon of these extended declines in the
populations of the species. Nevertheless, recent studies, both in the field and in laboratory
conditions, involve the presence of Vibrio species among the pathogens of fan mussel popu-
lations. Particularly Vibrio spp. of the Splendidus clade and V. mediterranei were detected in
a field study and in laboratory conditions, respectively, hosting the fan mussel [26,28]. The
current study demonstrated the existence of Vibrio bacterial strains in moribund samples
of P. nobilis, originated from Maliakos gulf, Fthiotis and Kalloni gulf, Lesvos island, the
last two surviving populations across the Greek coastline. Analysis of the low-scale winter
mortalities demonstrated differential patterns of pathogen abundance among the speci-
mens collected from the mortality events that took place in 2020 in the Greek coastal areas.
H. pinnae abundance was limited, present only in three samples from the total of thirty
collected, assuming that its spread is probably restricted by the lower temperatures. All
specimens infected by the haplosporidian parasite originated from Maliakos gulf, Fthiotis.
On the other hand, mycobacteriosis continued to exist in all fan mussel specimens in a
100% ratio in both examined areas.

Concerning the histopathological results, no correlation can be observed with the
presence of Vibrio spp., and this can be attributed to the complexity of the mortalities in
fan mussels. P. nobilis populations face a multi-pathogen situation alongside the direct
and indirect human pressures. Prevalence of mycobacteriosis is 100% in all populations
investigated across the Greek coastline during the last three years. With the presence of
this chronic disease, P. nobilis populations are affected by a chronic stress resulting in a
general vulnerability to diseases.

According to our results, low-temperature mortalities may be attributed to many
potential pathogens, acting as causative agents for the reduction of the natural populations,
even in the winter. V. splendidus strains, which were abundant in the majority of the exam-
ined specimens, have been reported to exhibit their highest virulence at low temperatures,
especially considering the presence of virulence genes, while their pathogenicity is reduced
at increased temperatures [58,72]. Virulence genes upregulate the transmission and the
reproduction rate of the pathogen [27]. The presence of virulence genes, particularly in
V. splendidus and V. mediterranei, support the scenario of pathogenicity of vibrios in the
Aegean Sea, as well as their contribution in winter mortalities. Our results therefore pro-
vide evidence that the devastation of the population of the fan mussel is far from clear,
suggesting that many microorganisms may be implicated in this phenomenon. More
epidemiological studies are needed, particularly from unaffected populations, to enlighten
these phenomena. The Sea of Marmara was recently determined as such an area where
healthy P. nobilis individuals, free of parasites, were detected [24]. Presumably, the outflow
from the Dardanelles towards the Aegean Sea, forming a physical gene flow barrier from
the Mediterranean in the direction of the Sea of Marmara [73], still prevents the expansion
of the P. nobilis pathogens in this direction. Considering the harmful effects of climate
change in combination with human pressure, despite the legal restrictions (illegal fishing,
destruction of habitats), an action plan is considered as an emergency measure to prevent
the extinction of the species, taking into account unaffected populations.
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