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ABSTRACT: We propose a computationally lean, two-stage
approach that reliably predicts self-assembly behavior of complex
charged molecules on metallic surfaces under electrochemical
conditions. Stage one uses ab initio simulations to provide reference
data for the energies (evaluated for archetypical configurations) to fit
the parameters of a conceptually much simpler and computationally
less expensive force field of the molecules: classical, spherical particles,
representing the respective atomic entities; a flat and perfectly
conducting wall represents the metallic surface. Stage two feeds the
energies that emerge from this force field into highly efficient and
reliable optimization techniques to identify via energy minimization
the ordered ground-state configurations of the molecules. We
demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular
ordering observed experimentally for PQP+ and ClO4

− molecules at an Au(111)−electrolyte interface, including the formation of
open-porous, self-host−guest, and stratified bilayer phases as a function of the electric field at the solid−liquid interface. We also
discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related
experimental investigations.

1. INTRODUCTION

Supramolecular chemistry deals with intermolecular interac-
tions and structure formation beyond individual molecules and
as such lies at the base of many nano- and mesoscopic
structures found in biology. In recent decades, impressive
progress in the experimental branches of this field has resulted
in at least two Nobel Prizes in chemistry. By contrast, the
theoretical understanding and especially the in silico prediction
of supramolecular ordering has lagged behind somewhat. This
is easily understood if one considers the sheer size of the
systems under study, requiring in many cases consideration of
a solid substrate, a sufficiently large number of molecular
building blocks or tectons, and a condensed matter medium
(i.e., a solvent or electrolyte solution). The interaction of these
three components, each with its intrinsic properties and with
optional extrinsic steering (e.g., by light, heat, electric field),
will determine the observed supramolecular structures and
govern the transitions between them.1,2

In this paper, we propose a new theoretical framework to
predict the supramolecular ordering of complex molecules at
an electrochemical solid−liquid interface. The calculations
were inspired by recent experimental work3 in which
particularly clear-cut transitions between supramolecular
structures were observed as a function of the applied electric
field at a metal−electrolyte interface. The target molecules

whose supramolecular ordering is considered constitute an
organic salt that consists of a large, disc-shaped polyaromatic
cation (PQP+) and a much smaller, inorganic anion
(perchlorate, ClO4

−).4−6

The concept of choice to investigate these scenarios would
rely on (i) a faithful description of the properties of the system
(notably a reliable evaluation of its energy) via ab initio
simulations and (ii) in a subsequent step the identification of
the optimized (ordered) arrangement of the molecules on the
substrate by minimizing this energy via efficient and reliable
numerical tools; this optimization has to be performed in a
high-dimensional search space, spanning all possible geo-
metries of the unit cell and all possible coordinates and
orientations of the molecules within that cell. Both these
approaches, considered separately from each other, are
conceptually highly complex and from the numerical point of
view very expensive, which precludes the application of this
combined concept even for a single set of external parameters
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(such as temperature, density, and external field); it is thus
obvious that systematic investigations of the self-assembly
scenarios of such systems are definitely out of reach.
In this contribution, we propose an approach to overcome

these limitations via the following strategy: in the first step, we
map the ab initio-based energies onto the energy of a related
classical model (or a classical force field), where the atomistic
units of the molecules are featured as spherical, charged units
with Lennard-Jones-type interactions and where the electrolyte
is treated as a homogeneous, dielectric medium; the
interaction between the atomic entities and the metallic
surface is modeled by a classical, perfectly conductive,
Lennard-Jones-like wall potential. The as-yet open parameters
of the resulting force field (energy- and length-scales, charges,
etc.) are fixed by matching the ab initio energies of the system
with the related energies of this force field: this is achieved by
considering archetypical configurations of the system’s building
blocks (molecules and surface) and by systematically varying
characteristic distances between these units over a representa-
tive range. These ab initio energies were then fitted along these
“trajectories” by the parameters of the classical force field: the
energy- and length-scales of the involved interatomic Lennard-
Jones or Mie potentials as well as the atom−wall interaction
parameters.
It turns out that this force field is indeed able to reproduce

the ab initio-based energies along these “trajectories” faithfully
and with high accuracy. Even though the emerging force field is
still quite complex (as it features both short-range and long-
range Coulomb interactions and involves mirror charges), it is
now amenable to the aforementioned optimization techniques,
which thus brings systematic investigations of the self-assembly
scenarios of these molecules under the variations of external
parameters within reach.
As a benchmark test for our approach, we have considered

the above-mentioned system, studied in recent experimental
investigations: the cation is PQP+ (9-phenylbenzo[1,2]
quinolizino[3,4,5,6-fed]phenanthridinylium, a disk-shaped pol-
yaromatic molecule), while the anion is perchlorate, ClO4

−; the
self-assembly of these ions on a Au(111) surface under the
influence of an external electric field was studied. The high
accuracy with which the ensuing energies calculated from the
force field reproduce the ab initio simulation data make us
confident about the applicability of the force field for the
subsequent optimization step: using an optimization technique
that is based on ideas of evolutionary algorithms, we have then
identified the self-assembly scenarios of the ions on the Au
surface, for a given set of external parameters (temperature,
density, and external field). These first results provide evidence
that our approach is quite promising. This concept is
furthermore completely flexible as it can easily be extended
to other organic molecules of similar (or even higher)
complexity. The computational cost of this optimization step
is still substantial. Therefore, we postpone a detailed,
quantitative, and, in particular, systematic investigation of the
self-assembly scenarios of the PQP+ and the ClO4

− ions on the
Au surface for a broad range of external parameters to a later
contribution. Instead, we demonstrate in this contribution for
selected sets of parameters that our approach is indeed able to
reproduce several of the experimentally identified self-assembly
scenarios.
In this context, it has to be emphasized that such a type of

optimization problem is highly nontrivial since the huge
number of possible local minima in the potential energy

surface (embedded in a high-dimensional parameter space)
increases exponentially with the number of particles (and their
degrees of freedom) of the system;7 thus, exhaustive search
strategies hit the computational limits or even exceed the
capacities of present-day supercomputers. Yet, another
complication in structure prediction algorithms is caused by
the fact that different polymorphs of a system can be kinetically
trapped and a vast number of other minima, having values of
the internal energy comparable to the global minimum, may
also play an important role in structure formation processes.7,8

At this point, we owe an explanation to the reader why we
have chosen the possibly unconventional approach. Of course,
it is obvious that an optimization of the molecular
configurations on the basis of full ab initio calculations is
from the computational point of view by far out of reach.
However, one can argue that suitable force fields (available in
the literature) or machine-learning (ML) potentials such as
high-dimensional neural network potentials,9−15 kernel-based
ML methods16 (such as Gaussian approximation poten-
tials17−21), or more specialized, effective potentials for selected
molecular motives such as the SAMPLE approach8,22,23 might
represent a more conventional approach to tackle this problem
(note that the field of ML potentials is rapidly growing and the
above list is far from comprehensive). Such arguments
represent fully legitimate objections against our approach.
The problem we are addressing in this contribution is,

however, a nonstandard problem and thus requires to be
treated with a custom force field: the justification for our
strategy is that we wanted to endow the atomic units of the
molecules with “real” physical properties (such as “size” or
“charge”), which will help us to perform the second step in our
structural search that we have envisaged (and that we are
currently working on): as the computational costs of our
approach are still considerable, large-scale investigations are
still prohibitively expensive. In an effort to overcome these
limitations, we plan to proceed to even more coarse-grained
models, which grasp, nevertheless, the essential features of our
complex molecules. On the basis of such models, we would
then be able to identify with rather low computational costs
first trends in structural identification processes. Investigations
along this direction will be explored in forthcoming
contributions.
Finally, we point out that we are well aware of the limitations

and deficiencies of our present model. Features such as the
response of the metallic electronic distribution of the gold
surface due to the presence of an external bias, variable
electrostatic properties of the molecular species (allowing thus
for polarization effects), or a space-dependent permittivity
cannot be included in our concept. However, at this point, it is
fair to say that, to the best of our knowledge, none of the
aforementioned alternative approaches (such as the use of
conventional force fields or machine-learning frameworks) is
able to take all of these effects faithfully into account, either.
The manuscript is organized as follows: In Section 2, we

describe the essential features of the experimental setup,
introduce an ab initio and a classical representation thereof,
and discuss the mapping procedure between those different
instances. In Section 3, we put forward the memetic
optimization procedure based on ideas of evolutionary
algorithms to identify ordered ground-state configurations of
complex molecules under electrochemical conditions, and in
Section 4, we present selected numerical results, which
demonstrate a semiquantitative agreement with the exper-
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imentally observed self-assembly scenarios of PQP+ and ClO4
−

ions on a Au(111)−electrolyte interface under the influence of
an external electrostatic field. We conclude our findings in
Section 5.

