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Vimentin expression contributes to cellular mechanoprotection and is a widely recognized
marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how
vimentin affects signaling that controls cell migration and extracellular matrix (ECM)
remodeling. Recent data indicate that vimentin controls collagen deposition and ECM
structure by regulating contractile force application to the ECM and through post-
transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes
the association of vimentin with cytoplasmic domains of adhesion receptors such as
integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that
impact vimentin structure can affect cell migration. Post-translational modifications of
vimentin determine its adaptor functions, including binding to cell adhesion proteins like
paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive
strength of integrin-dependent adhesions, which enables cells to tune their attachment to
collagen, regulate the formation of cell extensions and control cell migration through
connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration
and ECM remodeling. Here we consider how specific properties of vimentin serve to
control cell attachment to the underlying ECM and to regulate mesenchymal cell migration
and remodeling of the ECM by resident fibroblasts.
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INTRODUCTION

Phenotypic regulation in many cell types is influenced by their interactions with the extracellular
matrix (ECM), a major structural component of many organs and soft connective tissues that is
comprised mainly of fibrillar collagens (Begum et al., 2017; Liu et al., 2018; Rada et al., 2018),
glycoproteins such as fibronectin (Kendall and Feghali-Bostwick, 2014; Li C.-L. et al., 2017; Yu
et al., 2018) and vitronectin (Braam et al., 2008; Hurt et al., 2010) and a broad repertoire of
proteoglycans (Teng et al., 2012; Sun et al., 2017; Cao et al., 2018) and polysaccharides (An and
Brodsky, 2016). In many organs the ECM is a highly dynamic structure and, in some tissues,
ECM proteins like collagen undergo surprisingly rapid physiological turnover (Sodek, 1977).
Remodeling involves deposition, degradation, and modifications of the ECM by resident cells
and secreted enzymes (Kim et al., 2011; Lu et al., 2011; Lu et al., 2012; Lee et al., 2019;
Nallanthighal et al., 2019). ECM remodeling plays a central role in tissue and organ health and is
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intimately involved in the migration of cells that occurs in
developmental processes, wound healing and cancer
metastasis.

The physical reorganization of fibrillar proteins that
accompanies the migration of fibroblasts through the ECM is
a central feature of collagen remodeling (Feng et al., 2014), which
is crucial for the maintenance of tissue health in many organs
(Cox and Erler, 2011). After an injury or chronic infection, tissues
often exhibit a short-term wound healing response that is
intended to create a new and functionally appropriate ECM
that then enables restoration of tissue structure (Walker et al.,
2018). The mechanical properties of ECM, such as the stiffness of
collagen fibrils or of the underlying substrate to which cells are
attached, play crucial roles in processes such as epithelial-
mesenchymal transition (EMT) and cell differentiation (Engler
et al., 2006; Saha et al., 2008; Santiago et al., 2010). Epithelial-
mesenchymal transition (EMT) is a potentially reversible process
by which epithelial cells transdifferentiate into highly motile cells
with mesenchymal cell phenotypes. During EMT, epithelial cells
undergo modifications that affect the structure of intercellular
junctions and of adhesion complexes with the ECM that affect
ECM remodeling. Modifications associated with EMT also
include the disaggregation of epithelial cells from one another
and the underlying basement membrane. Subsequently, new
transcriptional programs are activated that promote the
acquisition of mesenchymal characteristics in affected cells
(Thiery and Sleeman, 2006; Thiery et al., 2009; Nieto et al., 2016).

As described in the Human Protein Atlas database (Atlas,
2021), vimentin intermediate filaments (VIFs) are expressed in a
wide variety of tissues including skin, kidney, and lung (Schaffeld
et al., 2001; Mendez et al., 2010; Lowery et al., 2015; Uhlen et al.,
2015). Vimentin is a 54 kDa, 466 amino acid Type III
intermediate filament (UniProtKB-P08670). Vimentin exhibits
a tripartite structure consisting of a central α-helical “rod”
domain, flanked by intrinsically disordered amino-terminal
“head” and carboxy-terminal “Tail” domains (Strelkov et al.,
2001). In physiological conditions, vimentin spontaneously
assembles into 10 nm diameter filaments (Herrmann and Aebi,
1998). Filament assembly is initiated from elementary, parallel
coiled-coil α-helical dimeric building blocks, which self-associate
in a half-staggered, anti-parallel manner to yield tetramers
(Chernyatina et al., 2015). Subsequently, lateral association of
8 tetrameric subunits results in unit-length filaments, which
longitudinally extend to form mature vimentin filaments
(Herrmann and Aebi, 1998), which is considered in more
detail in earlier reviews (Danielsson et al., 2018) (Ostrowska-
Podhorodecka and McCulloch, 2021).

