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Abstract Since their ‘re-discovery’ more than two decades

ago, FOXP3? regulatory T cells (Tregs) have been an

important subject of investigation in the biomedical field and

our understanding of the mechanisms that drive their pheno-

type and function in health and disease has advanced

tremendously. During the past few years it has become clear

that Tregs are not a terminally differentiated population but

show some degree of plasticity, and can, under specific

environmental conditions, acquire the phenotype of effector T

cells. In particular, recent works have highlighted the acqui-

sition of a Th1-like phenotype by Tregs in several pathological

environments. In this review we give an update on the concept

of Treg plasticity and the advances in defining the molecular

mechanisms that underlie the generation of Th1-like Tregs

during an immune response and in different disease settings.
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Regulatory T cells control the immune system

The immune system is armed with a variety of effector

mechanisms to recognize and destroy foreign pathogens as

well as with several peripheral tolerance processes to

maintain tolerance to self. In this context, cells with reg-

ulatory capacity are crucial for maintaining immune

homeostasis and peripheral tolerance, and they play an

essential role in controlling autoimmune responses, aller-

gies and limiting immunopathology [1–6]. While the

spectrum of regulatory cells is wide and comprises many

different cell types, naturally occurring regulatory T cells

(Tregs) is the best studied population of cells with sup-

pressive capacity [6]. They are generated in the thymus at

the stage of CD4 single-positive thymocytes [7] as a sep-

arate cell lineage, and are thought to be enriched in self-

reactive T-cell receptors (TCR), which is essential for

maintenance of self-tolerance. As with the development of

other cell lineages in the thymus [8, 9], a specific

requirement for TCR signaling is essential for the induction

of its lineage specification transcription factor FOXP3 and

Treg cell lineage commitment, and TCR specificity plays a

critical role in this differentiation. Studies with TCR

transgenic mice [10–13] and sequence analysis of poly-

clonal TCR repertoires from Tregs as compared to

conventional T cells bearing a single transgene-encoded

TCRb chain [14–16] have led to the conclusion that Treg

cell selection is probably instructed by TCRs with affinities

for self-peptide–MHC complexes that are of an interme-

diate affinity between those that induce positive selection

of non-Treg cells and those that mediate negative selection

of self-reactive T cells. Medullary thymic epithelial cells

(mTECs) are the major antigen-presenting cells in the

thymus, and their phenotype and function are mediated in

part by the transcription factor Aire, which regulates the

expression of a multitude of genes, including antigens

characteristic of fully differentiated cells in peripheral tis-

sues, shaping the array of self-peptides presented by MHC

and thus, the negative selection of effector T cells [17–19]

and the positive selection of Tregs [20–23]. Additional
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signals needed for Treg differentiation in the thymus

include cytokines such as IL-2 [24] and to a lesser extent

IL-7 and IL-15 [25], and costimulatory molecules, among

which, CD28 plays an important role in promoting natural

Treg differentiation. Mice studies have shown that mice

deficient in CD28 or its ligands CD80 and CD86 have

significantly impaired Tregs [26, 27], whereas CTLA-4

ablation results in a higher frequency of natural Tregs [28].

Both TCR and CD28 signaling trigger a myriad of intra-

cellular signaling events that lead to the activation of

transcription factors, including NFjB, which has been

shown to be essential for natural Treg generation [29–31].

Lineage specificity is imprinted in early phases during

development by the expression of FOXP3 [32] and by the

induction of stable epigenetic changes [33–35].

Tregs are characterized by the expression of the master

transcription factor FOXP3 [36, 37], the IL-2 receptor alpha

chain, CD25 [6, 38], and the low expression of the IL-7

receptor alpha chain, CD127 [39]. Many other markers have

been described to be expressed in subpopulations of Tregs,

arguing for heterogeneity within this population. IL-2 is an

essential cytokine for Treg homeostasis and function. Tregs

constitutively express high levels of CD25, and IL-2 is

essential to preserve tolerance by influencing Treg home-

ostasis and activation [40, 41]. In mice, knocking out or

blocking IL-2 or CD25 results in Treg deficiency, impaired

Treg development and reduced Treg function [42]. Further-

more, IL-2-driven signals through the JAK/STAT signaling

pathway directly stabilize FOXP3 expression through STAT5

activation, subsequently driving their suppressive function

[43, 44]. Due to the absence of IL-2R signaling, IL-2 and

CD25 knock out mice exhibit lethal autoimmunity caused by

uncontrolled CD4? T cell activation and proliferation

[45, 46]. Treg numbers are reduced in these mice [47] and co-

transfer of functional Tregs can prevent autoimmunity [48],

highlighting the importance of IL-2 signaling on Tregs for

their role in controlling immune responses.

In the setting of an immune response, CD4? naı̈ve T

cells produce massive amounts of IL-2 and upregulate

CD25, resulting in a self-enhancing loop that favors aug-

mented CD4? T cell activation, proliferation and

polarization into T helper effector CD4? T cells [49]. To

counteract increased effector T cell activation, Tregs

respond to IL-2 and activate mechanisms to regulate

effector T cells to prevent uncontrolled pro-inflammatory

and potentially harmful responses.

FOXP3 as a master regulator of the Treg lineage

FOXP3 is crucial for Treg development [37, 50], function

[51, 52] and maintenance [53]. Thus, forced expression of

FOXP3 in CD4? T cells results in the acquisition of a

regulatory phenotype, although it does not completely

recapitulate Treg gene-specific signature [54, 55], and

experimental deletion of the FOXP3 gene in Tregs results

in the loss of their suppressive capabilities [32, 37, 53].