2. SYSTEM AND ITS REPRESENTATIONS

2.1. System. Both the density functional theory (DFT)
calculations and the related force field are based on a
framework that mimics the essential features of the
experimental setup, put forward (and discussed) in ref 3;
this framework is schematically depicted in Figure 1: PQP+ and
ClO4

− ions are immersed in an electrolyte (0.1 M aqueous
perchloric acid). From below, the system is confined by a
Au(111) surface, which in the experiment serves as the solid
substrate for adsorption. An electric field, Ez, can be applied
between a reference electrode located within the electrolyte
and the Au surface. The PQP+ and the ClO4

− ions are first
treated via DFT-based ab initio calculations (see Section 2.2).
The calculated energies are then used to fix the force fields of
classical particles (notably their sizes, energy parameters, and
charges), which represent the atomic entities of the respective
ions; the interaction between the atomic entities and the
Au(111) substrate is described by means of a classical wall-
particle force field (see Section 2.3). Throughout, the
electrolyte molecules are not considered explicitly. The
electrolyte is rather assumed to be an effective homogeneous
medium with a permittivity of water, i.e., ϵr = 78.36, at
T = 25 °C,24−26 corresponding to the temperature at which the
experiments by Cui et al.3 were carried out and assuming that
the low concentration of perchloric acid does not change the
value of ϵr substantially.

27−30 Hence, in this contribution, we
use “electrolyte” as a synonym for a “solvent” unless explicit
use is required.
We emphasize at this point that in the experiment, an exact

specification of the electric field strength is not possible: as
detailed in the supporting information of ref 3, the authors of

the related experimental investigations have estimated rather
the degree of charge compensation on the Au surface by the
adsorbed PQP+ ions as a function of their changing coverage,
which does not allow the estimation of the electric field
directly. This fact limits the degree of quantitative comparison
between experiment and theory.

2.2. Ab Initio Simulations. The density functional theory
calculations were performed with the software package
GPAW,31,32 and the structures were handled by the atomic
simulation environment.33 The electronic density and the
Kohn−Sham orbitals were represented within the projector-
augmented wave method,34 where the smooth parts were
represented on real space grids with a grid spacing of 0.2 Å for
the orbitals and 0.1 Å for the electron density. The exchange-
correlation energy is approximated as proposed by Perdew,
Burke, and Ernzerhof (PBE),35 and weak interactions missing
in the PBE functional are described as proposed by
Tkatchenko and Scheffler (TS09).36 The TS09 approximation
assumes that long-range dispersive contributions are absent in
the PBE functional, such that these can be applied as a
correction. The total energy is written as

= +E E w EPBE S vdW (1)

where EPBE is the PBE energy and EvdW is the TS09 correction.
We have introduced a weight factor wS that will allow the
incorporation of electrolyte effects into the dispersive
contributions as discussed below. For interactions in vacuum,
wS = 1. The presence of the aqueous environment on the
electronic and nuclear degrees of freedom included in EPBE is
modeled by a continuum solvent model.37

Molecular interactions were studied on simulation grids with
Dirichlet (zero) boundary conditions. Neumann (periodic)
boundary conditions were applied in x- and y-directions in the
surface plane for simulations involving the gold surface, while
zero boundary conditions were applied in the perpendicular z-
direction. The simulation grid was chosen such that at least 4 Å
of space around the position of each atom in the nonperiodic

Figure 1. Schematic visualization of the experimental setup to control the pattern formation of PQP+ (and ClO4
−) molecules (structure formulas

given in top-right insets) close to a Au(111) surface: two Au layers are explicitly shown; the golden, shiny area represents the conductive Au bulk,
and the black dashed line marks the surface of the electronic density, which we interpret as a mirror plane. The ions are immersed into an
electrolyte (gray, shaded region), which is considered as an effective, homogeneous medium. In the region close to the Au surface (red to blue
shaded areas), a homogeneous, electrostatic field Ez (bold, colored arrow), oriented in the z-direction, features the electrostatic potential drop
between the Au surface and the reference electrode inside the electrolyte. The colors of the atoms in the electrolyte correspond to their type, while
the color of the mirror atoms (located in the Au bulk) specifies their partial charges, quantified by the color bar (see bottom right) in units of the
electron charge, e.
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directions was ensured. The Au(111) gold substrate was
modeled by two layers of 54 atoms, each using the
experimental lattice constant of face-centered cubic (fcc)
gold of a = 4.08 Å. These settings result in a rectangular unit
cell of 26.0 × 15.0 Å2. The Brillouin zone was sampled by 3 ×
3 Monkhorst−Pack38 distributed k-points in the periodic
directions.
Potentials were scanned by fixing all gold atoms and a

central atom of PQP+ (the nitrogen atom) and/or of ClO4
−

(the chlorine atom) to given positions, while all other atoms
were allowed to relax without any symmetry constraints until
all forces were below 0.05 eV/Å.
The interaction of two perchlorate anions in dependence of

their distance is shown in Figure 2 for different approximations

for the total energy in eq 1. As expected, the potentials follow
the screened electrostatic repulsion [ε∞(0)RCl−Cl]

−1 for large
distances RCl−Cl, where ε∞(0) = εr is the static relative
permittivity of water. There is a slight attractive part in the
potential around RCl−Cl ≃ 5.2 Å already in the PBE potential,
which leads to a very shallow local minimum. The main reason
for this minimum is the decrease in the effective surface ΔA
when the solute cavities (the solvent-excluded regions) begin
to overlap. This decreases the energetic cost to form the
surface due to the effective surface tension γ = 18.4 dyn cm−1

(γ also contains attractive contributions and is therefore much
lower than the experimental surface tension of water37).
Subtracting γΔA nearly removes all of the minima as
demonstrated in Figure 2. By including the full dispersion
contribution [ε∞(ωopt) = 1], this local minimum substantially
deepens and becomes the total minimum of the potential. An
attractive contribution to the potential is not to be expected for
the interaction of two anions and needs further discussion. We
suspect an overestimation of dispersion interactions if these are
treated as in vacuum and no screening through the electrolyte
is considered.
The aqueous environment influences the van der Waals

(vdW) interactions as these are of Coulombic origin.39 To
derive an approximate expression for the screened vdW
interaction of two molecules A and B at distance R inside

the electrolyte, we express the C6 coefficient defining the vdW
energy C6/R

6 by the Casimir−Polder integral36,40

∫
π ε

α ξ α ξ ϕ ξ ξ= * *
∞

C i i i
3

8
( ) ( ) ( ) d6 2

0 0
A B

(2)

where αA,B* is the polarizability of the interacting molecules and
ϕ is determined by the propagation of the electric field through
the embedding medium40 with ϕ = 1 in vacuum. Both αA,B* and
ϕ are modified relative to vacuum in solution. In the simplest
model,40 we may write ϕ(iξ) = ε∞

−2(iξ) with the frequency-
dependent relative permittivity of the electrolyte ε∞. The
effects of the electrolyte on the polarizabilities αA,B* should, at
least partly, already be included in the TS09 description
through the effective atomic polarizabilities derived from the
self-consistent electron density calculated within the electro-
lyte. What is left is the effect of the permittivity entering
through the function ϕ(iξ) in eq 2. We assume that the main
contribution of ϕ(iξ) is at the resonance frequencies of αA,B* ,
which are in the optical region for usual molecules. We further
assume that ε∞(ωopt) is approximately constant in this
frequency region such that we may pull ϕ = [ε∞(ωopt)]

−2

out of the integral. This factor scales the C6 coefficient and
therefore the vdW contribution. In other words, we apply the
weight wS = [ε∞(ωopt)]

−2 in eq 2 with the experimental
permittivity of water in the optical region of ϵ∞(ωopt) = 1.7;
see ref 41. This approach reduces considerably the depth of the
suspiciously deep minimum as seen in Figure 2 such that only
a shallow local minimum remains similar to the PBE potential.
The reduction obtained is quite strong in respect of the small
contributions of Axilrod−Teller−Muto interactions commonly
assumed.42,43 The quantitative connection between the
screening of dispersive interactions in polarizable media and
the many-body effects neglected in TS0944 is not immediately
clear and is certainly worth further investigation. In what
follows, we use the same scaling for all of the vdW
contributions of the DFT potentials in this work.

