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Abstract

Research into the human connectome (i.e., all connections in the human brain) with the use of 

resting state functional MRI has rapidly increased in popularity in recent years, especially with 

the growing availability of large-scale neuroimaging datasets. The goal of this review article is 

to describe innovations in functional connectome representations that have come about in the 

past 8 years, since the 2013 NeuroImage special issue on ‘Mapping the Connectome’. In the 

period, research has shifted from group-level brain parcellations towards the characterization of 

the individualized connectome and of relationships between individual connectomic differences 

and behavioral/clinical variation. Achieving subject-specific accuracy in parcel boundaries while 

retaining cross-subject correspondence is challenging, and a variety of different approaches are 

being developed to meet this challenge, including improved alignment, improved noise reduction, 

and robust group-to-subject mapping approaches. Beyond the interest in the individualized 

connectome, new representations of the data are being studied to complement the traditional 

parcellated connectome representation (i.e., pairwise connections between distinct brain regions), 

such as methods that capture overlapping and smoothly varying patterns of connectivity 

(‘gradients’). These different connectome representations offer complimentary insights into the 

inherent functional organization of the brain, but challenges for functional connectome research 

remain. Interpretability will be improved by future research towards gaining insights into the 

neural mechanisms underlying connectome observations obtained from functional MRI. Validation 

studies comparing different connectome representations are also needed to build consensus and 
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confidence to proceed with clinical trials that may produce meaningful clinical translation of 

connectome insights.
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1. Introduction

The goal of mapping the human connectome (i.e., building a model of all connections in the 

human brain) can be tackled at different scales ranging from single neurons to macroscale 

brain regions/networks (Betzel and Bassett, 2017), and using different modalities such as 

structural and functional measurements. In this review article we focus on macroscale 

functional connectomics as measured with functional magnetic resonance imaging (fMRI), 

most commonly obtained while participants are at rest. Propelled by major investment from 

the National Institute of Health (NIH), the success of the young adult Human Connectome 

Project (HCP-YA; 2010–2016 (Van Essen et al., 2013)) has paved the way for subsequent 

consortia efforts to study the connectome in disease populations (Tozzi et al., 2020), and 

across the lifespan (Harms et al., 2018). Advances and insights from the HCP-YA have also 

informed recent population neuroimaging studies such as the UK Biobank imaging study 

(N = 100,000 older adults; (Miller et al., 2016)) and the longitudinal ABCD study (N = 

10,000 children followed up for 10 years; (Casey et al., 2018)). Across these big data efforts, 

connectome research plays a central role to study individualized prediction (Finn et al., 

2015; Tavor et al., 2016), correlates of behavior (Smith et al., 2015), and markers of disease 

(van den Heuvel and Sporns, 2019).

Modern connectomic research builds on a rich history that has developed from early 

microscopy and mapping insights from the 19th and 20th century (Brodmann, 1908; Catani 

et al., 2013; Nieuwenhuys, 2013; Triarhou, 2007; Van Essen and Glasser, 2018; Vogt and 

Vogt, 1903), through the early days of functional PET and MR connectivity (Biswal, 2012; 

Snyder and Raichle, 2012), to the riches of present day big data (whether it is ‘deep’ with 

many data points per subject or ‘wide’ with many subjects) and computational resources 

(Smith and Nichols, 2018). In this article, we present an overview of the new developments 

that have occured over the past eight years, since the last NeuroImage special issue on 

‘Mapping the Connectome’ (Smith, 2013). We discuss how approaches and ideas about 

connectome representations of fMRI data have advanced and the remaining open questions 

and challenges that lie ahead.

By studying the macroscale functional connectome with fMRI, the field has gained 

substantial insights into the inherent organizational principles of the human brain. Early 

work focused on uncovering group-level gross patterns of connectivity, including the 

discovery of the default mode network (Raichle et al., 2001), and additional reproducible 

networks that mimic task-related activation patterns (Smith et al., 2009), and that are 

linked to underlying structural connectivity (Honey et al., 2009). Recent years have seen 

a shift from these landmark early efforts to map group-level patterns of connectivity 
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towards between-subject studies of behavior (Kashyap et al., 2019; Smith et al., 2015), 

and interrogations of individualized functional organization (Bijsterbosch et al., 2018; Braga 

and Buckner, 2017; Gordon et al., 2017; Kong et al., 2019; Wang et al., 2015). This shift 

is critical because there exists substantial inter-individual variability in brain functional 

organization, especially in the association cortices (Mueller et al., 2013). Inter-individual 

variability is a fundamental property of the human brain that is already prominent in 

newborn infants (Stoecklein et al., 2020). Moreover, similar spatial distribution of inter-

individual variability may be present in macaque monkeys and humans which differentiates 

the multimodal association areas from primary areas (Ren et al., 2020), suggesting that this 

phenomenon has an evolutionary history. In line with this group-to-subject shift in applied 

scientific findings, methodological efforts are slowly shifting away from the creation of 

group-based functional atlases (Craddock et al., 2012; Power et al., 2011; Yeo et al., 2011), 

towards methods that capture unbiased individualized connectome variation in healthy 

subjects as well as in patients (Bijsterbosch et al., 2019; Brennan et al., 2019; Glasser et 

al., 2016a; Hacker et al., 2013; Harrison et al., 2020; Haxby et al., 2020; Lebois et al., 2021; 

