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Abstract

Background: Cellular senescence is a specialized form of growth arrest that is generally irreversible. Upregulated p16, p53,
and p21 expression and silencing of E2F target genes have been characterized to promote the establishment of senescence.
It can be further aided by the transcriptional repression of proliferation-associated genes by the action of HP1c, HMGA, and
DNMT proteins to produce a repressive chromatin environment. Therefore, senescence has been suggested to functions as
a natural brake for tumor development and plays a critical role in tumor suppression and aging.

Methodology/Principal Findings: An in vitro senescence model has been established by using K562 cells treated with
50 nM doxorubicin (DOX). Since p53 and p16 are homozygously deleted in the K562 cells, the DOX-induced senescence in
K562 cells ought to be independent of p53 and p16-pRb pathways. Indeed, no change in the expression of the typical
senescence-associated premalignant cell markers in the DOX-induced senescent K562 cells was found. MicroRNA profiling
revealed upregulated miR-375 in DOX-induced senescent K562 cells. Treatment with miR-375 inhibitor was able to reverse
the proliferation ability suppressed by DOX (p,0.05) and overexpression of miR-375 suppressed the normal proliferation of
K562 cells. Upregulated miR-375 expression was associated with downregulated expression of 14-3-3zeta and SP1 genes.
Autophagy was also investigated since DOX treatment was able to induce cells entering senescence and eventually lead to
cell death. Among the 24 human autophagy-related genes examined, a 12-fold increase of ATG9B at day 4 and a 20-fold
increase of ATG18 at day 2 after DOX treatment were noted.

Conclusions/Significance: This study has demonstrated that in the absence of p53 and p16, the induction of senescence by
DOX was associated with upregulation of miR-375 and autophagy initiation. The anti-proliferative function of miR-375 is
possibly exerted, at least in part, by targeting 14-3-3zeta and SP1 genes.
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Introduction

Cellular senescence is a specialized form of terminal differen-

tiation that it is generally irreversible and is associated with

characteristic alterations in morphology, physiology, gene expres-

sion [1–4], a typical upregulated senescence-associated-b-galacto-

sidase (SA-b-gal) activity [5], and novel changes in chromatin

architecture, i.e. the formation of senescence-associated hetero-

chromatic foci (SAHF) [6]. It is believed that cellular senescence

played a role in tumor suppression and aging [6] since the

accumulation of senescent cells, the disturbance of the microen-

vironment, and the resulted compromised tissue function were

often observed in age-related pathologies [6,7]. Recent studies

have identified Rb, p53, and Skp2 as critical genes common to

initiation, execution and maintenance of senescence-associated

growth arrest [8,9]. However, the mechanisms responsible for the

alterations of gene expression during cellular senescence remained

unclear.

MicroRNAs (miRNAs) are short (19 to 23 nucleotides) non-

coding RNAs that are cleaved from 70- to 100-nucleotide hairpin-

shaped precursors and act to decrease protein synthesis through

translational repression or mRNA degradation [10,11]. Therefore,

miRNAs are crucial factors of diverse regulation pathways,

including development, cell differentiation, proliferation and

apoptosis [12–15] and miss-regulation of miRNA expression

contributes to many human diseases and cancers [16–19].

MiRNAs have also been implicated in cellular senescence and
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organismal aging since changes in miRNA expression levels and

their putative targets were observed [20–24].

Chronic myeloid leukemia (CML) was characterized by

Philadelphia (Ph) chromosome that generates a unique BCR-ABL

fusion gene. In the p210 BCR-ABL fusion gene, the down-

regulated tyrosine kinase located on the ABL protein, was

constitutively activated by the fused BCR gene. The activated

tyrosine kinase then signals various pathways, resulting in

increased cell proliferation and resistance to apoptosis induced

by chemotherapeutics. K562 cell line was a well-characterized

model system for human p210 BCR-ABL-positive CML with

homozygously deleted p53 and p16 genes [25,26]. Doxrubicin

(DOX) was commonly used in combined therapy for treating

leukemias, Hodgkins’s lymphoma, multiple myeloma, and other

solid tumors [27] but not for blastic crisis-phase CML because it

fails to induce apoptosis of CML cells [28]. In this study, the

molecular mechanism of DOX-induced cellular senescence in

K562 cells was investigated. The in vitro senescence model was

established by using K562 cells treated with DOX. In the absence

of p53 and p16-pRb, the induction of cellular senescence by DOX

in K562 cells was found to be associated with upregulation of miR-

375, downregulation of 14-3-3zeta and SP1 genes, and the

initiation of autophagy.