2.3. Force Field Model. In this section, we describe how
we cast our setup into force fields where the atoms in the
molecular constituents are described as spherical particles, each
of them carrying a charge. The mapping is guided by the
energies obtained via the ab initio simulations detailed above.
The Au(111) surface is modeled as a flat and perfectly

conducting surface involving mirror charges as detailed below.
However, we note that the position of the corresponding
surface in the DFT calculations does not coincide with the
position of the atoms. Before proceeding, the following
comment is in order: in this mapping procedure, the distance
of a point charge to a metallic surface is unambiguously defined
through the electrons leaking out of the potential defined by
the nuclei.45,46 This feature can explicitly be seen in jellium
models47 but also emerges in implicit calculations48 where
electrons spill out of the surface of metal clusters.49 From the
latter study, we estimate an effective spill out of the surface of
0.5 Å, a value that agrees qualitatively with estimates from the
jellium models, extrapolated to large structures.46 This value
will be used below for our problem.

2.3.1. Atomistic Model. In our atomistic model, the
molecules are represented as rigid entities composed of
atomistic constituents. The molecules are immersed in a
microscopic electrolyte, which is treated as a continuous
medium of given permittivity. From below, the system is
confined by a conducting Au(111) surface (which is assumed
to extend in the x- and y-directions), and an external field

Figure 2. Relative energy of two ClO4
− anions as a function of the

distance between their chlorine atoms, RCl−Cl, where the separated
anions define the energy reference; ε(ωopt) = 1 with full van der Waals
(vdW) corrections and ε(ωopt) = 1.7 with scaled vdW corrections.
The dash-dotted line shows the PBE energy, where the energy
contribution of effective surface tension γΔA is subtracted (see the
text).
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(with respect to the electrolyte) can be applied in the z-
direction, i.e., perpendicular to the surface (or wall). Figure 1
schematically depicts all details of this atomistic model for the
PQP+ClO4

− system, confined by the Au surface.
To specify the different entities of the system and their force

fields, we use the following notation:

(i) Each of a total number of N molecules is uniquely
labeled by capital Latin indices I: for each of these units,
this index is assigned to its center-of-mass (COM)
position vector, RI; to a vector PI, specifying its
orientation within the lab frame in terms of the angle-
axis framework50,51 (see Supporting Information (S.I.),
Section S2.2 for more details), and to the set of
coordinates, rNI, of the respective NI atomistic
constituents of the molecule in its COM frame (to
which we also refer as its blueprint). The set of COM
positions and orientation vectors of all N molecules are
denoted RN and PN, respectively. The set of all

= ∑ =n NI
N

I1 atom positions in the lab frame is given
by rn, and the position of each atom in the lab frame is
uniquely defined by a vector ri, labeled with Latin indices
(i = 1, ..., n).

(ii) Between all atoms, we consider long-range Coulombic
interactions (index “C”)

π
=

ϵ ϵ
≠U r

q q

r
i j( )

1
4

,ij
i j

ij

(C)

0 r (3)

with the interatomic distance rij = |ri − rj| and charges qi
and qj of the units i and j, respectively; the dielectric
constant ϵ0 and the relative permittivity ϵr specify the
implicit electrolyte. Further, we introduce short-range
force fields (index “sr”) for which we have considered
two options: first, a Lennard-Jones potential (index
“LJ”), i.e.

σ σ
= ϵ −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
U r

r r
( ) 4ij ij

ij

ij

ij

ij

(LJ)

12 6

(4)

for the energy and length parameters, ϵij and σij, we have
opted for the standard Lorentz−Berthelot mixing
rules,52 i.e., σij = (1/2)(σi + σj) and ϵ = ϵ ϵij i j ,

respectively. Alternatively, we have also considered for
the short-range interactions the Mie potential53 (index
“Mie”), which can be considered as a generalization of
the LJ interaction; its functional form is given by

σ σ
= ϵ −

γ γ
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj
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{
zzzzzz
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ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
U r C

r r
( )ij ij ij

ij

ij

ij

ij

(Mie)
ij

R
ij

A( ) ( )

(5)

and allows for a variation of the exponents of the
repulsive and attractive contributions to the potential,
γij
(R) and γij

(A), respectively. ϵij and σij are again parameters
for the energy- and the length-scales. The Cij is defined
as a function of the exponents53

γ

γ γ

γ

γ
=

−

γ γ γ−i

k

jjjjjjjj

y
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zzzzzzzz

i
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jjjjjjjj
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ij
A

ij
R

ij
A

( )

( ) ( )

( )

( )

( /( ))ij
A

ij
R

ij
A( ) ( ) ( )

(6)

For the exponents, we apply arithmetic mixing laws, i.e.,
γij
(R) = (1/2)(γi

(R) + γj
(R)) and γij

(A) = (1/2)(γi
(A) +γj

(A)).
(iii) We assume the Au surface to be perfectly conductive.

Consequently, we need to explicitly consider mirror
charges in our model; when further assuming z = 0 as
the plane of reflection, the Coulombic interaction
becomes

= + +

+

′
′ ′

′ ′

U r U r U r U r

U r

( ) ( ) ( ) ( )

( )

ij ij ij i j

i j

(C) (C) (C) (C)

(C)
(7)

with the mirror charges qi′ = −qi and their positions ri′ =
(xi′, yi′, zi′) = (xi, yi, −zi).

(iv) We describe the solid−liquid interface in terms of a slab
geometry with a lower confining wall, i.e., we assume
periodicity in the x- and y-directions, but a finite extent,
cz, of the geometry in the z-direction, which is chosen
such that no restriction in the orientation of any
molecule occurs; thus, cz ≈ 1.2−2 nm, given their size
and the slab width. We define the (orthorhombic) lattice
vectors, a = (ax, 0, 0), b = (bx, by, 0), and c = (0, 0, cz),
which, without the loss of generality, define the volume
of the unit cell, V = axbycz, and which we collect within
the matrix = a b c( , , ). Together with the molecular
basis, given by RN, PN, and all N (rigid) molecular
blueprints, rNI, we now define the supramolecular lattice

= = { } R P R P( , , ) , ,N N N N (8)

which gives rise to all atomic coordinates in the lab
frame, rn, i.e., the molecular crystal structure of the
system (see S.I. Section S2.2).

(v) The force field between the atomic entities and the Au
surface is described via an LJ-type wall potential54
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In the above relation, zi is the height of atom i above the
surface and σwi and ϵwi are the length and energy
parameters of the interactions of each atom i with the
wall, respectively.

(vi) Finally, we express the electrostatic interfacial potential
between the electrode and the Au surface by an external,
homogeneous electrostatic field, Ez (i.e., oriented
perpendicular to the surface): we account for this
potential via U(field)(zi) = ziqiEz.