Mutations in the FOXP3 gene leads to the human

autoimmune immunodysregulation polyendocrinopathy

enteropathy X-linked syndrome (IPEX), characterized by a

loss of Treg function and severe autoimmunity. Patients

with IPEX suffer from early-onset insulin-dependent dia-

betes mellitus, thyroiditis, massive lymphoproliferation,

eczema, entheropathy and other autoimmune pathologies

that are usually fatal during the first years of life [56, 57].

Due to its essential role in maintaining Treg function and

stability, it is not surprising that Foxp3 expression is tightly

regulated. Transcription of Foxp3 gene has been shown to

be modulated at the epigenetic level [58], and FOXP3

protein expression and stability may be controlled by post-

translational modifications such as phosphorylation

[59–61], acetylation [62, 63] and ubiquitination [64, 65],

among others. Experiments with genetically engineered

mouse models have shown that the genomic region of the

Foxp3 locus has several conserved non-coding sequences

(CNS1, CNS2, CNS3), which perform diverse functions in

the regulation of Foxp3 transcription. CNS1 region con-

tains binding sites for NFAT and AP-1, being important for

peripheral generation of adaptive Tregs [58, 66], while

CNS3 plays a role in both natural and adaptive Treg gen-

eration and contains binding sites for transcription factors

such as c-Rel [58]. Runx1-CBFb complexes bind to CNS2

region to control Foxp3 expression and stability [67].

Moreover, epigenetic modifications of highly conserved

regions within CNS in the Foxp3 locus are involved in the

transcription of Foxp3. Thus, CNS2 contains a conserved

CpG island (TSDR region) that is highly demethylated in

natural Tregs and hypermethylated in conventional CD4?

T cells [34, 68, 69], which determines Foxp3 expression

and the stability of the Treg lineage [33, 69, 70]. This

TSDR region has been widely used to distinguish bona fide

Tregs from T cell populations that can transiently upreg-

ulate FOXP3 upon activation [71]. Lastly, although FOXP3

is an essential transcription factor required by Tregs to

maintain their phenotype and function, over the last few

years several works in the literature have demonstrated that

FOXP3 does not function alone but forms protein com-

plexes with more than 300 potential partners [72]. Many of

these partners are transcription factors such as, among

others, NFAT, Gata-3, Smad, Runx1 and FOXO

[66, 72–75]. These transcription factors have been shown

to be required to define the Treg cell phenotype and to

establish their unique transcriptional program [76].

Functionally, Tregs utilize cell–cell contact mechanisms

and soluble factors to inhibit the activation of many different

cell types. Thus, Tregs can suppress not only CD4? and
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CD8? T cells [77] but also other immune cells such as B

lymphocytes [78–81], dendritic cells [82–84], monocytes

[85, 86], and NK cells [87, 88], as well as non-immune cell

types such as osteoclasts [89, 90], underscoring the impor-

tance of this population to maintain immune homeostasis.

FOXP3-CD4? T cells in the periphery can also acquire

FOXP3 expression and suppressive function when they

encounter their cognate antigen in the presence of TFGb
and IL-2 under certain environmental conditions. These

Tregs are termed adaptive or induced Tregs (iTregs), and

they show important epigenetic differences as compared to

natural Tregs; however, we currently lack specific markers

that distinguish both populations [91].

Finally, FOXP3 expression also defines a population of

CD8? T cells with regulatory capacity both in mice and

humans that seems to play a role in autoimmune, infectious

and transplantation settings [92, 93], although their origin

and their function in the immune response in these disease

scenarios is less studied than those of CD4? Tregs. Inter-

estingly, some early reports suggested that their

suppressive function mainly depends on HLA-E recogni-

tion [94, 95] and is mediated by IFNc secretion [96, 97],

although the molecular mechanisms underlying this

observation have not been examined in depth.

Regulatory T cell plasticity

Traditionally, Tregs have been considered as a stable cell

lineage with strong suppressive capabilities and a termi-

nally differentiated phenotype. But the idea of phenotype

irreversibility has been recently challenged by a body of

work demonstrating that Tregs are not a completely com-

mitted cell lineage, but can retain some degree of plasticity.

This observation is not surprising in the context of an

immune response, as multitude of works have clearly

demonstrated that cell plasticity is an inherent property of

most, if not all, immune cells that helps them adapt their

phenotype and function to the changing environment

[98–102]. In this regard, it is important to distinguish

between functional plasticity and lineage instability. For

the purpose of this review, we will consider functional

plasticity as the capacity of Tregs to acquire a different

phenotype due to environmental cues, anatomical location,

among other factors, but maintaining either FOXP3

expression or Treg-specific epigenetic patterns. As such,

three major plasticity events have been described with

regards to Treg phenotype and/or function:

‘ex-FOXP3’ cells

Cell-fate reporter mice have revealed that under certain

inflammatory conditions, a small number of Tregs can lose

FOXP3 expression and acquire effector-like phenotypes

(‘ex-FOXP3’ cells), producing pro-inflammatory cytokines

such as IL-2 and TNF and contributing to inflammation

[103–106]. In some experimental conditions, these ex-

FOXP3 cells appear to retain the Treg-specific epigenetic

signature, potentially being able to be reconverted to

FOXP3? Tregs in the absence of the environmental cues

that induced loss of FOXP3 expression [107]. The de-dif-

ferentiation of Tregs into effector-like cells has also been

observed in humans under several pathological settings

[108–110].