Results

DOX Induced Senescence in K562 Cells
To establish an in vitro cellular senescence model, K562 cells

were treated with 50 nM of DOX. The alterations in cell

morphology [1], upregulated SA-b-gal activity5 and SAHF

formation [29] were used as markers to evaluate cellular

senescence. A significantly enlarged cell size, increased SA-b-gal

activity, and increased SAHF in cells treated with 50 nM DOX for

4 days were noted (Figure 1A). Percentage of Annexin V-positive

cells remained low in K562 cells treated with 50 nM DOX

(Figure 1B). Cell cycle analysis revealed that 50 nM DOX caused

K562 cells to accumulated in G2/M phase (Figure 1C). By treating

K562 cells with 50 nM DOX for 4 and 5 days, we have

established an in vitro senescence model system.

Expression of Senescence-associated Genes did not
Change in DOX-induced Senescent K562 Cells

Expression of p16INK4a and p14ARF [30,31], and excess activity of

p53 [32] have been suggested to be biomarkers for aging. In

addition, some other senescence-associated genes such as CDC6, its

overexpression was reported to be sufficient to induce DNA

damage and senescence [33]. In some cells, senescence is

associated with global changes in chromatin structure which leads

to the accumulation of heterochromatin protein 1 (HP1), histone

H3 trimethylated on lysine 9 (me-K9H3) in SAHF, and on the

promoters of certain cell-cycle genes [29,34]. The decision to enter

cellular senescence was determined by a histone methyltransferase

(HMT) that acts with Rb and HP1 proteins to alter chromatin

structure and silencing E2F target genes. HMGA proteins

cooperate with the p16INK4a tumor suppressor to promote SAHF

formation, proliferation arrest, and senescence commitment by

contributing to the repression of proliferation-associated genes

[35]. Therefore, further investigation on the changes of these

‘‘classical’’ senescence molecular markers (Table S1) in DOX-

induced senescent K562 cells is needed. Since p53 and p16 were

homozygously deleted in the K562 cells, the expression of p53 and

p16 was not detected in 50 nM DOX-treated K562 cells as

expected (Figure 2). Unexpectedly, the mRNA expression of

senescence-associated genes, CDC6, DcR2, DEC1, DNMT1,

HMGA1, HP1c, MKi67, p19, p38, p53, and PU.1, remained

unchanged between the untreated and 50 nM DOX-treated K562

cells for up to 5 days (Figure 2).

Identification of miRNAs Differentially Expressed in DOX-
induced Senescent K562 Cells

To further elucidate the regulatory mechanisms of DOX-

induced senescence, TaqManH microRNA microarray system

was used to cover a total of 667 human miRNAs, for the

analysis of miRNA expression profiles of K562 cells treated or

not treated with 50 nM DOX for 4 days from three

independent experiments. By comparing miRNA expression

profiles between treated and untreated K562 cells, 10 up-

regulated miRNAs were found (at least four-fold increase) in

DOX-treated K562 cells (Figure 3A). Four most strongly

expressed miRNAs, miR-375, miR-652, miR-22, and miR139-5p,

were selected for further validation by using individual

TaqManH microRNA assays. The expression of miR-375

remained to be the highest among the 4 miRNAs (Figure 3B).

miR-375 was chosen for further study due to its consistently high

overall expression in DOX-treated K562 cells.