55

Thus, and eventually, the total potential energy of our model
is given by the expression

∑

∑

= *[ + ]

+ [ + ]

≠

′

=

U E U r U r

U z U z

r( , ; ) ( ) ( )

( ) ( )

n
z

i j

n

ij ij

i

n

i i

(C) (sr)

1

(wall) (field)

(10)

with “sr” standing for “LJ” or “Mie”; we recall that rn is the set
of all n atomic positions ri in a lattice with slab geometry
(defined by the unit cell ). If not present (and not explicitly
addressed), the electric field will be dropped in the argument
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list of eq 10, that is, = ≡ U E Ur r( , ; 0) ( , )n
z

n . The
notation “∑*” indicates that summation is only carried out
over atoms, labeled with Latin indices i and j, which belong to
different molecules I and J (with I ≠ J), i.e., molecules being
labeled with capital indices. The energy given in eq 10 and the
corresponding force fields are efficiently evaluated using the
software package LAMMPS.56

To evaluate the long-range Coulomb term, ∑ *≠
′U r( )i j

n
ij

(C) ,

in the given slab geometry, we use numerically reliable and
efficient slab-corrected three-dimensional (3D) Ewald-summa-
tion techniques.57−59 The other terms in eq 10 are evaluated
via direct lattice summation techniques.
2.3.2. Parametrizing the Classical Model via Ab Initio

Calculations. In this work, the blueprint of each molecule rNI is
obtained from electronic structure calculations based on
density functional theory (DFT), using dispersion-corrected
ab initio structure optimization,35,36 as described in Section
2.2. The partial charges of the atoms, qi, are parameterized via a
Bader analysis60 and are collected in Tables S2 and S3 in the
S.I. Section S2.3. These charges are directly transferred to the
atomic entities. We repeat that throughout the electrolyte
molecules have not been considered explicitly: instead, we treat
within the force field the electrolyte as an effective,

homogeneous medium, introducing the electric permittivity
of water ϵr.
To fix the remaining model parameters that specify the

interactions in eq 10, we search for each atomistic entity
(labeled i) the set of atomistic model parameters (specified
below), which reproduces via eq 10 the ab initio energies as
good as possible. On the one side, we consider either the
length and the energy parameters of the LJ potential (denoted

σ= { ϵ },i i ) or the length and the energy parameters together
with the exponents of the Mie potentials (denoted

σ γ γ= { ϵ }, , ,i i i
R

i
A( ) ( ) ), as well as the wall parameters,

σ= { ϵ },i iw w . To fix these parameters, we proceed as
follows:

(i) We first perform ab initio structure optimization for
different characteristic molecular configurations specified
below. Here, molecules are either positioned next to
each other (without considering the wall) or above the
Au surface: in the former case, we fix the positions of
two selected atoms belonging to different molecules,
with the atoms being separated by rij; in the latter case,
we keep the height, zk, of one selected atom above the
surface constant. Relaxation of all other degrees of
freedom leads in the ab initio simulations to spatially and
orientationallyoptimizedmolecularstructures; theyarede-

Figure 3. Energies as obtained in ab initio simulations (black crosses) and fitted data, using the force field (involving LJ interactions (open blue
circles) or Mie interactions (open orange diamonds)); see Section 2.3.1. Also shown are, with labels (a)−(e), five schematic sketches of the five
archetypical configurations of the molecules (along with their relative displacements, schematically indicated via the arrows as the distances vary
along the abscissa); the related energy curves are used to fit the parameters of the force field, as outlined in the text; the labels correspond to the
itemization (a)−(e) used in Section 2.3.2. (f) PQP+ and the ClO4

− molecules, drawn to scale and using the Mie force field for the short-range
interactions: atomic entities are shown as transparent spheres with their diameters fixed by their respective optimized σi values and their Bader
charges (see the color code).
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noted dn(rij) and d
n(zk), respectively, with corresponding

energies U rd( ( ), )n
ijDFT and U zd( ( ), )n

kDFT
(wall) ; they

are, themselves, functions of the interatomic distance, rij,
and the atom−wall separation, zk, of the selected atoms.

(ii) For every optimized ab initio structure, dn(rij) and
dn(zk), obtained in this manner, we define a correspond-
ing molecular configuration rn(rij) and rn(zk), which is
based on the above-introduced rigid molecular blueprint
model rNI (with the index I running now over all N
molecules present in the respective DFT structure). To
this end, we synchronize the COM positions of each
molecule I in the ab initio simulation with the
corresponding COM positions RI of its classical
counterparts and align their orientation PI accordingly.

(iii) Finally, we evaluate the corresponding energies with the
help of the force field via eq 10 at zero electric field, i.e.,

U rr( ( ), )n
ij/ and U zr( ( ), )n

k/ ,
(wall) . We search for

the best set of parameters (or ) and via
simultaneously minimizing

∑= | − |
{ }

 U r U rd r( ( ), ) ( ( ), )
r

n
ij

n
ij/ DFT /

2

ij

(11a)
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| − |
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 U z U zd r( ( ), ) ( ( ), )
z

n
k

n
k

/ ,
(wall)

DFT
(wall)

/ ,
(wall) 2

k

(11b)
Of course, in the model, the same unit cell, , and the
same number of particles, n, as in the respective ab initio
simulations have to be used. Note that in eq 11a the wall
term included in eq 10 is obsolete since the surface
atoms are not considered.

These fits are based on five particularly chosen, archetypical
configurations, to be discussed below. In the panels of Figure 3,
we display schematic sketches of these configurations of the
PQP+ and ClO4

− molecules; these panels show the correspond-
ing energy curves obtained from the force field, with
parameters based on a fitting procedure to the ab initio
energy profiles.

(a) Tail-to-tail configuration (see the inset in Figure 3a): We
have considered a series of ab initio structure
optimizations at constant but successively increasing
nitrogen−nitrogen distances, rNN, in the x-direction
(while keeping yNN and zNN constant) of an antiparallel
oriented pair of PQP+ molecules; both cations are
vertically decorated with a ClO4

− molecule. The aromatic
parts of the PQP+ molecules lie flat in the x- and y-
directions such that their tails face each other.

(b) Face-to-face configuration (see the inset in Figure 3b):
In this case, we consider antiparallel oriented but
vertically stacked PQP+ molecules (both being horizon-
tally decorated by ClO4

− molecules) under the variation
of the nitrogen−nitrogen distance, rNN, in the z-direction
(while now keeping xNN and yNN constant). Again, the
aromatic parts of the PQP+ molecules lie flat in x- and y-
directions; however, and in contrast to case (a), these
units face each other.

(c) ClO4
−−ClO4

− configuration (see the inset in Figure 3c):
Here, two ClO4

− molecules are considered, varying the
chlorine−chlorine x-distance, rClCl, while keeping yClCl
and zClCl constant.

(d) Face-to-wall topped configuration (see the inset in
Figure 3d): In this case, a single PQP+ molecule, lying
flat and parallel to the (x, y)-plane, is located above two
layers of Au and is vertically decorated by a ClO4

−

molecule. The cell geometry is assumed to be periodic
in the x- and y-directions and finite along the z-axis; in
an effort to scan along the z-direction, we have
performed a series of ab initio-based structure
optimizations for selected fixed values of zN, i.e., the z-
position of the nitrogen in PQP+ above the Au surface.
The LJ 10-4-3 potential54 was used between the
Au(111) surface and the molecules.

(e) Face-to-wall beside configuration (see the inset in Figure
3e): In contrast to case (d), the PQP+ cation is now
horizontally decorated by the ClO4

− anion such that both
molecules are adsorbed on the Au surface. Again, the LJ
10-4-3 potential54 defined in eq 9 was used between the
Au(111) surface and the molecules.

In practice, we first optimize / , given in eq 11a,
involving thereby all interatomic force field parameters; their
values are listed in Table 1 for the LJ and the Mie models.
These parameters are then kept fixed and are used in the
subsequent calculations to optimize the wall force field

parameters via optimizing / ,
(wall) , specified in eq 12; the

emerging parameters are listed in Table 2. In Figure 3f, we
present a visualization of the molecules PQP+ and ClO4

−, using
these optimized parameters and providing information about
the charge of the atomic entities via the color code.