In relation to the loss of FOXP3 expression on Tregs,

other studies have shown that FOXP3 degradation favors

the secretion of cytokines such as IL-2, TNF and IFNc and

the decrease in suppressive function, especially in type I

pathogenic settings [64]. The E3 ubiquitin ligases Stub1

and USP21 seem to play antagonistic roles in modulating

the degradation of FOXP3 with Stub1 promoting degra-

dation while USP21 stabilizing FOXP3 expression

[64, 65]. Pro-inflammatory cues such as cytokines and LPS

signaling induce K48-linked polyubiquitination of FOXP3

by its interaction with Stub1, resulting in FOXP3 degra-

dation, increased expression of IFNc and reduced

expression of characteristic Treg genes like CD25 and

CTLA-4 [64] and subsequently disrupting Treg function.

On the contrary, specific deletion of the ubiquitin ligase

USP21 on mice Tregs induces an immune disorder char-

acterized by increased expression of IFNc by effector cells,

and a Th1-like phenotype by Tregs. USP21 prevents

FOXP3 degradation through deubiquination, thus stabiliz-

ing Treg phenotype and antagonizing the development of

Th1-like Tregs [65]. While USP21 and Stub1 directly

interact with FOXP3, the E3 ubiquitin ligase VHL indi-

rectly regulates Th1-like Treg generation by increasing the

expression of HIF-1a, which binds to the IFNG promoter,

increasing IFNc production [111].

Treg plasticity as a means of controlling immune

responses and/or adapting to the tissue where they

reside

Several studies have demonstrated that Tregs utilize the

transcription factor program of the population they are

suppressing. Thus, Tregs that express T-BET efficiently

suppress type 1 inflammation [112], IRF4 expression on

Tregs is essential for controlling Th2 responses [113], and

STAT3 is utilized by Tregs to control Th17 responses

[114] in mouse models of inflammation.

Recent studies in mice have also indicated that tissue-

resident Tregs show a distinct gene expression pattern and

TCR usage as compared to circulating Tregs [115–117].

For instance, the peroxisome proliferator-activated receptor

gamma (PPARc) was identified as the characteristic
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transcription factor utilized by fat tissue-resident Tregs to

maintain their unique phenotype [115]. Interestingly,

PPARc is predominantly expressed on adipocytes, where

its function is to regulate adipocyte differentiation and to

mediate glucose metabolism [118]. This suggests that tis-

sue-specific Treg phenotypes are also driven by tissue-

specific transcription factors, introducing an additional type

of plasticity. Similarly, other studies have identified roles

for Treg cells in muscle repair [119, 120], regulation of

skin homeostasis, and prevention of skin infections [121].

Both muscle- and skin-derived Tregs show a differential

gene expression pattern as compared to blood- and fat-

derived Tregs, indicating that Tregs might adapt their

phenotype and function to the tissue they populate, a pro-

cess that is probably mediated by the specific tissue

microenvironment.

Th-like Tregs

Lastly, under certain inflammatory settings, some Tregs

can acquire an effector T helper (Th)-like phenotype with

the capacity to express pro-inflammatory cytokines, mainly

IFNc (Th1-like Tregs), IL-17 (Th17-like Tregs) and IL-13

(Th2-like Tregs), and lose suppressive capacities while

maintaining FOXP3 expression. In this regard, little is

known about the phenotype and function of Th17-like

Tregs under inflammatory conditions. For instance, when

Tregs are stimulated in vitro in the presence of dectin-1-

activated dendritic cells (DC), they upregulate RORct and

express IL-17 [122]. Interestingly, Th17-like Tregs have

been observed in vivo in humans under physiological

conditions [123, 124] and in mice, preferentially located in

the intestine [125]. Human Th17-like Tregs seem to

maintain their suppressive capacity despite IL-17 expres-

sion in healthy individuals [123, 124], and they can be

induced in vitro by stimulation of Tregs in the presence of

IL-6 and IL-1b [123]. These cells could have pathogenic

potential, contributing to mucosal disease and being

involved in the development of colon cancer

[110, 126, 127] and inflammatory bowel disease [128]. In

this respect, Saito et al. have recently observed that some

tumors from patients with colorectal cancer contain an

increased frequency of Foxp3low Tregs with increased IL-

17 secretion and decreased suppressive function as com-

pared to peripheral blood, and this group of patients seems

to have a better prognosis than those who do not display the

increase in Th17-like Tregs [110]. Other recent reports

have described the presence of Th17-like Tregs in the skin

of psoriasis [129] as well as arthritis [130] patients.

Th2-like Tregs have been recently observed in a mouse

model of food allergy, and they are increased in frequency

in children with milk allergy as compared to healthy donors

or children with other food allergies. These Th2-like Tregs

are characterized by an increased expression of the tran-

scription factors GATA3 and IRF4 and increased secretion

of IL-4 and IL-13 [131, 132]. The production of both

cytokines by Tregs directly contributes to disease, as

specific disease amelioration is observed upon Treg cell-

specific deletion of IL-4 and IL-13 [132]. Moreover, viral

infection with the respiratory syncytial virus (RSV), which

is known to increase the risk for asthma in adults when

infection occurs early in life, induces a Th2-like inflam-

mation in the lung, which promotes a Th2-like effector

phenotype in Treg cells and a loss of suppressive function

[131]. In vitro, Th2-like Tregs can be polarized by the

stimulation of Tregs in the presence of IL-4 and IL-13

[131, 132].