Li et al., 2019; Wang et al., 2020a; Wang et al., 2020b). In parallel with this appreciation of 

between-subject differences, the field has also started to move beyond focusing only on the 

view of the brain as a modular set of regions/networks with clear boundaries to also study 

smooth gradients of organization (Huntenburg et al., 2018; Margulies et al., 2016; Valk et 

al., 2020), and complex spatio-temporal modes of function (Abbas et al., 2019; Vidaurre et 

al., 2018). These different representations of the functional connectome offer complimentary 

(rather than mutually exclusive) insights into brain organization, which is recognized in the 

modern (Bijsterbosch et al., 2020; Glasser et al., 2016a; Van Essen and Glasser, 2018), 

and historical literature (Mesulam and Mufson, 1985). The goal of this review article is to 

provide a brief primer on the various representations of the human connectome that have 

emerged in recent years.

We begin by reviewing advances in preprocessing strategies to address systematic confounds 

in functional connectomes (Section 2). We summarize the traditional conceptualization of 

the functional connectome based on parcellating the brain into a set of distinct regions 

(Section 3), and then discuss non-parcellated connectome representations such as gradients 

(Section 4). The shift towards individualized connectome representations and associated 

challenges is the topic of Section 5. In the conclusion (Section 6), we highlight future areas 

of research that will be important next steps towards the maturation of the field of rfMRI 

connectomics.

2. Advances in data preprocessing

Selective yet effective fMRI data clean up is critically important for all connectome 

representations, especially for individual subject representations of brain connectivity and 

activity (see Section 5). For example, the HCP’s approach to brain imaging preprocessing 

and analysis relies on multiple denoising stages. The overall goal is to remove the fMRI 

fluctuations that are related to head motion, respiratory and cardiac physiology, scanner 

artifacts, and thermal noise without removing neurally related fMRI activation. Validating 

such an approach is challenging and we recommend the use of experimental modulation 

of the expected neural signal (i.e., a task-based paradigm) to ensure that denoising steps 
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are only removing noise and retaining all neural signals. Indeed, we have shown that the 

use of spatial ICA (ideally combining across fMRI runs in each individual subject) and 

the machine learning component classifier FIX (Griffanti et al., 2014; Salimi-Khorshidi et 

al., 2014) are highly accurate at removing spatially specific artifacts from head motion, 

physiology, and scanner artifacts (Glasser et al., 2018). This approach is analogous to the 

popular “scrubbing” approach advocated by others (Power et al., 2020; Power et al., 2012), 

but ICA has the advantage of removing variance in proportion to the amount of noise in 

a given frame (a weighted or “soft” scrubbing rather than an all or nothing approach) and 

also cleaning those timepoints that lie below a scrubbing threshold without removing neural 

signal (Glasser et al., 2018). Indeed, recent work has shown that physically restraining 

subjects results in additional noise reduction benefits above and beyond scrubbing even 

in low motion, unscrubbed timepoints (Power et al., 2019), indicating that cleaning the 

non-scrubbed timepoints is also important. Although both scrubbing and spatial ICA-based 

denoising reduce temporal degrees of freedom, so long as there is shared information 

amongst the artifacts, ICA-based denoising will remove fewer temporal degrees of freedom 

than scrubbing, which will improve statistical power. Residual image distortions remain after 

standard methods of rigid image alignment (Montez et al., 2021) arising from head motion 

changing the magnetic field inhomogeneity and slice-to-volume mis-registrations in gradient 

echo EPI data.These distortions will require explicit susceptibility by motion interaction 

modeling (Andersson et al., 2001; Andersson et al., 2018) and slice-to-volume alignment 

(Andersson et al., 2017) for optimal correction (and to avoid showing up as artifacts in ICA). 

Relevant tools already exist for spin echo diffusion MRI and are coming in the future for 

gradient echo fMRI in FSL and the HCP preprocessing pipelines.

Importantly, multiple publications have shown that spatial-ICA-based denoising does not 

remove artifactual global blood flow changes related to blood partial pressure of CO2 arising 

from changes in respiratory rate and depth (Burgess et al., 2016; Glasser et al., 2018; Power, 

2017; Power et al., 2017; Siegel et al., 2017). Early work often confused the causality of 

these global respiratory effects, attributing them to subject motion given that they are at 

times correlated (Power et al., 2015; Power et al., 2014; Satterthwaite et al., 2012). However, 

more recent work with multi-echo fMRI has shown that spatially specific artifacts related to 

head motion arise from different S0-dependent mechanisms,1 and global respiratory artifacts 

arise from a T2* -dependent mechanism just like the neural signal does (Power et al., 2018). 