3. IDENTIFICATIONS OF SELF-ASSEMBLY SCENARIOS
With the classical force field for the PQP+ and ClO4

− molecules
introduced in Section 2.3.1 at hand, we are now ready to
identify the ordered ground-state configurations of these
molecules as they self-assemble on the Au surface, immersed
into an electrolyte and exposed to an electric field. While we
leave a more comprehensive and systematic investigation of
these self-assembly scenarios to a future publication,61 we focus

Table 1. Numerical Results for the Optimized LJ and Mie Parameters, σ= { ϵ },i i and σ γ γ= { ϵ }, , ,i i i
R

i
A( ) ( ) , for Each

Element i, for the Results Depicted in Figure 3 (σi in Å and ϵi in meV)a

σH σC σN σO σCl ϵH ϵC ϵN ϵO ϵCl

2.243 3.658 3.743 2.865 5.953 3.052 1.204 3.311 7.396 0.172
2.236 3.703 3.328 2.428 4.956 3.999 0.946 2.021 11.481 5.289
γH
(R) γC

(R) γN
(R) γO

(R) γCl
(R) γH

(R) γC
(R) γN

(R) γO
(R) γCl

(R)

12 12 12 12 12 6 6 6 6 6
6.263 7.136 8.659 8.743 15.455 7.500 12.299 13.854 17.193 4.684

aReference values from the literature are listed in Table S1 in the Supporting Information.
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in this contribution on the technical details of our approach
and on a few selected sets of external parameters (i.e., the
electric field strength and the particle density).
Our overall objective is to find for our system the global

minimum of the total free energy, F, at T = 0 K as a function of
the positions and orientations of all molecules per unit cell for
a given value of cell volume and Ez; at T = 0, this task reduces
to the minimization of the internal energy U. The minimum
has to be found in a huge-dimensional parameter space,
spanning the positions and orientations of the molecules, and
by the parameters specifying the unit cell. To be more specific,
the dimensionality is set by the number of parameters to be
optimized, which read 64, 76, and 88 for five, six, and seven
molecules per unit cell, respectively. It is a particular strength
of our optimization algorithm (as detailed below) to identify in
an efficient and reliable manner minima in such high-
dimensional search spaces.
For this purpose, we use a memetic search algorithm that

combines evolutionary search strategies (EA)62−68 and
local, steepest gradient descent procedures (LG):69,70 first,
a total number of NEA different lattice configura-
tions, = R P( , , )N N as defined in eq 8, is generated.
We note that among those configurations we have also
intentionally included as “educated guesses” molecular
configurations, inspired by the experimental self-assembly
scenarios identified in ref 3; however, it should be emphasized
that this information is only available for the PQP+ ions, as the
experiment does not provide any information about the
positions of the perchlorate ions. This population, NEA , is
exposed to concepts of natural (or, rather, artificial) selection.
At every iteration step of the EA, a new configuration, i.e., an
offspring, is created from existing configurations of the most
recent population via crossover and mutation operation. This
new configuration is then subjected to an LG optimization, an
operation that represents by far the most time-consuming task
in our algorithm and is performed in parallel using the
“mpi4py” framework.71−73 For an optimal load balance, we
additionally spawn a master thread on one of the mpi processes
to asynchronously distribute optimization tasks of offspring
configurations among all idle mpi processes. The relaxed
configurations are gathered by this master thread, which then
decides, via a criterion primarily based on the respective
internal energy of the configurations, whether the new relaxed
particle arrangements are accepted or rejected.
Since the experimental observations3,5 provide evidence of a

structural organization of the molecules into supramolecular
lattices, the center-of-mass coordinates of the molecules, RN,
and their orientations, PN, as well as the parameters defining
the unit cell, , (see Section 2.3.1 and Figure 1 for details), are

the variables that have to be optimized for the search of
ground-state configurations: we minimize U Er( , ; )n

z ,
defined in eq 10, with respect to RN, PN, and , keeping the
number of molecules N, the unit-cell volume V (with fixed slab
width cz), and the electrostatic field strength Ez constant.
In more detail, we proceed as follows:

(i) It is common in evolutionary algorithms to define a
genome representation of the entity that is subject to
optimization.74,75 In our case, we represent a supra-
molecular lattice configuration phenotypically (rather
than genotypically75) by the set = { }R P, ,N N as
defined by eq 8, i.e., the set of all COM coordinates and
orientations of all molecules as well as the lattice vectors.

(ii) In the first step, two configurations (labeled hence-
forward by Latin indices), i and j, are chosen at
random or via the “roulette wheel” method (see item (v)
below) from the evolutionary population;62,63,76−78 this
strategy favors parents of high quality, hence making
them more likely to be used for reproduction than
“weaker” configurations, i.e., configurations with higher
energy from the evolutionary population. Then, these
two configurations are combined via a crossover
operation (i.e., a cut-and-splice process; for more details,
see below), creating thereby an offspring configuration,

⊕i j, with the subscript “i⊕ j” emphasizing the executed
crossover operation between i and j. The purpose of
this operation is to save high-quality blocks of the
genetic material (e.g., the relative positions and
orientations of molecules within the unit cell) to
efficiently sample the parameter space.62,63,74−78

(iii) In the second step, the newly generated offspring
configuration, ⊕i j, is then exposed to random mutation
moves: these are either translations or rotations of single
molecules, swaps of center-of-mass positions or
orientations of pairs of molecules, or deformations of
the unit cell, each of them with a certain probability and
within preset numerical boundaries. This step of the
algorithm has the purpose of exploring disconnected
areas in the parameter space, a feature that is
indispensable in global minimization techniques.

(iv) After these two steps, and assuming that the offspring
configuration, ⊕i j, does not represent a local minimum
with respect to the potential energy, a local energy
minimization is performed. Here, we mainly rely on the
“scipy” implementation of the SLSQP gradient descent
algorithm69,70 (allowing us to define numerical bounda-
ries and constraints on the parameters during the
optimization), which minimizes the forces and torques
between the molecules as well as the stress of the unit
cell. These tools are very helpful to keep the unit-cell
volume fixed and to prevent re-orientations of the
molecules where some of their atomic constituents
would be transferred into positions outside the slab
geometry, ensuring thus that zi > 0 for all atoms.
Subsequently, we perform several “basin-dropping”
(BD) steps, where we further try to lower the energy
of the configuration by applying several small random
“moves” in the parameter space of the LG-optimized
offspring; from the emerging configurations, only the
ones with low energies are accepted. This specific
operation turned out to considerably improve the

Table 2. Numerical Results for LJ Length and Well-Depth
Parameters, σwi in Å and ϵwi in meV, between the Wall and
Each Element i = [H, C, N] and j = [O, Cl], Grouped by the
Molecules They Belong to (PQP+ and ClO4

−), for
Intermolecular Short-Range LJ Parameters Listed in Table 1
and Corresponding σwi and ϵwi Parameters for
Intermolecular Short-Range Mie Parameters Also Listed in
Table 1

σw[H,C,N] σw[O,Cl] ϵw[H,C,N] ϵw[O,Cl]
(LJ) 3.197 3.625 3.741 15.781
(Mie) 3.208 3.630 3.698 20.167
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convergence rate of the local optimization, in particular
if multiple and alternating sequences of LG and BD runs
are applied.

(v) After the local search procedure, the optimized offspring
configuration, ⊕i j, becomes a new candidate to enter

the evolutionary population, NEA . The objective of the
EA is to retain the best configurations (i.e., the
energetically most favorable ones) within the population
and to include only the candidates with energy values
better or comparable to those of the current population.
In an effort to quantify the quality of the candidates,
their so-called fitness is evaluated,62,63,75−78 for which we
have used in this contribution the function

= −
−
−

i
k
jjjjj

y
{
zzzzzF U s

U U
U U

( ) exp min

max min (12)

F(U) is a monotonic function of the energy U of the
candidates, whose value ranges within the interval 0 ≤
F(U) ≤ F(Umin) = 1; Umin and Umax are the minimal and
maximal energies appearing in the population, respec-
tively. The selection parameter s quantifies the
reproduction rate for configurations within the pop-
ulation in the sense that large values of s tend to exclude
configurations with low fitness from reproduction;
following ref 78, we commonly use s = 3. The
aforementioned “roulette wheel” method for choosing
suitable parent configurations also relies on the fitness
function (and hence the selection parameter): assuming
that the configurations within the population NEA are
sorted by their respective fitness values in descending
order, F(Ui) > F(Ui+1), the probability, f(Ui), of a
configuration, i, to be selected for reproduction is given
in terms of the relative fitness62,76−78
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NEA is the total number of configurations within the
population. With a certain probability (commonly in
20% of all crossover moves), we allow reproduction
between randomly chosen configurations.