Inhibition of miR-375 can Partially Reverse the
Proliferation Ability Suppressed by DOX in K562 Cells

To explore the function of miR-375 in DOX-induced

senescence, K562 cells were transfected with has-anti-miR-375

inhibitor or has-anti-miR-375 inhibitor scramble negative control

followed by 50 nM DOX treatment for 5 days. The expression

of miR-375 after transfection was checked to confirm the

transient knockdown of miR-375 by has-anti-miR-375 inhibitor

(Figure 3C). As shown in Figure 3D, in cells transfected with

has-anti-miR-375 inhibitor, cell proliferation was partially

restored when compared with untreated cells. It was signifi-

cantly higher in cells transfected with has-anti-miR-375 inhibitor

scramble negative control as compared to cells treated with

DOX only (p,0.05). K562 cells were also transfected with has-

miR-375 precursor or has-miR-375 precursor scramble negative

control to investigate the function of miR-375 in cellular

senescence. The expression of mature miR-375 was increased

at post has-miR-375 precursor transfection day 3 and persisted

up to day 5. A decreased in cell proliferation followed by an

increased in mature miR-375 expression was observed in has-

miR-375 precursor-treated K562 cells (Figure 3F).

Downregulation of Putative miR-375 Target Genes, 14-3-
3zeta and SP1, was Associated with miR-375 Upregulation
in DOX-induced Senescent K562 Cells

To further identify the targets of miR-375, published literatures

were searched and 21 putative miR-375 target genes were found by

using TargetScan, PicTar and miRanda algorithms (Table S2).

The expression of these 21 genes in K562 cells treated with 50 nM

DOX for 3 and 4 days were analyzed, and the expression levels of

14-3-3zeta, LDHB, and SP1 genes were found to be diminished

(p,0.05) as miR-375 increased (Figure 4A). In cells transfected

with has-anti-miR-375 inhibitor followed by 50 nM DOX treat-

ment or transfected with has-miR-375 precursor, the expression of

14-3-3zeta and SP1 genes was inversely associated with the down-

or up-regulated expression of miR-375 (Fig. 4B). In contrast, the

expression of LDHB was not affected by the levels of miR-375

(Fig. 4B). These results suggested that 14-3-3zeta and SP1 genes are

the possible targets of miR-375 in DOX-treated senescent K562

cells.

Increased miR-375 and Autophagy in Senescent K562
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Figure 1. DOX induced senescence but PTX not senescence in K562 cells. (A) K562 cells treated with 50 nM of DOX for 4 days were stained
for SA-b-gal activity followed by DAPI staining. Original magnification is 4006. Representative microscopic fields are shown. (B) K562 cells were
treated with 50 nM of DOX for 5 days, and the percentages of apoptotic cells were determined by Annexin V/PI staining followed by flow cytometric
analysis. Data represented are the means and SE of 3 independent experiments. (C) K562 cells were treated with 50 nM of DOX for 5 days, and DNA
contents were measured by flow cytometric analysis after PI staining. Data represented are the means and SE of 3 independent experiments.
doi:10.1371/journal.pone.0037205.g001

Figure 2. mRNA expression of senescence-associated genes in K562 cells treated with 50 nM DOX as measured by real-time
quantitative RT-PCR. The x-axis indicates the days post DOX treatment and the y-axis represents the relative mRNA expression level. The value of
the mRNA expression at day 0 is designated 1, and the levels of all other days are calibrated to this value. Data represented are the means and SE of 5
independent experiments.
doi:10.1371/journal.pone.0037205.g002
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Figure 3. miR-375 is upregulated in DOX-induced senescent K562 cells. (A) miRNAs upregulated in 50 nM DOX-treated K562 cells for 4 days
as measured by TaqManH microRNA microarray analysis. The value of the miRNA expression in untreated K562 cells of day 4 is designated 1, and the
level of miRNA expression of DOX-treated K562 cells are calibrated to this value. Data represented are the means and SE of 3 independent
experiments. (B) Validation of miRNA expression by individual mature TaqManH microRNA assays using real-time quantitative RT-PCR. The 4 most
strongly expressed miRNAs selected from TaqManH microRNA microarray analysis were further validated. The value of the miRNA expression in
untreated K562 cells is designated 1, and the level of miRNA expression of DOX-treated K562 cells of the same day are calibrated to this value. Data
represented are the means and SE of 3 independent experiments. (C) Inhibition of has-miR-375 by 100 nM has-anti-miR-375 inhibitor or 100 nM has-
anti-miR-375 inhibitor scramble negative control (SC) in K562 cells. After transfection for 48 hours, K562 cells were treated with 50 nM DOX for 5 days.
The expression of mature has-miR-375 was examined by TaqManH microRNA assays using real-time quantitative RT-PCR. The value of the has-miR-375
expression at day 0 is designated 1, and the levels of all other days of the same treatment are calibrated to this value. Data represented are the means
and SE of 5 independent experiments. (D) WST-1 assay was performed to determine cell proliferation after 100 nM has-anti-miR-375 inhibitor or
100 nM has-anti-miR-375 inhibitor SC transfection followed by 50 nM DOX treatment in K562 cells. Data represented are the means and SE of 5
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Upregulation of miR-375 was Associated with
Upregulated ATG9B and ATG18 in DOX-induced
Senescent K562 Cells