Moreover, head motion, like any other “task” or behavior, produces both T2* -dependent 

neural BOLD and artifactual S0-related effects on the fMRI timeseries (Glasser et al., 2018; 

Power et al., 2020).

In the HCP’s denoising approach, individual subject spatial ICA-based denoising is applied 

immediately after spatial minimal preprocessing (Glasser et al., 2013), and prior to cross-

subject areal-feature-based registration (Robinson et al., 2018; Robsinson et al., 2014), 

ensuring that spatially specific artifacts that might influence cross-subject registration are 

1For example due to T1-recovery related spin history effects, due to interactions between the head coil receive field and head motion, 
due to head motion breaking the assumptions of the pulse sequence such as differential excitation and readout locations in space, and 
due motion changing the magnetic field inhomogeneities magnetic leading to differential susceptibility induced gradient echo signal 
loss.
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removed and at the same time avoiding changes to the neural signal that might influence 

such registration. Using areal-feature-based cross-subject registration has an additional 

advantage with group-defined parcellations because it ensures that most differences in 

the size, shape, and position of cortical areas are represented as spatial differences in the 

registration, rather than differences in measured brain functional activity or connectivity. 

Notably, such spatial bias in connectivity can be substantial when considering network-level 

organization (Bijsterbosch et al., 2018), and limiting the information ‘leakage’ at the level of 

cortical areas is therefore an important step towards disambiguating spatial and connectivity 

information. This may have important implications for identifying brain measures that are 

relevant to behavior or other traits outside the scanner, and avoid inaccurately attributing 

areal differences as functional connectivity or activity differences. Thus, measures of brain 

areal size, shape, and position (which can be represented at the areal level as surface areas 

or volumes or at the grayordinate level as isotropic and anisotropic distortion maps or 

registration induced displacement maps) represent a fertile untapped resource for biomarkers 

(Kong et al., 2019; Li et al., 2019).

Subsequent to cross-subject areal-feature-based registration, the HCP’s denoising approach 

has been extended to perform group level denoising of global respiratory noise with 

temporal ICA (Glasser et al., 2018; Power et al., 2020), making use of the improved 

cross-subject correspondence. Temporal ICA is used because, in contrast to spatial ICA, 

it is able to represent spatially global fluctuations in a single or a few components, rather 

than mixing them across all components so as to satisfy a spatial orthogonality constraint 

(instead, the components are constrained to be temporally orthogonal). ICA performs best 

when there are many samples along the axis being orthogonalized, which is why spatial 

ICA-based denoising is done at the individual subject level where hundreds of thousands of 

voxels are available and temporal ICA works best at the group level where again hundreds 

of thousands of timepoints are available in large datasets. Components representing global 

respiratory noise can thus be removed selectively using temporal ICA while retaining neural 

signal in its unchanged form. Indeed, this is a key advantage of temporal ICA over global 

signal regression (Glasser et al., 2018), which removes task-related neural signal (Glasser 

et al., 2018) and spuriously increases anti-correlations in functional connectivity (Glasser et 

al., 2018; Murphy et al., 2009). Interestingly, the use of aggressive regression of movement 

regressors (i.e., regressing out all variance explained by movement regressors) has also 

been shown to remove task-related neural signal (Glasser et al., 2019), and thus, is no 

longer recommended in the HCP approach to brain imaging. Similarly, other unselective 

approaches to functional MRI denoising including band-pass filtering, tissue-based nuisance 

regressors, and blind tissue-based PCA decompositions have yet to be validated using 

task-fMRI-based paradigms with a known ground truth and likely are not beneficial above 

and beyond spatial and temporal ICA cleanup. For example, head motion also causes 

neurally driven BOLD changes in the timeseries because motor and sensory cortices 

activate during head motion (Glasser et al., 2018; Power et al., 2020). There are also 

neural signals that correlate with respiration during a task or resting state (e.g. stimulus 

correlated breathing) (Glasser et al., 2018). Overall ICA-based cleanup for HCP-style high 

spatial and temporal resolution data aims to retain all neural signal in the fMRI scan 

(including the neural activation resulting from to e.g., head motion or neural signal that is 
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correlated with respiration), while removing all temporal artifacts arising from head motion 

or respiration. One can always then choose the neural signal that one wants to look at 

according to the goals of one’s study after such selective denoising (e.g., choosing to remove 

all traces of head motion from the data including those that arise from neural activation and 

thereby reducing fluctuations in the head sensorimotor functional network accordingly). We 

recommend that such study paradigm choices about which neural signal to retain should 

be conscious decisions that are justified in a study’s methods rather than being silently 

imposed by non-selective denoising approaches. Datasets without the emerging standards of 

high spatial and temporal resolution may be more limited in their denoising options because 

neural and artifactual contributions cannot be fully separated, and such limitations should be 

carefully considered when planning new fMRI studies.