(vi) Once a new configuration is accepted to enter the
population, another configuration has to be eliminated.
The probability p(Ui) for a configuration, i, to be
replaced is given by

∑= [− ] [− ]
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−Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
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j

N

j
1

1
EA

(14)

a value that is again related to the fitness of the
configuration, F(Ui), and the selection parameter s.
Thus, configurations with low fitness are more likely to
be eliminated. In any case, a few of the best
configurations within the population are retained in an
effort to keep the so far best solutions as appropriate
parent candidates for the above-mentioned crossover
procedures (a strategy referred to in the literature as
elitism76). It should be emphasized that this strategy
does not follow biological selection mechanisms,79

where populations are replaced entirely once that new

generations have been formed; however, our strategy
ensures to protect the best genetic material from
extinction during the entire search procedure.76,78

(vii) In an effort to maintain diversity within the population,
an additional operation (in the literature referred to as
nichening80,81), is applied: locally optimized offspring
configurations will be discarded if the values of their
energy are too close to the energy of any configuration
currently in the population, avoiding thereby that the
population is overrun by structurally identical config-
urations. At the same time, the maintenance of genetic
diversity is guaranteed.
However, this procedure alone cannot cope with

“degenerate” configurations, i.e., if structurally distinct
configurations have essentially the same energy values
(within the specified nichening tolerance). In our
approach, we allow configurations to enter the
population only if their structures differ significantly
from those of the competing, degenerate configurations.
To quantify the structural difference between config-
urations, we associate a feature vector, fi, which collects a
set of order parameters pertaining to configuration i
(see S.I. Section S3.2 for details). The degree of
similarity between two configurations, i and j, is
then evaluated by taking the Euclidean distance between
the corresponding feature vectors, i.e., Δij = |fi − fj|;
similar configurations will have a small distance, while
unlike configurations will have a large distance. If Δij is
above a certain threshold value, the offspring config-
uration, ⊕i j, will not be discarded by the energy-
nichening operation.

To offer the reader an insight into the computational
complexity of our project, we outline via a few characteristic
numbers the computational limitations: the bottlenecks of the
identifications of self-assembly scenarios are (i) the huge
number of calls of energy evaluations in the optimization step,
as underlined via some example: per generation, we have at
least 104 calls of the energy kernel; for each state point, we
need at least 104 generations, which leads to an absolute
minimum of 108 calls of the energy kernel for one (!) set of
system parameters and (ii) the optimization of the energy in a
high-dimensional search space (as specified above), ranging
from ∼60 to 90, depending on the number of molecules.
Summarizing, the complexity of the problem at hand forces

us to use all of the above-listed advanced optimization tools,
including a basin-hopping memetic approach combining the
heuristic nature of evolutionary strategies with deterministic
local gradient descent algorithms.62 The gradient descent
method deterministically evaluates every local minimum of the
basin with high accuracy (which is additionally sped up by the
“basin-dropping” procedure), while the evolutionary search
gradually adapts its population to the energetically most
favorable solution, exploring the search space for the global
optimum.
To round up this section, it should be noted that a variety of

techniques have been used in the literature for related
optimization problems; among those are Monte Carlo or
molecular dynamics-based techniques such as simulated
annealing,82,83 basin-hopping,84−86 minima-hopping,87,88 and
eventually evolutionary approaches such as genetic algo-
rithms.62−68,80,81,89−92 The decision on the method of choice
relies on the specific problem: for instance, as Hofmann et al.
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used the SAMPLE technique (see refs 8, 22 and 23), relying on
a discretization of the search space into limited, archetypical,
intermolecular motives and elaborate data fitting of emerging
force fields to describe intermolecular interactions. To the best
of our knowledge, this approach has neither been applied to
molecular motives beyond monolayer configurations or to
charged molecules, so far, nor has it been used in combination
with an external control parameter, such as an electric field or
systems composed of multiple components. In general, the fact
that the number of archetypical intermolecular motives grows
rapidly with the increasing size of the molecules bears the risk
of hitting very soon the limits of computational feasibility.
However, suitable adaptations of this strategy and/or a
combination with evolutionary search strategies or with
reinforcement learning, which has, for instance, very
successfully been applied to protein folding problems93 in a
similar way as AlphaGo94 was able to master the infamous
board game, might represent a viable route to circumvent the

aforementioned limitations; thus, future investigations of such
intricate problems as the complex monolayer-to-bilayer
transition, addressed in this contribution, might come within
reach.

4. RESULTS

4.1. General Remarks and System Parameters. Below,
we present selected results for self-assembly scenarios of PQP+

and ClO4
− molecules on an Au(111)−electrolyte interface

under the influence of an external electrostatic field, as
obtained via the algorithm presented in the preceding sections.
Our choice of parameters is guided by the experimentally
observed molecular configurations.3 We demonstrate that our
proposed strategy is indeed able to reproduce on a semi-
quantitative level the experimentally observed self-assembly
scenarios.3 As a consequence of the still sizable costs of the
numerical calculations, we leave more detailed investigations
(where we systematically vary the system parameters) and a

Figure 4. Results for the ground-state configurations of PQP+ and ClO4
− molecules, adsorbed on a Au(111) surface under the influence of an

external electrostatic field Ez, as they are obtained via the numerical procedure, as specified in Section 3; calculations are based on the classical
model for the molecules, involving the Mie potential (for details, see Section 2.3.1). In the main panels, configurations are shown in a periodically
extended view as projections onto the (x, y)-plane and in the respective insets as projections onto the (y, z)-plane; in the main panels, the
respective unit cells are highlighted by thick black lines. Results are shown for different values of the number of PQP+ molecules, the surface density
σPQP, and the electrostatic field Ez: see labels in different panels and Table 3 for details. The red (gray) shaded areas, framed with dashed lines, in
(a) and (d) emphasize PQP+ molecules that sit on top of other cations, forming a bilayer structure. The dashed, shaded, magenta (gray)
rectangular, and green (gray) square areas in (b) represent tilings formed by perchlorate molecules within the dense PQP+ monolayer
configuration. The dashed, shaded, and blue (gray) circles in (c) and (e) emphasize, quantitatively, the porous and auto-host−guest tiles identified
in the experiment (see Figure 4A,C in ref 3, respectively).
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quantitative comparison of our results with the related
experimental findings3 to a future contribution.61

To be more specific, we have used the following values for
the (external) system parameters:

• An indication for the number of molecules per unit cell
is provided by the experiment:3 we have considered unit
cells containing 10, 12, and 14 pairs of PQP+ and ClO4

−

molecules. These numbers of molecules include, of
course, also the related mirror molecules and correspond
to 630, 636, and 742 atomic entities per unit cell,
respectively (which interact via short-range and long-
range potentials, which are subject to particle wall
interaction and are sensitive to an external electrostatic
field).

• Also, the actual values of the surface area A are
motivated by estimates taken from the experiment:3

we have varied A within the range of 6.5−12.25 nm2,
assuming a step size of typically 0.5 nm2; systems will be
characterized by the surface density of the PQP+

molecules, defined as σPQP = NPQP/A, with NPQP being
the number of PQP+ molecules per unit cell.

• The range of the experimentally realized values for the
electrostatic field strength Ez is, however, difficult to be
estimated since the major drop in voltage occurs near
the negatively charged Au surface and the nearby layers
of cations,55 which is not directly accessible in the
experiment. Therefore, we have covered, at least in this
first contribution, several orders of magnitude in the
value for Ez within a range that extends (on a logarithmic
grid) from Ez = −10 to −10−3 V/nm; in addition, we
have also performed calculations at zero electrostatic
field.