Similarly, we and others have shown that Tregs from

healthy individuals stimulated in vitro in the presence of

IL-12 acquire a Th1-like phenotype characterized by the

secretion of IFNc, upregulation of T-BET and other Th1-

related markers, such as CXCR3 and CCR5, both in mice

and humans [68, 133]. Despite the maintained expression

of FOXP3, these Th1-like Tregs are defective in suppres-

sive capacity as compared to Tregs, although they retain

some degree of inhibitory function in most cases

[68, 133, 134]. Several reports have described the in vivo

generation of Th1-like Tregs in inflammatory environ-

ments such as Toxoplasma gondii infection [135],

neurotropic hepatitis virus [136] and in patients with

autoimmune diseases such as relapsing-remitting Multiple

sclerosis [133, 137] and type 1 diabetes [134].

In this review we give an update on the molecular

mechanisms responsible for Th1-like Treg generation

focusing on two Treg plasticity aspects: the acquisition of a

Th1-suppressing phenotype to control type 1 immune

responses, and the acquisition of an effector-like phenotype

characterized by their inflammatory nature. We also review

recent literature on the role of Th1-like Tregs in several

pathological settings such as autoimmune diseases, infec-

tions and cancer, and the potential modulation of Treg

plasticity as a therapeutic strategy in human disease.

Suppressive Th1-like Tregs: a method to control
specific immune responses

During the past years, it has become clear that Treg

function is a finely modulated process during the extent of

an immune response and is very much dependent on the

anatomical location of the occurring reaction, as well as the

type of immune response they are controlling. In this

regard, it has been observed that Tregs acquire the

expression of the master transcription factor that is similar

to the effector T cell population or type of immune

response that they are suppressing. Thus, Tregs co-opt for
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IRF4 to inhibit Th2 responses [113] and STAT3 to control

Th17 pathology [114], while T-BET expression acquisition

by Tregs is necessary for the control of type 1 inflammation

in vivo [112].

In mice, Koch et al. demonstrated that a Treg subpop-

ulation expressing CXCR3 (a surface marker preferentially

expressed on Th1 CD4? T cells) is present in the circula-

tion of wild-type animals [112]. CXCR3 expression is

regulated by the transcription factor T-BET [138]. T-BET

expression in turn is further induced in Tregs during type-I

inflammation, subsequently resulting in an enrichment of

T-BET? Tregs that is necessary to control T cell responses

during Mycobacterium sp. infection [112]. Although

T-BET is classically defined as a Th1-driving transcription

factor controlling the expression of IFNc, T-BET? Tregs

do not seem to express IFNc in this model; this is likely to

be due to the absence of IL-12 receptor beta 2 subunit

(IL12RB2) expression and the lack of IL-12-induced sig-

naling pathways [139]. The differentiation of Tregs into

Th1-suppressing Tregs is likely to be tightly controlled by

cytokines in the microenvironment. In the case of a type 1

immune response, antigen presenting cells (APCs) and

other cells from the innate immune system, such as NK

cells and macrophages, release Th1-associated cytokines,

IL-12, TNFa and IFNc, which induce a Th1 phenotype on

CD4? effector T cells. These cytokines also shape the

phenotype and function of Tregs.

TNFa can trigger pro- and anti-inflammatory pathways

in Tregs. A subset of both murine and human Tregs express

the TNF receptor 2 (TNFR2) [140, 141]. TNFa stimulation

induces, synergistically with IL-2, the expression of other

members of the TNFR superfamily such as 4-1BB and

OX40 [142]. Interestingly, OX40 (CD134; TNFRSF4) has

recently been shown to induce Treg activation and sup-

pressive function [143]. Furthermore, in vitro experiments

have demonstrated the induction of Treg proliferation and

promotion of Treg stability upon OX40 engagement via

APC-mediated activation and stimulation with OX40

ligand (OX40L). TNFa stimulation increases OX40

expression and promotes Treg suppressive function

[143, 144]. During type I inflammation, Th1 effector T

cells as well as macrophages release a large amount of

TNFa. TNFa in turn is essential to stabilize Treg function

in a mouse model of colitis [145] as well as murine

autoimmune diabetes [146]. Mediating the accumulation of

suppressive Tregs in a TNFa-dependent manner poses a

potential feedback mechanism to regulate strong type I

inflammatory responses. On the other hand, TNFa can

inflict negative effects on Treg stability and function. For

instance, Valencia et al. demonstrated in vitro that the

addition of TNFa in concentrations of 50 ng/ml inhibits

Treg suppression and it is accompanied by decreased

FOXP3 expression in a TNFR2-dependent manner [147].

In rheumatoid arthritis, TNFa negatively modulates Treg

suppressive function [147] and dephosphorylates FOXP3

[61]. Additionally, anti-TNFa therapy induced Tregs in

rheumatoid arthritis patients [148, 149]. However, Zhong

et al. observed inhibitory effects of TNFa mainly on

Helioslow Tregs [150], suggesting that the observed dif-

ferential effects of TNFa might be highly dependent on the

specific Treg subpopulation and/or the inflammatory

milieu.

IFNc is mainly released by NK cells and Th1 effector

cells in the context of type-I inflammation. In Tregs, IFNc
increases TBET expression in a STAT1-dependent manner

resulting in induction of IL12RB2 expression [139]. The

impact of IFNc on Tregs is thus dichotomic as the upreg-

ulation of IL12RB2 renders Tregs susceptible to IL-12

signaling and subsequent polarization into Th1-like Tregs.