Finally, thermal noise presents an interesting challenge for data cleanup. Although methods 

have been developed to reduce thermal noise while at the same time not spatially or 

temporally smoothing the data (Glasser et al., 2016b), similar to temporal smoothing, these 

methods reduce temporal degrees of freedom, which reduces statistical efficiency. Thus, 

the optimal approach for thermal noise removal likely depends on the planned analysis 

approach, with correlation-based approaches (e.g. the pairwise correlation of two noisy 

signals when computing a dense connectome) potentially benefiting more from thermal 

noise removal than regression-based approaches such as dual regression (the relationship 

between noisy data and relatively noise free component timeseries derived from weighted 

averages across the brain). That said, the most effective approach across a wide spectrum of 

analyses likely involves neuroanatomically-informed spatial smoothing (e.g., as achieved in 

good-quality parcellations) (Glasser et al., 2016a), because it reduces thermal noise without 

reducing temporal degrees of freedom.

3. The parcellated connectome

To achieve the connectomics goal of mapping all connections in the brain, an important 

first step is to set the units of the map (i.e., the elements between which connections 

will be drawn). As an intuitive example, say we want to map out all social interactions 

in a country. If we treat each person as a unit and draw out all interactions amongst all 

people, this ‘social connectome’ of a country would be very dense and difficult to interpret. 

Therefore, we may want to group people together so that we can map out connections 

between households, families, neighborhoods, or other social groupings like school/work 

departments or institutions. As the units become bigger, the number of connections in the 

social connectome as a whole reduces because social interactions within a unit are no longer 

considered as between-unit connections. The same holds for the functional connectome, 

such that there is ambiguity between representing connectivity information as part of the 

unit definition or as between-unit connections. This analogy also points to ambiguities in 

the criteria used to determine the units. For example, should a college student who lives 

on campus during the week and returns home on weekends be included in the family-home 

household unit or in the college dorm household unit, or both? Similar questions and 

ambiguities exist when determining brain units for functional connectomics.
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The smallest possible units in fMRI are the measurement voxels, or gray matter 

vertices after surface-based preprocessing (Glasser et al., 2013). Notably, these smallest 

measurement units already contain thousands of neurons and are therefore far removed 

from the smallest relevant biological units of individual neurons or even synapses. It is less 

common in functional connectomics to map connections between all voxels/vertices and 

instead voxels are typically grouped together into larger regions, although recent findings 

suggest that fine-scale “dense” connectivity may contain behaviorally relevant information 

that is lost in the coarse-scale regional connectome (Feilong et al., 2020). Nevertheless, 

analyses are often performed at the ‘areal’ level to gain computational, statistical, and 

interpretational efficiencies (Eickhoff et al., 2018; Glasser et al., 2016b). Such grouping 

of data is reasonable as each brain area is thought to contribute distinctly to the neural 

computations carried out within the functional network underlying a given behavior (Van 

Essen and Glasser, 2018). Brain areas also often have specialized architecture (i.e., internal 

organization and local connectivity), a unique pattern of distant connectivity with other 

areas, and may spatially represent topographic maps of sensory or motor systems (Sereno 

et al., 1995), or cognitive systems (Huth et al., 2016). Therefore, a lower rank parcellation 

of the brain into a smaller number of units each made up of many voxels/vertices is most 

frequently used for the functional connectome. Of note, variation of size within a given 

parcellation may influence the discoverability and polygenicity across parcels (van der Meer 

et al., 2020). Thus, depending on the study goal a parcellation with more or less equally 

sized parcels may be preferred.

For brevity, we present a brief overview of the main criteria for brain parcellations in Table 

1 and summarize the characteristics of several widely used publicly available parcellations 

in Table 2 (for further detail see (Bijsterbosch et al., 2017b)). The nomenclature for brain 

units defined by brain parcellations is diverse, and units may be referred to as nodes, 

parcels, networks, or regions. Naming conventions based on anatomical principles have been 

suggested for low-dimensional network parcellations (Uddin et al., 2019), and for higher 

dimensional areal/regional parcellations (Glasser et al., 2016a).

Once the units for the functional connectome have been defined, the subsequent steps for 

defining the parcellated connectome involve extraction of node time series and defining the 

method to estimate pairwise connections between nodes (also known as edges). For binary 

parcellations, the node time series is often defined as the average time series across all 

voxels within the parcel. For weighted parcellations such as those derived using Independent 

Component Analysis (ICA, (Beckmann and Smith, 2004)), the node time series can be 

extracted using dual regression (Nickerson et al., 2017) or back projection (Calhoun et al., 

2001). Once the node time series have been extracted, edges are often defined as either 

the full correlation (Pearson’s), the partial correlation (after residualizing the two node time 

series with respect to all other nodes) with or without regularization, or the covariance 

(Smith et al., 2013).