It should be mentioned that we have used in all of these
calculations the Mie potential within the classical model, since
the related LJ model is not able to fit the ab initio data with a
comparable and sufficient accuracy (see also the discussion in
Section 2.3.1).
We have covered in total approximately 176 combinations of

these parameters (that is the unit-cell volume V with a constant
slab width cz, the number of molecules N, and the electrostatic
field strength Ez); for each of these, we performed independent
evolutionary searches with a population size of typically

= 40NEA configurations. Some details about the numerical
costs of our calculations can be found in S.I. Section S4.1.
4.2. Discussion of the Results. 4.2.1. Lateral Particle

Arrangements. In this section, we discuss the lateral self-
assembly scenarios of the PQP+ and of the ClO4

− molecules.
Selected results for our numerical investigations are presented
in Figure 4 and in, on a more quantitative level, in Table 3. The
actual values have been chosen in an effort to reproduce, at
least on a qualitative level, the results obtained in the
experimental investigations. Indeed, the sequence of the
obtained ordered ground-state configurations (shown in panels
a−c) clearly indicates the transition from a stratified bilayer
configuration (identified at a rather strong electrostatic field
strength of Ez = −0.3 V/nm) to a self-host−guest monolayer
structure (obtained by reducing the field down to Ez = −0.1 V/
nm) and eventually to an open-porous configuration
(identified at Ez = −0.01); similar observations have been
reported in the related experimental study.3

From the results of our investigations (which are shown only
selectively), we learn that an electrostatic field strength of Ez =

−0.3 V/nm always leads to bilayer configurations, similar to
the one shown in Figure 4a. This stratified bilayer
configuration represents the energetically most favorable one
as we vary at fixed Ez the volume of the unit cell and the
number of molecules within the respective ranges, specified in
the preceding section; the numerical data of the related
internal energy are compiled in Table 3.
As we proceed to Ez = −0.1 V/nm, we observe self-assembly

scenarios as the ones depicted in Figure 4b,d, which
correspond to self-hosts−guest configurations observed in
the experiment;3 for the data presented in these panels, two
different values for NPQP (and hence for σPQP) have been
considered: the monolayer configuration shown in panel b has
a slightly better value for the internal energy (per molecule)
than the rhombohedral bilayer configuration shown in panel d;
however, as can be seen in Table 3, the energy differences are
very tiny: differences of the order of 10−4 eV correspond to
values where we hit the numerical accuracy of the ab initio-
based energy values.
Eventually, we arrive at the so-called open-porous structures,

observed in the experiment:3 the ground-state configurations
depicted in Figure 4c,e,f are evaluated at the same electrostatic
field strength of Ez = −0.01 V/nm, assuming different values
for NPQP and σPQP; the open-porous pattern emerging in panel
c is the most favorable one in terms of energy per molecule
(see Table 3 for the numerical details). There are, however,
several serious competing structures with minute energy
differences at this value of the electric field strength: another
open-porous structure, depicted in panel f, with an energy
penalty of less than 8.1 meV per PQP+ molecule compared to
case (c) and also a considerably denser configuration, depicted
in panel e, with an internal energy value worse by only 11.3
meV compared to case (c) and by 3.2 meV compared to case
(f).
From the numerical point of view, the following comments

are in order: for a fixed state point, the energy differences of
competing structures attain values that hit the limits of the
accuracy of the ab initio-based simulations, which can be
estimated to be of the order of 0.1−0.01 eV per molecule for
dispersive interactions.36,95−97 These values set the limits of
our numerical accuracy. For completeness, we note that for the
results for the energies obtained via the classical force field
(which are based on LAMMPS calculations), we estimate that
our results are numerically reliable down to ∼10−6 eV per
atom; within the range of such minute energy differences, no
competing structures have been found in our investigations. In
general, we observe that the energy differences for the
energetically optimal ground-state configurations become
smaller as the electrostatic field tends toward zero. Even

Table 3. Results of Evolutionary Ground-State Search for
Different Electric Field Strengths, Ez, for Different Unit Cell
Areas, A, and Number of PQP+ Molecules, NPQP

a

Ez (V/nm) U/NPQP (eV) NPQP A (nm2) NPQP/A (nm−2)

(a) −0.30 −1.5804 6 8.5 0.705882
(b) −0.10 −1.7276 6 11.75 0.510638
(d) −0.10 −1.7274 5 8.0 0.625000
(c) −0.01 −1.6445 6 11.25 0.533333
(f) −0.01 −1.6364 6 12.25 0.489796
(e) −0.01 −1.6332 7 11.75 0.595745

aEach line represents an evolutionary search. The respective
structures are presented in Figure 4.
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though the optimization algorithm (as outlined in Section 3)
has turned out to be very efficient and reliable, we observe (in
particular for smaller values of the external field) that new
configurations are included in the population of the best
individuals even after a large number of optimization steps.
4.2.2. Vertical Particle Arrangements. In Figure 5, we

present in separate panels the height distributions of PQP+ and
ClO4

− as functions of the electrostatic field, Ez (which is binned
for the six different values of Ez that were investigated); along
the vertical axis, we count (for a given value of Ez) the
occurrence of the respective molecules in bins of 1 Å, and
normalize by the total number of all considered configurations
identified by the evolutionary algorithm, which are located
within an interval of at most 1 kBT (or 43 meV) above the
configuration with the best energy, which is of the same order
of magnitude as the values presented in Table 3 for different
electric field strengths, Ez. Note in this context that the
distance of the first layer of PQP+ molecules can be directly
estimated by the vertical equilibrium position of carbon atoms,
zC
(eq) = 3.166 Å, obtained by minimizing eq 9 for a single
carbon atom with σwC

(Mie) = 3.208, taken from Table 2.
For the high values of the field strength (i.e., for Ez = −10

and −1 V/nm), the PQP+ ions are preferentially adsorbed onto
the gold surface as a closely packed monolayer (see the left
panel of Figure 5), while the perchlorate anions are strongly
dissociated and assemble as far from the gold surface as
possible (corresponding in our investigation to the numerical
value of the slab height, which we fixed to 12 Å); see the right
panel in Figure 5. This situation represents an extreme case in
the sense that neither the Coulomb nor the short-range Mie
interactions between ions and anions can compensate for the
strong negative surface potential.
Decreasing now the magnitude of the electrostatic field to

the more moderate value of Ez ∼ −0.3 V/nm reveals the
emergence of a bilayer structure, formed by the PQP+

molecules, with pronounced peaks located at zPQP+
(1) ∼ 3 Å

and zPQP+
(2) ∼ 7 Å, with relative weights of 72 and 21%,

respectively. Such stratified bilayer configurations (as depicted
in Figure 4a) are in competition with structures similar to ones
shown in Figure 4d. Note that in parallel a far more complex
height distribution of the perchlorate molecules sets in as soon

as the now moderate electrostatic field allows them to proceed
toward the interior of the slab: now, more than half of the
ClO4

− anions are located “in between” the PQP+ “layers”, trying
on the one side to compensate the charges of one or several
PQP+ “partners” in the slab region and “filling spatial holes”
wherever they can, on the other side. A large portion of
perchlorate ions is even allowed to adsorb on the surface at a
distance of zClO4

−
(1) ∼ 4.074 Å; note that these COM positions

above the interface are larger than the minimal height of the
PQP+ cations due to two reasons: if one face of the oxygen
tetrahedron is oriented toward the interface (i.e., parallel to the
gold surface), the COM of the ClO4

− ion is increased by a value
of zCl − zO ≈ 0.492 Å, with respect to the oxygen atoms. These
atoms themselves have an equilibrium distance to the surface
of zO

(eq) ≈ 3.582 (evaluated by minimizing eq 9 for a single
oxygen atom with σwO

(Mie) = 3.630, cf. Table 2), summing up to
the presented minimal COM distance of the adsorbed ClO4

−

molecules from the interface. Note that the height distribution
of the ClO4

− ions is now rather broad (see Figure 6), which is

Figure 5. Height distribution of PQP+ (left) and ClO4
− (right) molecules as functions of the considered values of the electrostatic field, Ez,

normalized to the number of respective molecules (see the color code on the right-hand side of the panels; the value of one means that all
respective molecules in all considered configurations are counted in one specific bin; see the text for the energy considered in this analysis). Along
the vertical axes, the binning is performed in steps of 1 Å: z = 0 Å marks the position of the gold surface, and the slab width amounts to 12 Å.