With the observation that DOX treatment inducing cells

senescence and the eventual cell death, the alternative mode of

cell death, autophagy, was also investigated. The expression of 24

autophagy-related genes (Table S3 and Figure S1) using real-time

quantitative RT-PCR were analyzed. A 12-fold increase of ATG9B

at day 4 and a 20-fold increase of ATG18 at day 2 was observed in

DOX-treated K562 cells (Figure 5 A and B). Cells transfected with

has-anti-miR-375 inhibitor followed by 50 nM DOX treatment for

5 days did not showed the fluctuated expression of ATG9B and

ATG18 (Figure 5 C and D). Overexpression of miR-375 by has-miR-

375 precursor transfection resulted in an elevated expression of

ATG9B and of ATG18 with a similar patterns as observed in DOX-

treated K562 cells (Figure 5 E and F). Our results suggested that

upregulation of miR-375 were associated with the induction of

autophagy in the DOX-induced senescence.

Discussion

The understanding of cellular responses induced by chemo-

therapeutic drugs provides useful insights in designing regimens for

cancer treatment. In this study, K562 cells were used as a model of

advanced CML to examine the cellular responses induced by

independent experiments. *Indicates significant difference compared to cells treated with 50 nM DOX and treated with 100 nM anti-miR-375 SC and
50 nM DOX (p,0.05). (E) Overexpression of miR-375 by 100 nM has-miR-375 precursor or 100 nM has-miR-375 precursor SC in K562 cells. The
measurement and calculation of mature has-miR-375 expression were as described in (C). Data represented are the means and SE of 5 independent
experiments. (F) WST-1 assay was performed to determine cell proliferation after 100 nM has-miR-375 precursor or 100 nM has-miR-375 precursor SC
transfection in K562 cells. Data represented are the means and SE of 5 independent experiments. *Indicates significant difference compared to both
untreated K562 cells and cells treated with 100 nM has-miR-375 precursor SC (p,0.05).
doi:10.1371/journal.pone.0037205.g003

Figure 4. Expression of putative miR-375 target genes in DOX-induced senescent K562 cells. (A) mRNA expression of putative miR-375
target genes in K562 cells treated with 50 nM DOX for 3 and 4 days as measured by real-time quantitative RT-PCR. The value of the mRNA expression
in untreated K562 cells of the same day is designated 1, and the level of mRNA expression of DOX-treated K562 cells are calibrated to this value. Data
represented are the means and SE of 5 independent experiments. (B) Expression of 14-3-3zeta, LDHB, and SP1 genes in K562 cells treated with 50 nM
DOX (DOX) transfected with 100 nM has-anti-miR-375 inhibitor followed by 50 nM DOX treatment (Inh) or transfected with 100 nM has-miR-375
precursor (Pre) for 3 and 4 days. The calculation of gene expression was as described in (A). Data represented are the means and SE of 3 independent
experiments.
doi:10.1371/journal.pone.0037205.g004
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DOX and further investigated the mechanisms of DOX-induced

senescence. Due to the lack of both p16 and p53 genes, K562 cells

can also serve as a model for examining the p16- and p53-

independent pathways activated by chemotherapeutic drugs.

In this study, an in vitro senescence model using DOX to treat

K562 cells were to be established. Based on previous report [36],

we have also found that senescence was induced at 50 nM DOX,

but not apoptosis. DOX is a chemotherapeutic drugwith a wide

range of cellular targets [27] and can stimulate differentiation [37]

of K562 cells. It has been suggested that differentiation induced by

DOX is caspases-dependent [36], but the mechanism remains

elusive.