Over the past eight years, there have been a number of important advances for parcellated 

representations of the connectome. The development of the HCP-MMP1.0 brain parcellation 

based on multimodal HCP-YA data (task, rest, myelin, cortical thickness) bridges between 

anatomical and functional mapping efforts and highlights examples of atypical topological 
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organization (Glasser et al., 2016a). Although some parcellations treat “homogeneity” as 

the end goal to be optimized (Gordon et al., 2016; Schaefer et al., 2018), it should 

be noted that brain areas are often not homogeneous (Van Essen and Glasser, 2018) 

and spatially overlapping weighted components such as those from ICA or probabilistic 

functional modes will therefore achieve higher homogeneity (see Section 4). Nevertheless, 

the HCP’s parcellation provides an alternative somatotopic subregional parcellation for 

sensorimotor cortex that is already being used together with the areal parcellation in 

translational studies (Chandrasekaran et al., 2020). It also provides a cortical areal classifier 

that enables mapping cortical areas in individual subjects, even when those areas are 

atypical in layouts and not aligned with the best available surface registration methods (see 

Section 5). Furthermore, the characterization of the parcellated connectome as a fingerprint 

has been a valuable catalyst for efforts to predict behavior and clinical symptomatology 

(Brennan et al., 2019; Finn et al., 2015; Lebois et al., 2021; Li et al., 2019; Wang et 

al., 2020a; Wang et al., 2020b). Related to these efforts, recent work has shown that 

transformations of parcellated connectivity estimates (such as tangent space projections) 

can improve performance when using subsequent machine learning methods for behavioral 

prediction (Dadi et al., 2019; Pervaiz et al., 2020). Although the parcellated connectome 

is still the most common representation for functional connectomics, criticisms have also 

started to emerge. For example, it has been shown that between-subject connectivity 

differences in the parcellated connectome are mixed with spatial variability in network 

topography (Bijsterbosch et al., 2018; Li et al., 2019), which has led to increased interest in 

non-parcellated and/or individualized connectome representations (Sections 4 and 5). There 

has also been increased interest in node-based analysis that investigate signal fluctuation 

instead of signal correlations (Bijsterbosch et al., 2017a; Duff et al., 2018; Miller et al., 

2016). Lastly, although causal inference on the directionality of connections is of great 

interest (Reid et al., 2019), the temporal slowness of fMRI and regional variability in 

the hemodynamic response function (Friston, 2009) limit the accuracy of many causal 

connectivity estimates, especially lag-based methods (Smith et al., 2011). Nevertheless, 

recent methodological advances such as Bayesian Nets and dynamic causal models for 

resting state may hold promise for causal inferences (Mumford and Ramsey, 2014; Park et 

al., 2018).

4. Non-parcellated connectome representations

The parcellated connectome approaches discussed in the previous section provide an 

intuitive framework for mapping the functional connections in the brain. At the same time, 

in many cortical parcels, borders vary depending on the chosen modality and may not show 

clear borders in all modalities or with all analysis approaches (Haak and Beckmann, 2020; 

Huntenburg et al., 2018; Von Bonin and Bailey, 1947). Simply averaging within parcels 

assumes that connectivity profiles are homogeneous within a specific parcel, with only 

one dominant pattern (Haak and Beckmann, 2020). However, function and microstructure 

are often highly variable within a region, and inconsistent across modalities. Moreover, 

variations in both function and structure display “multiplicity” (i.e., overlap) and are 

organized along more than one meaningful axis of variance (Haak and Beckmann, 2020). 

Such challenges of diverse and overlapping functional organization cannot be overcome by 
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using finer grained parcellations (Bijsterbosch et al., 2020), but rather may be best studied 

by multidimensional connectome representations.

One approach to account for multiplicity is to allow for spatial overlap in the definition 

of network organization. For example, Probabilistic Functional Modes (PROFUMO) is 

a Bayesian dimensionality reduction algorithm that estimates network structure using 

temporal and spatial priors, thereby avoiding the spatial independence constraint that is 

enforced either explicitly or implicitly in other parcellation methods (such as ICA) (Harrison 

et al., 2020; Harrison et al., 2015). The definition of potentially overlapping networks adds a 

spatial overlap correlation matrix in addition to the temporal correlation matrix, and previous 

work has shown that individual differences in spatial network overlap may be more strongly 

associated with behavior than individual differences in temporal correlation (Bijsterbosch et 

al., 2019).