However, during type-I immune responses, IFNc fosters

the polarization of Th1-suppressing Tregs [112]. As IFNc
signaling induces TBET expression, IFNc released by Th1

effector CD4? T cells can act as a feedback mechanism to

control type-I immune responses through expansion of

Th1-suppressing Tregs and maintenance of high levels of

T-BET expression. In regards to IL-12 signaling on Tregs,

some reports in the literature suggested that in steady state

conditions, Tregs expressed much lower levels of the

IL12RB2 subunit mRNA as compared to FOXP3- T cells

[139], suggesting that these cells would not be responsive

to IL-12 ex vivo. IFNc induces IL12RB2 in a STAT4-

dependent manner in both murine and human Tregs in vitro

[139, 143]. Subsequent exposure of IFNc-primed Tregs to

IL-12 renders Tregs dysfunctional and favors the polar-

ization of Th1-like IFNc-producing Tregs leading to a

disrupted regulation of type-I inflammatory responses

[151]. However, the upregulation of IFNc at RNA and

protein levels by human and mice Tregs upon ex vivo

stimulation in the presence of IL-12 has been widely

demonstrated [68, 133–135]. IL-12 induces IFNc-produc-

ing Th1-like Tregs that in addition show inhibited

proliferative capacities, reduced suppressive function and

expression of CD25 [113, 133, 134]. In agreement with

these results, recent data suggest that human Tregs do

express IL12RB2 at the RNA level in the steady state [152],

which would explain the rapid increase in IFNG expression

upon IL-12 stimulation. Thus, the balance between differ-

entiation into Th1-suppressing or Th1-like Tregs might be

somewhat different between mice and humans and might

not be controlled by the expression of IL12RB2 and sen-

sitivity to IL-12, but rather by the amount and availability

of IL-12 in the microenvironment and/or the duration of

IL-12 signaling (Fig. 1). In this regard, a subpopulation of

Tregs expressing OX40, which can be induced by TNFa,

has been found to differentiate into Th1-suppressing Tregs

and OX40 to compete for IL-12 [143], unraveling another
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possible mechanism that drives Tregs into different Th1-

associated phenotype and functions.

Th1-like Treg signaling

In humans, in vitro stimulation of Tregs with IL-12 induces

a Th1-like Treg phenotype with upregulation of T-BET,

CXCR3, CCR5 and IFNc expression [133, 151]. In contrast

to mice studies [139], human Treg stimulation in the

presence of IFNc does not induce a Th1-like phenotype,

with IL-12 efficiently inducing IFNG gene expression as

soon as 24 h after stimulation in vitro ([133, 153] and

unpublished data). While FOXP3 expression and the

methylation status of the TSDR locus remain unaffected by

IL-12 exposure, Th1-like Tregs diminish their suppressive

function in in vitro co-cultures with Treg-depleted CD4? T

cells. In relation to the signaling pathways that drive the

generation of Th1-like Tregs in humans, we recently

defined the PI3K/AKT/FOXO pathway as a major axis

involved in IFNc production by Tregs [153]. PI3K/AKT is

a critical signaling node in all eukaryotic cells and the AKT

family of proteins is one of the most versatile and impor-

tant kinases in human physiology and disease. The AKT

family of proteins comprises 3 mammalian isoforms

(AKT1, AKT2 and AKT3), encoded by separate genes

[154]. AKT is activated downstream of PI3K, which can be

triggered by multiple stimuli such as T cell receptor (TCR)

engagement [155], costimulatory molecules such as CD28

[156], cytokine receptors [153, 157], G protein-coupled

receptors [158] and insulin [159], among others. AKT is

fully activated by phosphorylation at both Ser 473 by

mTORC2 [160], and at Thr 308 by PI3K-activated PDK1

[161]. Although phosphorylation at Ser 473 is necessary

for full activation, once triggered by growth factors,

phosphorylation at this residue by mTORC2 targets AKT

for degradation by the ubiquitin system [162]. Once acti-

vated, AKT is able to phosphorylate and activate a myriad

of downstream substrates, influencing diverse cellular and

physiological processes such as cell cycle progression, cell

growth, cell differentiation, cell survival, metabolism,

angiogenesis and motility [163–165]. One of these multiple

AKT targets is the FOXO family of transcription factors,

which has been widely involved in Treg development and

function in mice studies [73, 166, 167]. The PI3K/AKT/

FOXO axis is tightly regulated by the function of several

phosphatases that act at different levels of the pathway,

among which, PTEN inhibits PI3K by dephosphorylating

PI(3,4,5)P3 to PI(4,5)P2 and PHLPP phosphatases

dephosphorylate AKT kinases [168].