In addition to differentiation, DOX was also able to induce

senescence in various cancers cells, such as CML [36] and breast

cancer [38]. The characteristics of cellular senescence, including

increased expression of SA-b-gal, cell enlargement, and SHAF

formation, were also observed in our study. Changes in gene

expression, such as upregulated p16, p53, and p21 expression and

silencing of E2F target genes, have been characterized to promote

the establishment of senescence [29]. It can be further aided by the

transcriptional repression of proliferation-associated genes by the

action of HP1c [29,34], HMGA [35], and DNMT [35] proteins to

produce a repressive chromatin environment. In addition, the

DOX-induced senescence in K562 cells should be independent of

p53 and p16-pRb pathways, since p53 and p16 are homozygously

deleted in the K562 cells. Indeed, the expression of the typical SA-

premalignant cell markers (CDC6, DEC1, DcR2, DNMT1, HMGA1,

HP1c, Ki67, p19, p38, and PU1) remained unchanged in the

DOX-induced senescent K562 cells.

An increase of miR-375 expression in DOX-induced senescent

K562 cells was also observed. Our study has coincided with an

overall low level of miRNA population in untreated K562 cells as

described by a recent study [39]. In our DOX-induced senescent

K562 cells, treatment with miR-375 inhibitor could partially rescue

the cellular proliferation suppressed by DOX. Over-expression of

miR-375 was shown to suppress the normal proliferation of K562

cells. A recent study has also demonstrated that miR-375-down-

regulated gastric carcinoma cell line treated with both 5-aza-29-

deoxycytidine and Trichostatin A could upregulate miR-375

expression and reduced the cell viability [40]. In fact, down-

regulated miR-375 has been reported in various types of cancers,

including prostate [41], oral and pharyngeal [42], head and neck

[43], gastric [40], and hepatocellular [44] carcinomas. However,

its function in these cancers and the mechanism responsible for its

down-regulation remained unknown. Based on these results, miR-

375 could play a protective role in tumorigenesis and possibly

through the induction of cell senescence.

Recent studies have identified targets of miR-375 in various

types of cancers, such as Yes-associated protein (YAP) in liver

cancer [45], MTDH/AEG-1 in head and neck squamous cell

carcinoma and hepatocellular carcinoma [46,47], IGF1R and

PDK1 in esophageal squamous cell carcinoma [48,49], LDHB in

maxillary sinus squamous cell carcinoma [50], JAK2, PDK1, and

14-3-3zeta in gastric cancer [40,51,52], and SP1 in cervical cancer

[53]. In this present study, we observed an association between

upregulated miR-375 and downregulated 14-3-3zeta and SP1

genes. 14-3-3zeta is a potent anti-apoptotic gene and SP1 is a

transcriptional regulator. Both 14-3-3zeta and SP1 genes have been

shown to participate in cancer development and progression

[40,53]. It is therefore reasonable to hypothesize that downreg-

ulation of miR-375 results in enhanced expression of 14-3-3zeta

and SP1 and provides a survival advantage for cancer cells, in

contrast, upregulation of miR-375 diminishes the expression of 14-

3-3zeta and SP1 and leads to cellular senescence. Both miR-375

and its target genes, 14-3-3zeta and SP1, might be therapeutic

targets, and either restoring miR-375 expression or abolishing

expression of 14-3-3zeta and SP1 genes could diminish malignant

cell behaviors and consequently block the progression of cancer. In

addition, identification of miR-375 targets should help us to further

elucidate the alternative pathway that is responsible for the DOX-

induced senescence in the absence of both p16 and p53 genes.