Another way to address multiplicity is by profiling cortical organization based on the 

relationships between voxels or vertices, and extracting multiple axes of eigenvariance 

within that organization (Haak and Beckmann, 2020; Huntenburg et al., 2018; Margulies 

et al., 2016; Marquand et al., 2017; Paquola et al., 2019). Such methods can be applied 

at the regional (Haak et al., 2018; Marquand et al., 2017; Vos de Wael et al., 2018), or at 

the global level to study so-called gradients or natural axes in functional brain organization 

(Huntenburg et al., 2018; Margulies et al., 2016). These approaches capture the similarity 

of connectivity profiles between two given units (voxels, vertices, parcels) and order them 

as a function of their similarity. E.g. two units with similar gradient values have similar 

functional connectivity profiles, and can be interpreted as integrated, whereas two units 

with maximally differing gradient scores have different connectivity profiles, and can be 

interpreted as functionally segregated (Shine et al., 2019). Gradients can be reliably derived 

from connectome information (Hong et al., 2020) and capture both functional and structural 

features of brain organization (Huntenburg et al., 2018). The resulting overlapping axes of 

organization known as smooth connectivity ‘gradients’ capture the internal organizational 

principles of a certain region or assembly of regions, and provide a low dimensional 

coordinate system of neural organization.

Genetic, transcriptomic, and evolutionary patterns have been shown to follow gradual axes 

of change along the cortex and hippocampus (Burt et al., 2018; Margulies et al., 2016; 

Valk et al., 2020; Vogel et al., 2020; Xu et al., 2020), supporting the intrinsic relationship 

between the physical layout of the brain and its function (Fornito et al., 2019; Mesulam, 

1998). For example, at the global level, it has been shown that the principal axis of 

intrinsic functional organization follows a trajectory from unimodal, primary, regions to 

transmodal association cortices (Margulies et al., 2016), aligning with cortical expansion 

and functional reorganization in primate evolution (Van Essen and Dierker, 2007; Xu et 

al., 2020). A different, tertiary, organizational pattern juxtaposes the default mode network 

with the multi-demand network (Assem et al., 2021; Assem et al., 2020; Duncan, 2010), 

possibly reflecting a balance that underlies working memory performance and goal-directed 

cognition (Murphy et al., 2020; Spreng et al., 2010). Conversely, at the regional level it 

has been shown that functional organizational axes within the hippocampus align with 

anterior to posterior patterns and functional co-activation, whereas lateral-medial patterning 
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is associated with cortical microstructure as measured by T1w/T2w contrast (Vos de Wael 

et al., 2018). Also the internal organization of the human striatum seems to be governed by 

smooth axes within intrinsic functional organization, reflecting its connections to the cortex 

and capturing behavioral variability (Marquand et al., 2017). Although the understanding 

of how different gradients organize brain regions and their interrelationship is still at its 

beginning, it has provided novel information and understanding of brain organization, its 

development, evolution and disorder. For example, Hong and colleagues have been able to 

show alterations of functional organization along the principal functional gradient in Autism 

Spectrum Disorders, aligning with notions of altered cortical development in ASD (Hong et 

al., 2019).

Additional connectome representations that incorporate dynamic temporal information have 

also emerged, including hidden markov models (Vidaurre et al., 2018), and quasi periodic 

waves (Abbas et al., 2019). Parcellated and non-parcellated connectome representations 

provide complementary insights, and may even be meaningfully combined (Dohmatob et 

al., 2021). At the same time, integrating the complementary insights across connectome 

representations becomes increasingly challenging because the implications of new results 

obtained using one connectome representation for other representations are often not 

clearcut. Increased comparative and collaborative efforts are therefore needed to ensure 

cumulative growth and avoid siloing (Bijsterbosch et al., 2020).

In summary, this section described a number of advances in connectome representations that 

move beyond the traditional parcellated approach. In Table 3 we provide a summary of some 

key advantages and disadvantages of these non-parcellated connectome representations 

compared to the traditional parcellated approach. Overall, although there certainly has 

been a historical tension between the functional segregation versus holistic views of brain 

function have engendered debate for over 100 years (Zilles and Amunts, 2010) with early 

physicians such as Broca, Wernicke, and Lichtheim finding that brain functions were lost 

when specific parts of the brain were damaged and classical neuroanatomists like the Vogts 

and Brodmann working to identify cortical areas based on differences in microscopically 

visible properties (myelo and cytoarchitecture). Then other neuroanatomists such as Bailey 

and von Bonin or Lashley and Clark expressed skepticism of many of Brodmann’s and 

the Vogts’ boundaries and favored coarser, more gradual and “gradient-like” subdivisions. 