IFNc? Tregs isolated from healthy individuals show an

increased expression of AKT1 and decreased expression of

FOXO3, AKT3 and PTEN. Interestingly, using IL-12 as an

in vitro model for Th1-like Treg generation, it is observed

that IL-12 directly induces Th1 polarization by activation of

the PI3K/AKT/FOXO1/3 pathway as measured by phos-

phorylation of AKT at residue Thr 308 and FOXO1/3 at Ser

319 [133, 153]. Despite the well known involvement of AKT

in cell survival, in vitro experiments did not show increased

Th1-like Treg survival as compared to control Tregs [153],

although the in vivo role of this pathway in promoting Th1-

like Treg cell survival remains to be elucidated. Previous

studies had highlighted the importance of the PI3K/AKT

axis in Treg development [169, 170] and function [171],

demonstrating that diminished AKT activation is necessary

for human Tregs to foster suppressive capacities [171]. The

importance of the PI3K/AKT/FOXO1/3 pathway is further

highlighted by a series of in vitro experiments where inter-

ference with the pathway by either pharmacological

activation of PI3K or AKT1, or inhibition of PTEN or

FOXO1/3 resulted in increased expression of IFNc and

T-BET as well as reduced suppressive function [153]. These

data are in agreement with some recent works demonstrating

that PI3K and PTEN are essential for Treg stability in vivo in

mouse Tregs [172, 173]. PTEN stabilizes the metabolic

balance between glycolysis and mitochondrial fitness, and

PTEN-deficient Tregs show increased phosphorylation of

AKT and higher expression of activation markers. In these

mice, activated memory-effector T cells produce high

amounts of IFNc and upregulate CXCR3, underscoring the

importance of the PTEN/AKT axis to stabilize Treg pheno-

type and modulate Treg-mediated control of type 1 immune

responses [172]. Tregs deficient in PTEN show increased

PI3K activity and downregulate the expression of CD25 and

FOXP3 which leads to reduced suppressive capacity further

demonstrating the relevance of the PI3K/AKT/FOXO1/3

pathway for Treg homeostasis and function [173]. FOXO1

has also been involved in the stability and function of Tregs,

as FOXO-/- Tregs display an increase in IFNc expression

and a pro-inflammatory phenotype, and mice with Treg-

specific deletion of FOXO1 succumb to a fatal autoimmune

disorder similar in severity to that observed in FOXP3 defi-

cient mice [73] (Fig. 2).

Interestingly, AKT isoforms exhibit differential func-

tions on the context of Th1-like Treg polarization [153].

While AKT1 is upregulated in IFNc-producing Th1-like

Tregs and AKT1 blockade can prevent Th1-like Treg

polarization [153, 171], AKT3 silencing was sufficient to

induce IFNc production by human Tregs [153]. Other

studies have suggested non-overlapping functions of AKT

isoforms in the context of cancer biology and vascular

disease [154, 165, 174]. Moreover, in the context of

autoimmunity, a recent study has attributed AKT3 a pro-

tective role in EAE development in mice [175].

Besides the PI3K/AKT/FOXO pathway, gene expres-

sion analysis of human IFNc? and IFNc- Tregs has shown
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Fig. 1 Functional

differentiation of Treg cells into

Th1-suppressing and Th1-like

Tregs. FOXP3? Tregs

upregulate T-BET expression

upon type I inflammatory

stimuli such as IFNc in a

STAT1-dependent manner.

T-BET?FOXP3? Tregs retain

their suppressive function and

contribute to resolution of type I

inflammation. Additional or

subsequent exposure to IL-12

drives Tregs to express T-BET

and release IFNc. IFNc-

producing Tregs either

contribute to resolution of type I

inflammation (Th1-suppressing)

or lose suppressive function and

fail to efficiently control

autoimmune responses (Th1-

like Tregs)

Fig. 2 The PI3K/AKT/FOXO pathway is a key regulator of Th1-like

Treg differentiation. Upon T cell activation via the T cell receptor or

cytokine receptors, the phosphatidylinositol 3-kinase (PI3K) phos-

phorylates PI(4,5)P2 to PI(3,4,5)P3 which in turn recruits PDK1.

PTEN counteracts PI3K activity by dephosphorylating PI(3,4,5)P3 to

PI(4,5)P2. PDK1 phosphorylates AKT at Thr 308. Additional

phosphorylation of AKT at Ser 473 by mTORC2, activates AKT to

phosphorylate FOXO transcription factors, which promotes their

nuclear export. FOXO1/3 are essential to stabilize FOXP3 expression

in Tregs. In the case of Th1-like Tregs, AKT phosphorylation is

enhanced resulting in increased FOXO1/3 nuclear export, which

enables other signaling events to trigger TBET and IFNG gene

expression
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that other signaling pathways are differentially expressed

in Th1-like Tregs, suggesting that they could also be

involved in Th1-like Treg generation, although their

functional relevance remains to be determined [153].

Th1-like Tregs in autoimmunity

In regards to autoimmune pathologies, several works in the

literature have defined the presence of Th1-like Tregs in

patients with various diseases, such as Multiple Sclerosis

(MS) [133, 153], type 1 diabetes (T1D) [134], de novo

autoimmune hepatitis in patients with liver transplant [176]

and in inflammatory bowel disease [177–179] (IBD). We

described some years ago that untreated relapsing-remit-

ting (RR) MS patients display an increased frequency of

Th1-like Tregs in peripheral blood. These Tregs express

increased levels of T-BET, CXCR3, CCR5, and IFNc and

decreased levels of TGFb, and CTLA-4, being defective in

function [133]. Interestingly, IFNc is involved in the

decreased suppressive capacity observed in Tregs from

RRMS patients, as IFNc blockade in ex vivo co-cultures of

Tregs and Treg-depleted CD4? T cells from patients with

MS, significantly increased their suppressive function.