Cellular senescence and autophagy are two different cellular

responses to stress. Autophagy is a genetically programmed

process of non-apoptotic cell death that degrades long-lived

cellular proteins and organelles. Recent study has shown that

autophagy is activated during the process of senescence and a

subset of autophagy-related genes is upregulated during senes-

cence [54]. In this study, DOX has induced senescence in K562

cells but the cells eventually died. It is therefore logical to

hypothesize that autophagy was involved in the process of non-

apoptotic cell death after cellular senescence. Indeed, a 12-fold

increase of ATG9B at day 4 and a 20-fold increase of ATG18 at day

2 after DOX treatment were observed. ATG9 is the only integral

membrane component of the conserved ATG machinery and was

suggested to aid in the search for the source of the pre-

autophagosomal structure [55]. ATG18 is a phosphatidylinositol

3-phosphate-binding protein and is required for both the

cytoplasm to vacuole targeting (Cvt) pathway and autophagy

[56]. In autophagy, ATG18 is recruited early to form autophago-

some. Hence, upregulated ATG9B and ATG18 implies the

initiation of autophagy in DOX-induced cellular senescence in

K562 cells which is consistent with the finding that autophagy is

activated during the process of senescence [54]. Autophagy has

been shown to suppress tumor progression by limiting chromo-

somal instability [57]. From the view of tumor suppression, both

cellular senescence and autophagy may act cooperatively to exert

their functions as natural brake to tumor development.

In summary, cellular senescence induced by DOX is associated

with upregulated miR-375 expression and autophagy initiation in

the absence of p16 and p53 genes. The anti-proliferative function

of miR-375 is possibly exerted, at least in part, by targeting 14-3-

3zeta and SP1 genes. This study provides extended understanding

for the molecular mechanisms of p16- and p53-independent

cellular senescence. Further study on the cellular senescence

pathways regulated by miR-375 and the mechanism of autophagy

initiated by DOX should provide insights for better cancer

therapy.

Materials and Methods

Cell Line and Drug Treatment
Chronic myeloid leukemic cell line K-562 was purchased from

Food Industry Research and Development Institute, Taiwan. Cells

Figure 5. Upregulated ATG9B and ATG18 in DOX-treated K562 cells as measured by real-time quantitative RT-PCR. (A) Expression of
Atg9B and Atg18 in K562 cells treated or not treated with 50 nM DOX for 5 days. (B) Expression of Atg9B and Atg18 in K562 cells transfeced with
100 nM has-anti-miR-375 inhibitor or 100 nM has-anti-miR-375 SC followed by 50 nM DOX for 5 days. (C) Expression of Atg9B and Atg18 in K562 cells
transfeced with 100 nM has-miR-375 precursor or 100 nM has-miR-375 precursor SC for 5 days. The x-axis indicates the days post DOX treatment and
the y-axis represents the relative mRNA expression level. The value of the mRNA expression at day 0 is designated 1, and the levels of all other days
are calibrated to this value. Data represented are the means and SE of 5 independent experiments.
doi:10.1371/journal.pone.0037205.g005
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were maintained in RPMI 1640 medium (Invitrogen) supple-

mented 10% HyClone fetal bovine serum (Thermo Scientific) and

grown at 37uC with 5% CO2. Stock solutions (1 mM) of DOX (D-

1515, Sigma-Aldrich) was stored in the dark at 220uC and diluted

in RPMI 1640 medium immediately before treating cells.

b-galactosidase (b-gal) and DAPI Staining
For cytospin preparation, 56105 cells were washed in PBS and

cytocentrifuged (350 rpm, 5 min) onto glass slides, then fixed in

0.5% glutaraldehyde/PBS for 5 min. After fixation, cells were

washed twice by phosphate-buffered saline (PBS) and incubated in

fresh senescence-associated b-Gal (SA-b-gal) staining solution [5-

bromo-4chloro-3-indolyl b-D-galactoside (X-Gal) 1 mg/mL,

K3Fe[CN]6 0.21 mg/mL, K4Fe[CN]6 0.16 mg/mL, MgCl2
2 mM] at 37uC without CO2 for 24 hr. After SA-b-Gal staining,

cells were washed twice with PBS, twice with H2O, and stained

with DAPI (10 mL/mL) for 10 min for DNA visualization.

Cell Proliferation Assays
Cell proliferation was evaluated using Premixed WST-1 Cell

Proliferation Reagent (Clontech) based on the cleavage of

tetrazolium salt WST-1 (4-[3-(4iodophenyl)-2- (4-nitrophenyl)-

2H-5-tetrazolio]-1,3- benzene disulfonate) into formazan by

cellular mitochondrial mitochondrial succinate-tetrazolium reduc-

tase in viable cells. Briefly, 100 mL of cells of different treatments

were plated in triplicates in a 96-well plate and 10 mL WST-1 Cell

Proliferation Reagent was added to each well. Cells were

incubated in a humidified atmosphere at 37uC in 5% CO2 for

30 min, the 96-well plate was shaken thoroughly for 1 min, and

absorbance was read at 450 nm using a microplate reader. The

background absorbance was measured in wells containing only the

dye solution and culture medium. Data presented were the

absorbance values subtracted by the background absorbance

values and the mean of the triplicates were calculated.