Although the juxtaposition between sharp boundaries and smooth gradient-based approaches 

might appear as a more modern version of this debate. There can be well-defined boundaries 

between cortical areas (e.g. visual areas) and yet riding on top of these more gradual 

gradients in functional connectivity from early to late areas along the dorsal and ventral 

visual streams. Thus, these concepts are not in our view mutually exclusive. Indeed Van 

Essen and Glasser (Van Essen and Glasser, 2018) attempted to bridge the cortical area and 

functional network concepts in relation to human behavior by positing that “any specific 

behavior might have a distinctive functional network, similar behaviors may have largely 

overlapping functional networks, and each cortical area may be responsible for a portion of 

the computations necessary to produce a behavior when working in concert with its partners 

in that behavior’s functional network.”.
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5. The individualized connectome

Brain maps are often instantiated first at the group level and this is particularly valid if 

there has been care taken to ensure that individual subjects’ brain areas line up as well 

as is possible (Coalson et al., 2018; Glasser et al., 2016a). The use of group averages 

helps to define what is typical in a population, achieves correspondence across subjects 

to enable like-for-like comparisons, and averaging across subjects can markedly improve 

the contrast-to-noise ratio for subtle effects. Those advantages aside, it is well known that 

even when areal-feature-based cortical surface registration is used to precisely align cortical 

areas (Robinson et al., 2018; Robinson et al., 2014), a significant fraction of individual 

subjects will have atypical layouts of at least some cortical areas (Glasser et al., 2016a). 

Thus, individualized representations of connectomes will likely be most accurate for most 

subjects. This accuracy will represent a tradeoff between correctly capturing true individual 

variability in cortical areal borders and the inherently increased uncertainty of mapping 

individual subject areal boundaries using a limited amount of data with lower contrast-to-

noise ratio than group level data. Indeed, recent explorations of this tradeoff (Laumann et 

al., 2015; Mueller et al., 2015), showed that increasing the amount of resting state fMRI 

data markedly improved the reliability of individual estimates of brain connectivity. Further 

work is needed to evaluate the effects of differing amounts, paradigms (e.g., resting state 

vs traditional task vs naturalistic movies), and field strengths (e.g., 3T vs 7T) of fMRI data 

on the accuracy of cross-subject areal feature based registration and individual subject areal 

classification.

Individual subject parcellation may be achieved using a variety of approaches. One approach 

relies on learning the multi-modal areal fingerprint of each human cortical area and using 

grayordinate-wise multi-modal maps in individuals to find each cortical area using a 

machine learning areal classifier (Glasser et al., 2016b; Hacker et al., 2013). Importantly, 

such an approach is capable of identifying cortical areas even in individuals whose 

areas have atypical layouts and thus will not be aligned with areal-feature-based surface 

registration. Similar to such registration, and as mentioned above, the optimal amount, type, 

and field strength of fMRI used for areal classification has not yet been characterized and 

ongoing work seeks to do this. Additionally, accurate individual subject areal classification 

will enable exploration of the neurobiological significance of atypical brain areas and 

answer the question of whether humans all have the same set of brain areas or if some 

have extra areas and some are missing areas. Accurate fMRI denoising (Section 2) will be 

critical to ensuring that noise does not “create a brain area” in an individual subject and that 

neural signal is not removed to cause a “missing brain area.”

Another approach attempts to identify functional networks defined at the group-level in each 

individual subject’s brain (Wang et al., 2015). Functional organization for each individual 

is determined based on functional connectivity using an iterative adjusting algorithm guided 

by the group-level atlas and inter-subject variability pre-estimated in the population (Mueller 

et al., 2013). The central idea is to allow idiosyncrasies of the individual to drive the 

network solution. Critically, the influence of the population-based atlas on the individual 

brain parcellation is not identical for every subject or every brain region, and is flexibly 

adjusted based on the known distribution of individual variability and the signal-to-noise 
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distribution in the particular subject. Specifically, a weighting strategy is applied where 

the population-based atlas will have less impact than the individual subject’s data on brain 

regions known to have high levels of inter-subject variability, or brain regions showing 

good SNR in a particular subject. It has been shown that functional networks localized 

using this technology may be validated by invasive cortical stimulation mapping in surgical 

patients (Shen et al., 2020; Wang et al., 2015). A further hierarchical Bayesian approach that 

iteratively optimizes functional networks at the group and individual levels is probabilistic 

functional modes (PROFUMO) (Harrison et al., 2020; Harrison et al., 2015).

A final approach to brain alignment, hyperalignment, is worth mentioning here. The area-

feature-based approach to cross-subject registration mentioned above clearly improves the 

correspondence of brain areas across subjects (Coalson et al., 2018), but is limited in that it 

cannot account for topology-breaking cross-subject differences. For example, if brain areas 

swap positions or split and join as does area 55b in 11% of subjects (Glasser et al., 2016a), 

areal feature-based registration is unable to align them. The HCP’s approach to brain 

imaging preprocessing and analysis relies on the areal classifier to handle such topologically 

incompatible differences at the brain area level, but what if one wants to align across 

subjects at an even more fine-grained level while at the same time allowing topological 

incompatibilities? Hyperalignment promises such alignment (Haxby et al., 2020), and 

indeed does show improvements beyond and above areal-feature-based registration (Feilong 

et al., 2020). Hyperalignment forgoes the traditional spatial alignment goals of achieving 

voxel-to-voxel or vertex-to-vertex correspondence across individuals, and instead aligns 

subjects based purely on activation or correlation information. A hybrid strategy might use 

the areal classifier to identify corresponding areal searchlights across subjects to enable 

well constrained within-area hyperalignment, as topological cross-subject correspondence 

is unlikely at neurobiologically lower levels of the hierarchy than cortical areas, given the 

break down at this level already in many subjects.