Moreover, the elevated frequency of Th1-like Tregs in

RRMS patients is due, at least in part, to the in vivo acti-

vated status of the AKT/FOXO pathway as compared to

Tregs from healthy individuals, with increased expression

of phosphorylated AKT (Thr 308) and FOXO1/3 (Ser 319)

[153]. Therefore, blockade of PI3K activation in ex vivo

stimulated Tregs from MS patients decreased the frequency

of IFNc-producing Tregs and increased their suppressive

capacity. The presence of Th1-like Tregs has also been

observed in Tregs infiltrating the CNS in vivo, during EAE

development, utilizing a FOXP3 knock-in mouse model. In

this model, antigen-specific Tregs and effector T cells were

traced by MOG-specific tetramers at different points after

EAE induction [137]. Upon EAE induction, MOG-specific

Tregs were not capable of suppressing CNS-infiltrating

MOG-specific T cells in vivo and in vitro and prevent

disease onset, and secreted IFNc at the onset and peak of

the disease, decreasing the amount during the recovery

phase and increasing IL-10 secretion [137].

Similarly, patients with T1D display an increased fre-

quency of Th1-like Tregs as compared to healthy

individuals [134] that can be observed in in vitro expanded

or in ex vivo isolated Tregs. Similar to the observation

made with MS patients, Th1-like Tregs in T1D patients

contained both Helios? and Helios- Tregs. Although ini-

tially thought to be a marker of thymus-derived Tregs

[180], contradictory works have occluded the use of this

marker to differentiate natural versus adaptive Tregs

[181–184]. In vivo, a recent work has demonstrated that in

the pre-diabetes phase in the NOD mouse model there is an

increased frequency of Th1-like Tregs in the draining

lymph nodes, characterized by the expression of T-BET,

CXCR3, ICOS and IFNc. These CXCR3?ICOS? Th1-like

Tregs, however, retain some degree of suppressive capacity

in vivo in adoptive transfer experiments [185].

Tregs are increased in frequency in inflamed intestinal

tissue in animal models and patients with IBD [178, 179]

and most of them express IFNc and IL-17, potentially

enhancing inflammation or inhibiting regulation. But con-

tradictory results have been found in in vivo models of

colitis with regards to the protective or pathogenic role of

Th1-like Tregs in this setting [177–179]. While antigen-

specific IFNc? Tregs were able to prevent colitis in an

adoptive transfer model with flagellin-specific Tregs [178],

FOXO-/- Tregs, which show a Th1-like phenotype, we

unable to prevent diseases in a colitis model, with IFNc
being involved on the Treg defect in function, as FOXO-/-

IFNG-/- double knock-out mice were able to partially

recover from the wasting syndrome [73].

Th1-like Tregs in infections and tumor
environments

Both Th1-suppressing and Th1-like Tregs have been

described in several models of infection and tumor envi-

ronments, with each of the two populations contributing to

disease manifestations and outcome. Th1-suppressing

Tregs, characterized by elevated levels of T-BET and

CXCR3 but not IFNc, are induced in a model of type I

inflammation with Leishmania major and Mycobacterium

tuberculosis infections in mice [112]. T-BET-expressing

Tregs accumulated at the site of infection, balanced Th1

inflammatory responses and maintained their homeostasis

and function. In other infection models, Th1-like Tregs

gained the ability to express IFNc resulting in differential

clinical outcomes of the infection models. Thus, during T.

gondii infection, T-BET and IFNc expression were trig-

gered in Tregs while FOXP3 expression declined

coinciding with strong immunopathology and subsequent

lethal disease progression [135]. Although IFNc is con-

sidered to be a highly pro-inflammatory cytokine, Hall

et al. reported the rise of IFNc? Tregs that were able to

suppress Th1 effector T cells and limit effector T cell

responses to T. gondii infection [186]. Along this line,

IFNc? Tregs in a colitis model retained suppressive func-

tion in vitro and inhibited the induction of colitis by

microbiota antigen-specific T cells in vivo [113]. IFNc?

Th1-suppressing Tregs were also observed in a chronic

corona-virus-induced encephalomyelitis model during both

acute and chronic phases of infection [136]. Again, Th1-

suppressing Tregs produced IFNc and retained their
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function in this model, being more likely to contribute to

diminishing immunopathology. Koenecke et al., further

demonstrated the protective role of IFNc-producing Tregs

as these cells appear in both Listeria monocytogenes

infection and in acute graft-versus-host disease

(GVHD). Ablation of IFNc in Tregs resulted in the

development of lethal GVHD undermining the importance

of IFNc-production by Tregs to prevent GVHD [187].

A recent study identified differential surface expression

of OX40 to coincide with IFNc-expression and Treg

function in Tregs isolated from liver tissue from human

hepatocellular carcinoma and cirrhosis patients [143].

These data suggest that OX40 expression efficiently sepa-

rates Th1-like (OX40-) Tregs with IFNc expression and

reduced suppressive function from Th1-suppressing

(OX40?) Tregs. In this study, cirrhosis tissue and tumor

microenvironments favor the accumulation of OX40? Th1-

suppressing Tregs, whereas OX40- Th1-like Tregs pref-

erentially accumulate in non-cirrhotic chronic HCV-

associated liver tissue. OX40 stimulation can abolish Treg

function and thus it has been investigated as a potential

antitumor target [188]. Furthermore, recent data in patients

with colorectal cancer have shown that a small percentage

of Tregs from either peripheral blood or infiltrating the

tumor express IFNc at similar levels, but the study lacks

healthy individuals for absolute comparison [110].

Taken together, these data demonstrate that Th1-sup-

pressive and Th1-like regulatory T cells appear in a variety of

infections and tumor environments. Whereas the expression

of the transcription factor T-BET seems to be a characteristic

feature in all models, additional differentiation and expres-

sion of IFNc can either be connected with protective or pro-

inflammatory function in these disease settings.