Figure 6. Four structurally different configurations of perchlorate ions
(framed by gray, dashed lines and differently shaded areas) at
optimized, fixed cell geometry (indicated in the bottom-left corner by
the black, dashed line) and optimized, fixed positions and orientations
of the PQP+ ions; the energies of these four configurations range
within an interval of 38 meV (per PQP+−ClO4

− pair), as obtained
after an evolutionary energy minimization of solely the degrees of
freedom of the ClO4

− ions, starting from the configuration depicted in
Figure 4a. Changes in the structure as one proceeds from the left to
right are highlighted by respective circles (specifying the position of
the “moving” perchlorate ion) and arrows.
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definitely attributed to their relatively smaller size and their
considerably higher mobility, as compared to their cationic
counterparts (see also the discussion below); these features
make a conclusive interpretation of the roles of the ClO4

− ions
in the structure formation of the entire system rather difficult.
Our interpretation is that the perchlorate ions are, due to their
small spatial extent and their high mobility, able to compensate
for local charge mismatches and to act as spatial spacers
between the cations.
Decreasing further the magnitude of the electrostatic field

down to Ez ∼ −0.1 and −0.01 V/nm provides unambiguous
evidence that the formation of the PQP+ ions into bilayer
structures become energetically more and more unfavorable, as
the upper peak in the height distribution of the cations
vanishes gradually. Concomitantly, an increasing number of
perchlorate molecules approach the gold surface and are
predominantly located there; possibly, they act as a space filler
on the surface itself, while at the same time the small values of
the electrostatic field keep the PQP+ molecules near to the
surface. In this context, it should be noted that decreasing the
electrostatic field is equivalent to decreasing the surface
potential; thus, and in combination with the adsorbed
perchlorate molecules, a transition from an auto-host−guest
to a porous structure is plausible.
Eventually, at zero electric field, the system exclusively gains

energy from intramolecular interactions and adsorption on the
gold surface. Since the perchlorate molecules are rather
spherical in their shape, they can efficiently adsorb onto the
gold surface (in an orientation explained above), while the
PQP+ molecules are able to efficiently stack, especially without
a guiding electrostatic field.
4.2.3. Role of the Perchlorate Anions.We come back to the

above-mentioned volatility of the perchlorate ions: in Figure 6,
we present results from yet another evolutionary analysis, i.e.,
we now fix the positions and orientations of PQP+ molecules as
well as the extent and the shape of the unit cell of some
optimized configuration (as, for instance, depicted in Figure
4a) and vary only the degrees of freedom of the perchlorate
anions. Figure 6 shows, for fixed cell geometry and fixed PQP+

positions and orientations, four structurally different per-
chlorate arrangements whose energy ranges within an interval
of 38 meV (per PQP+−ClO4

− pair): the fact that we obtain
completely different configurations of the perchlorates (with
essentially comparable energies) undoubtedly indicates the
high mobility of the ClO4

− ions. Changes in the structure, as
one proceeds from the left to right, are highlighted by

respective circles (specifying the position of the “moving”
perchlorate ion) and related arrows. The ClO4

− molecules
exhibit a remarkable freedom in their rotation without (or only
marginally) changing the energy of a configuration; this fact
has rendered the minimization of the energy very difficult.
However, it should also be noted that even translations can be
performed without a substantial change in energy.
We note that the analysis of these different structures was

achieved using a so-called t-SNE98 analysis on the leading five
principal components of a principal component analysis
(PCA)99 of order parameters of all configurations identified
by the evolutionary algorithm; for more detailed information
on this rather technical issue, we refer to Figure S5 in Section
S3.2 of the Supporting Information.

5. CONCLUSIONS AND OUTLOOK

The prediction of the supramolecular ordering of complex
molecules at a metal−electrolyte interface using DFT-based ab
initio calculations is in view of the expected gigantic
computational costs, and despite the availability of petascale
computers, still an elusive enterprise. In this contribution, we
have proposed a two-stage alternative approach: (i) DFT-
based ab initio simulations provide reference data for the
energies introduced in a classical model for the molecules
involved, where each of their atomic entities are represented by
a classical, spherical particle (with respective size, energy
parameters, and charges). We modeled the interaction between
the atomic entities and the metallic surface by a classical,
perfectly conductive, Lennard-Jones-like wall potential; the
electrolyte is treated as a homogeneous, dielectric medium.
The interparticle and particle−wall parameters were

obtained via the following procedure: considering archetypical
configurations (involving pairs of ions and/or ions located
close to the surface), DFT energies were fitted by the related
energy values of the classical model. (ii) The second step
identifies the ordered ground-state configurations of the
molecules by minimizing the total energy of the now classical
system. This optimization is based on evolutionary algorithms,
which are known to operate efficiently and reliably even in
high-dimensional search spaces and for rugged energy surfaces.
Our new two-stage strategy overcomes the hitherto

prohibitive computational cost of modeling the full system
while reproducing the key observations of a well-documented
experimental system consisting of disc-shaped PQP+ cations
and ClO4

− anions: as a function of increasing electric field at

Figure 7. (a) Atomistic model of the PQP+ molecule as used in this contribution (white: hydrogen atoms, gray: carbon atoms, and blue: nitrogen
atom); see also Figure S3 in the S.I. (b) Related coarse-grained model in a hierarchy of ever simpler models, using, e.g., Gay−Berne potentials to
account for the van der Waals interaction of all atoms in the specific rings and a multipole expansion to second order (monopole as colored points,
dipole moments as small arrows) for the electrostatic interaction.
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the metal−electrolyte interface, the molecular building blocks
are seen to self-organize into an open-porous structure, a self-
host−guest pattern, and a stratified bilayer. Future work will
focus on verifying the extent of the predictive power of our
method toward molecular self-assembly under electrochemical
conditions and on strategies to further streamline and reduce
the computational cost of our approach, without sacrificing the
reliability of the predicted results.
In view of the high computational costs and the conceptual

challenges encountered in our investigations, we have
pondered the question whether the complexity of the current
model (which, as a classical model, is comprehensive in the
sense that it contains all atomistic features) could possibly be
further reduced, avoiding thereby conceptual and computa-
tional bottlenecks. The idea behind this strategy is to develop,
starting from the present model, a hierarchy of ever simpler
models where, for instance, larger subunits of the molecule
(such as aromatic rings) are replaced by disk-shaped units
carrying higher electrostatic moments, as schematically
visualized in Figure 7. Such a model might provide a first,
semiquantitative prediction of the self-assembly of the PQP+

and of the ClO4
− ions at considerably reduced costs and might

help in prescreening possibly promising portions of the huge
parameter space for subsequent investigations of the full
model. Efforts in this direction are currently pursued.
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taẗ Freiburg) for the kind hospitality, where part of the work
has been carried out. B.H. also acknowledges the Christiana
Hörbiger prize for covering travel expenses to Paris. B.H. and
G.K. acknowledge financial support by E-CAM, an e-
infrastructure center of excellence for software, training, and
consultancy in simulation and modeling funded by the EU
(Project no. 676531). The computational results presented
have been achieved (in part) using the Vienna Scientific
Cluster (VSC). S.S. and M.W. acknowledge funding from
Deutsche Forschungsgemeinschaft (WA 1687/10-1) and the
computing time granted by the John von Neumann Institute
for Computing (NIC) within project HFR08 as well as the
computational resource bwUni-Cluster funded by the Ministry
of Science, Research and the Arts Baden-Württemberg and the
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