Moving from group-parcellations to individualized connectome representations offers many 

advantages. Firstly, the mean time series extracted from a parcel forms the basis of 

many connectomic analyses, and this average time series does not represent a meaningful 

functional unit if the boundaries of the parcel do not functionally align for the individual 

(Allen et al., 2012). Secondly, studying the individualized connectome offers insights into 

previously untapped sources of between-subject variation such as differences in the size, 

shape, position and non-topological variation of brain areas and networks (Bijsterbosch 

et al., 2018; Glasser et al., 2016a; Kong et al., 2019). Thirdly, accurately capturing 

individualized areal/network boundaries helps to disambiguate between spatial and temporal 

origins of individual differences, which is important to ensure appropriate interpretation 

of results (Bijsterbosch et al., 2019). In general, the importance of accurately modeling 

individual connectomes increases along with increased interest in individual difference 

research such as correlations with behavior, individual-level predictions, and clinical 

biomarker studies.

For individual difference research, sample size is another important consideration because 

sampling variability leads to inflated and inconsistent correlations between connectome 

representations and non-imaging variables such as behavior/ lifestyle/ cognition/ symptoms 
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(Marek et al., 2020). Importantly, we have to adjust our expectations and appreciate that 

realistic and reproducible effect sizes of brain-behavior correlations are likely (much) 

smaller than previously reported (Lindquist, 2021), and accordingly larger samples are 

needed to reliably and reproducibly detect these effects. In the past, most studies had 

relatively small sample sizes and therefore required high thresholds for significance due 

to simple power restrictions and by definition any findings that passed significance had a 

relatively high effect size. However, these findings have often failed to replicate in new 

samples (Ioannidis, 2017; Poldrack et al., 2017), because they are largely driven by sampling 

variability (Marek et al., 2020). The availability of large-scale neuroimaging datasets offers 

opportunities for addressing past challenges with reproducibility. However, this requires 

an acceptance that small, but reproducible, effect sizes are the norm and are worthy of 

investigation (Lindquist, 2021).

6. Conclusion

The field has come a long way in the years since the last NeuroImage special issue on 

the connectome. The way the functional connectome is conceptualized (both theoretically 

and analytically) has expanded to take into consideration overlapping networks and multiple 

organizational axes/gradients. These different representations of resting state fMRI data 

offer very valuable and complementary insights into the organizational principles of 

brain function. Additionally, greater awareness of between-subject variability has driven 

detailed assessments of the individualized connectome and methodological advances in 

preprocessing, cross-subject registration, and individualized parcellation. In Fig. 1, we 

provide a schematic of recent brain representations positioned along the two major axes 

of innovation (i.e., non-parcellated and individualized representations). The positioning 

of connectome representations along this schematic are relative and approximate based 

on implementations and examples in the current literature (i.e., axes do not represent 

quantifiable units). Nevertheless, we hope that this schematic - along with the summary 

Tables in this article - will aid the reader in their understanding of the relationships between 

different representations of the connectome.

Given the expansive landscape of definitions, methods, and trade-offs in studying the 

connectome, the term ‘functional connectivity’ has become overly broad and perhaps 

inaccurate. Therefore, greater specificity is needed to describe how we represent the brain, 

which assumptions and constraints are required, and how these might affect results and 

interpretation (Bijsterbosch et al., 2020).

Looking ahead, many unanswered questions about the functional connectome remain. 

Further research is needed to better understand the biological basis of fMRI-derived 

connectomes. For example, detailed comparisons of non-invasive functional connectomes 

to invasively defined structural connectomes or invasive functional recordings in non-human 

primates may enable validation of the best ways to model functional connectivity (Bentley et 

al., 2016; Hayashi et al., 2021). Additionally, more work is needed to establish the clinical 

utility of connectomic measures, for example for early diagnosis (e.g., in Alzheimer’s 

Disease), and prediction of treatment response (e.g., in Major Depressive Disorder). 

Although existing small-scale studies are suggestive of meaningful effects, full-scale clinical 
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trials are needed to achieve meaningful clinical translation and impact patients. One factor 

that reduces the likelihood of such clinical trials is the lack of white-paper agreement on 

appropriate preprocessing and analysis approaches. To move towards such agreement, more 

comparative benchmarking research (Botvinik-Nezer et al., 2020; Ciric et al., 2017; Dadi et 

al., 2019), standardization (e.g., BIDS), and collaboration is needed.
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Fig. 1. 
Overview of methods and parcellations as a function of algorithmic constraints (x-axis; 

parcellated to non-parcellated) and input data (y-axis; individual subject to group).
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