Treg plasticity as a potential therapeutic strategy

Tregs represent a major barrier to effective immune

responses in antitumor immunity, as well as in chronic viral

infections. The identification of pathways that maintain Treg

cell stability or that induce Th-like effector functions on

Tregs could potentially present important novel therapeutic

approaches to undermine intratumoral Tregs or Tregs in

chronic infections and to enhance disease clearance.

Modulation of Treg differentiation might be a potential

therapeutic target but also harbors some pitfalls. Engage-

ment of certain surface molecules and activation of

subsequent signaling pathways that might drive Tregs into

either Th1-like or Th1-suppressing subtypes can dictate the

beneficial outcome in settings of infection or tumor devel-

opment. Several clinical studies have been undertaken to

exploit antibody therapy against CTLA-4 and PD-1/PD-L1

thus dampening intratumoral Treg responses and enabling

tumor clearance by effector T cells [189, 190]. However,

systemic administration of antibodies or other reagents that

interfere with Treg signaling pathways harbor the danger of

shifting the subpopulation balance in disfavor when con-

sidering the performance of other immune responses.

Furthermore, the underlying pathways that drive Treg

plasticity into either direction seem to be critically dependent

on the microenvironment. MS patients display an increased

number of IFNc? Th1-like Tregs that lost suppressive

function in peripheral blood and are thus believed to be a

crucial factor as to why autoimmune reactions in these

patients are not controlled efficiently. The PI3K/AKT/

FOXO1/3 pathway has been identified as one of the key

pathways involved in Th1-like Treg generation and is an

interesting prospective target for immunomodulation [153].

However, IFNc? Th1-like Tregs in other disease settings do

not lose their suppressive function which might indicate the

involvement of different signaling pathways ultimately

resulting in similar but yet different phenotypic outcomes.

Clinically, Tregs have recently been beneficially used

for therapy against graft versus host disease following

allogeneic bone marrow or stem cell transplantation

[191, 192] and type 1 diabetes patients [193]. In these

settings, autologous polyclonal Tregs are expanded in vitro

and re-transferred into the patient. The use of in vitro Treg

expansion protocols gives the opportunity to analyze Treg

phenotype and function as well as specifically control cell

numbers necessary to re-transfer for a beneficial outcome.

Several clinical trial studies have reported successful

application of Treg transfer therapy in T1D and GVHD

[193, 194]. As antigen-specific Tregs are more efficient at

regulating disease-specific immunological processes, the

generation of antigen-specific Tregs using chimeric antigen

receptors (CAR) has been explored as well, as an

improvement to Treg therapy. CAR Tregs have been

shown to prevent GVHD in a humanized mouse model

highlighting their improved therapeutic potential [195].

Combination of adoptive transfer of antigen-specific Tregs

with modulation of Treg plasticity proposes strong therapeutic

potential. In vitro expansion of Tregs provides the opportunity

to also include cytokine treatments to reprogram Tregs into

phenotypic subtypes most beneficial for the respective dis-

ease. Furthermore, defective Treg phenotypes could be

corrected by either interfering with involved pathways by

using pharmacological agents or by introducing recent gene

editing technologies such as the CRISPR/Cas9 system.

Conclusions and future perspectives

During the past few years it has become clear that Tregs

possess some degree of plasticity and can adapt their

phenotype to the microenvironment where they exert their
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functions. Furthermore, aberrant reprogramming of Tregs

into Th1-like Tregs has been observed in several human

autoimmune diseases, suggesting their contribution to

disease. The relative importance of Th1-like Tregs in the

pathophysiology of the diseases where they have been

observed, their role in promoting or protecting from

inflammation-derived damage and their influence in dis-

ease outcome are fundamental open questions that remain

to be answered and that will undoubtedly provide valuable

information for the potential manipulation of Treg plas-

ticity with therapeutic purposes for these diseases. In order

to design better therapeutic options targeted to Tregs in

cancer, infectious and autoimmune diseases, it is impera-

tive to understand the signaling pathways that govern the

acquisition of specific effector characteristics by Tregs in

different disease settings. In this regard, most of the current

literature on Th1-like Tregs defines IFNc and IL-12 as the

major inducers of Th1- reprogramming in Treg cells.

However, the discovery of the PI3K/AKT axis as a major

signaling pathway that regulates Th1-like Treg generation,

and the variety of upstream ligands/receptors that can

activate it, makes the generation of Th1-like Tregs a

plausible event in many disease settings, and it strongly

suggests that there are likely other environmental cues

apart from Th1 cytokines that induce the generation of

dysfunctional Th1-Tregs or Th1-suppressing Tregs.

Moreover, there are likely many other signaling pathways

involved in Th1-like Treg generation in specific disease

settings yet to be defined [93], that will further improve our

knowledge on the molecular mechanisms that regulate

human Treg plasticity with potential therapeutic

applications.

In conclusion, it is crucial to fully understand the

underlying pathways and mechanisms that regulate Treg

plasticity and the environmental cues that induce such

phenotypes in specific disease settings in order to be able to

take advantage of Treg plasticity for therapeutic purposes.

Furthermore, it will be important to perform investigations

that focus on understanding the differences between Th1-

suppressive Th1-Tregs and dysfunctional Th1-Tregs

observed in autoimmune disease settings and acute phases

of infection as well as how to transition from one state to

another, with potential important applications in therapy.
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