Flow Cytometry
Flow cytometric analysis of stained cells was performed on a

FACSCalibur flow cytometer (Becton Dickinson). Percentages of

apoptotic cells were assessed by dual staining of cells with Annexin

V and propidium iodide (PI). Cells (16105) were washed in cold

PBS and resuspended in 200 mL staining solution containing 5 mL

of Annexin V-fluorescein isothiocyanate (FITC) and 10 mL of

20 mg/mL PI (BD Pharmingen). Cell cycle analysis was performed

on PI-stained cells and the percentages of the cell population in

subG1, G1, S or G2/M phases were calculated from histograms

using WinMDI 2.9 software.

MicroRNA Microarray Analysis
K562 cells treated with or without 50 nM DOX (Sigma-

Aldrich) for four days were used for microRNA microarray

analysis. Total RNAs were extracted using TriZol (Invitrogen)

and reverse transcription (RT) was performed using the

TaqManH MicroRNA Reverse Transcription Kit (Applied

Biosystems) in a final volume of 7.5 mL containing 1 mg of

RNA, 16MegaplexTM RT primers human pool A or B (Applied

Biosystems), 2.5 mM dNTPs with dTTP, 0.01 U MultiScribe

Reverse Transcriptase, 16 Reverse Transcription Buffer, 3 mM

MgCl2, and 0.25 U RNase inhibitor. The RT products were

then subjected for miRNA expression profiling using TaqManH
Human MicroRNA array A and B (PN 4398977; Applied

Biosystems) on an Applied Biosystems 7900HT Sequence

Detection System (Applied Biosystems). PCR cycling parameters

were set as follows: 95uC for 10 min followed by 50 cycles of

PCR reactions at 95uC for 10 sec, 60uC for 40 sec, and 72uC for

1 sec. The expression levels of the 667 human mature miRNAs

were normalized to U6 snRNA internal control and relative

expression levels were calculated by the comparative Ct (DDCt)

method.

MicroRNA Expression Analysis
The mature microRNA expression was quantified in real-time

quantitative RT-PCR systems using TaqManH microRNA assays

according to the manufacturer’s protocols (Applied Biosystems).

Briefly, RT reactions were performed with 10 ng of total RNA,

50 nM stem-loop microRNA- specific RT primers, 16 RT

buffer, 0.25 mM of dNTPs, 3.33 U/mL MultiScribe RTase and

0.25 U/mL RNase inhibitor. The reaction mixture was incubated

for 30 min at 16uC and 30 min at 42uC, followed by 5 min

incubation at 85uC to inactivate the RTase enzyme. RT

products were subjected to microRNA expression assay for

real-time quantitative PCR in a 20-mL final volume containing

2 mL of RT product, 1 mL of 206 TaqManH microRNA Assay

(Applied Biosystems), and 10 mL of 26 TaqManH Universal

PCR Master Mix (Applied Biosystems). The PCR cycling

parameters were 95uC for 15 sec followed by 60uC for 30 sec

for 40 cycles. U6 snRNA TaqManH miRNA assay (Applied

Biosystems) was used as endogenous control for microRNA

expression analysis. Real-time quantitative PCR was performed

in a 7500 Fast Real-Time System (Applied Biosystems) and the

relative gene expression levels were calculated by the compar-

ative Ct (DDCt) method.

Transient Transfections
Transfection experiments of K562 cells with anti-miRTM has-

miR-375 inhibitor (Ambion), anti-miRTM miRNA inhibitors

negative scramble control (Ambion), 100 nM has-miR-375 precur-

sor (Ambion), and 100 nM has-miR-375 precursor negative

scramble control (Ambion) were carried out using siPORT

NeoFX Transfection Agent (Ambion). Briefly, 106 cells were

plated in 10-cm culture dishes and different amounts of RNAs and

siPORT NeoFX Transfection Agent diluted in OPTI-MEMH I

medium (Invitrogen) were added to cells and incubated at 37uC
with 5% CO2. Cells were harvested 48 h after transfection,

counted, and plated 104 cells/well in 6-well plates for further drug

treatment experiments.

Real-time Quantitative RT-PCR Analysis
RNA samples were extracted using TriZol reagent (Invitro-

gen). The 2 mg RNA input for cDNA synthesis was determined

by spectrophotometric OD260 measurement and cDNA was

generated using High Capacity cDNA Reverse Transcription

Kit (Applied Biosystems) according to the manufacture’s

protocols. The expression of senescence associated genes and

putative miR-375 target genes were analyzed using TaqManH
system. The gene names, GenBank accession numbers, and

assay ID of gene expression assays or primer sequences of

senescence-associated genes and putative miR-375 target genes

are list in Table S1 and S2, respectively. Expression of human

housekeeping genes, ACTB (b-actin), GAPDH (glyceraldehyde- 3-

phosphate dehydrogenase), HPRT (hypoxanthine phosphoribo-

syltransferase), 18S (18S ribosomal RNA), TBP (TATA box

binding protein) and POLR2A (RNA polymerase II polypeptide

A) were evaluated and validated for normalizing RNA

expression in real-time quantitative RT-PCR of senescence-

associated genes and miR-375 target genes (Figure S2). All 6

TaqManH endogenous controls were purchased from Applied

Biosystems. Reactions were carried out in a 20-mL final volume
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containing 50 ng cDNA (as total input RNA), 1 mL 206
TaqManH Gene Expression Assay, and 10 mL 26 TaqManH
Universal PCR Master Mix (Applied Biosystems). The expres-

sion of autophagy-related genes (ATG) was analyzed using

SYBRH Green system. The gene names, GenBank accession

numbers, amplicon sizes, and sequences of forward and reverse

primers are listed in Table S3. Reactions were carried out in a

20-mL final volume containing 50 ng cDNA (as total input

RNA), 200 nM each primer, and 10 mL 26 Power SYBRH
Green PCR Master Mix (Applied Biosystems). Real-time

quantitative PCR was performed in a 7500 Fast Real-Time

System (Applied Biosystems) and the PCR cycling parameters

were set as follows: 95uC for 10 min followed by 40 cycles of

PCR reactions at 95uC for 20 sec and 60uC for 1 min. The

relative gene expression levels were calculated by the compar-

ative Ct (DDCt) method.

Statistical Analysis
Results were expressed as mean 6 SE (standard error).

Comparisons were made with t-test using the SPSS for Windows

Release 13.0 (SPSS, Chicago, IL). Probability value of ,0.05 was

regarded as difference with statistical significance.

Supporting Information

Figure S1 mRNA expression of 6 endogenous control genes in

leukemic cell lines measured by real-time quantitative RT-PCR.

A, The average Ct with standard deviation (SD). 18S: 18S

ribosomal RNA; ACTB: b-actin; GAPDH: Glyceraldehyde-3-

phosphate dehydrogenase; HPRT: Hypoxanthine phosphoribo-

syl-transferase; POLR2A: RNA polymerase II polypeptide A; TBP:

TATA box binding protein. Error bars are SD. B, Variation of 6

human endogenous controls as measured by SD of Ct. Annotation

as for panel A.

(PDF)

Figure S2 mRNA expression of 24 autophagy-related genes in

K562 cells treated with 50 nM DOX as measured by real-time

quantitative RT-PCR. The value of the mRNA expression at day

0 is designated 1, and the levels of all other days are calibrated to

this value. Data represented are the means and SE of 5

independent experiments.

(PDF)

Table S1 TaqManH Gene Expression Assays for real-time

quantitative RT-PCR analysis of the senescence-associated genes.

(PDF)

Table S2 Oligonucleotide primers for real-time quantitative

RT-PCR analysis of the putative miR-375 target genes.

(PDF)

Table S3 Oligonucleotide primers for real-time quantitative

RT-PCR analysis of the 24 autophagy-related genes.

(PDF)
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