The recent uptick of interest in vimentin originates in part
from the growing appreciation of its diverse roles in a broad range
of cellular functions that affect tissue and organ structure.
Notably, alterations of vimentin expression are linked to
diseases including lung and liver fibrosis and several types of
cancer (Li F. J. et al., 2017; Battaglia et al., 2018; Strouhalova et al.,
2020), all of which involve cell migration and ECM remodeling.
In addition to these discrete pathological conditions, vimentin
expression is crucial for effective wound healing and tissue
regeneration. Higher vimentin expression is associated with

enhanced cell motility, adhesion to the ECM and collagen
deposition (dos Santos et al., 2015; Cheng et al., 2016). Indeed,
the importance of vimentin is now widely recognized in cellular
functions ranging from motility to signal transduction (Mendez
et al., 2010; Lowery et al., 2015). In contrast, the lack of vimentin
in vimentin knockout mice resulted in the loss of cell morphology
and reduced cell adhesion, as well as impairment in the
directional migration of fibroblasts. In addition, at the tissue
level, vimentin deficiency reduced the capacity for wound-healing
(Blanchoin et al., 2014; Danielsson et al., 2018). For more detailed
information on this topic, see reviews of vimentin functions in
matrix adhesion (Danielsson et al., 2018; Ostrowska-
Podhorodecka and McCulloch, 2021).

Expression of vimentin in epithelial cells during EMT is
associated with the adoption of a more mesenchymal cell
shape, increased focal adhesion formation and enhanced cell
motility (Lepekhin et al., 2001; Mendez et al., 2010;
Ostrowska-Podhorodecka et al., 2021). Conversely, diminished
vimentin expression in mesenchymal cells is associated with
reduced motility and the adoption of an epithelial cell like
shape (Mendez et al., 2010; Ostrowska-Podhorodecka et al.,
2021). While it has been suggested that vimentin expression
affects ECM remodeling and cell migration through the ECM
(Mendez et al., 2010; Nieto et al., 2016; Cheng and Eriksson, 2017;
Patteson et al., 2019; Ding et al., 2020; Ostrowska-Podhorodecka
et al., 2021), the definitive roles played by vimentin in regulating
ECM structure (Menko et al., 2014; Walker et al., 2018),
autophagy (Su et al., 2019), mRNA processing (Challa and
Stefanovic, 2011) and transcriptional regulation (Deng et al.,
2013) remain elusive. Through its integration of
environmental signals, vimentin seems to adjust the dynamics
and structures of the microtubule and actomyosin networks,
which are crucial for generating the forces needed for cell
migration (Battaglia et al., 2018). As the regulatory functions
of vimentin in cell migration and ECM remodeling are not well-
understood, we consider a potential role for vimentin in
integrating signaling, matrix remodeling and migration.

CELLULAR LOCALIZATION OF VIMENTIN
INTERMEDIATE FILAMENTS

For many years VIFs were considered as very stable cytoskeletal
structures whose principal functions provided resistance to
mechanical stress (Kim and Coulombe, 2007) and
participation in mechanotransduction (Gregor et al., 2014).
More recent evidence indicates that the vimentin network
exhibits a broad array of properties that support essential
cellular functions (Duarte et al., 2019; Patteson et al., 2019;
Strouhalova et al., 2020). In this context, vimentin is localized
to discrete cytoplasmic and membrane compartments (Figure 1)
in mesenchymal cells (Mendez et al., 2010), fibroblasts (Mendez
et al., 2010; Helfand et al., 2011; Ding et al., 2020), astrocytes
(Lepekhin et al., 2001), epithelial cells (Vuoriluoto et al., 2011),
cells in lymphoid tissues (Otsuki et al., 2011), glandular cells
(Peuhu et al., 2017), and various cancer cell types (Vuoriluoto
et al., 2011; Havel et al., 2015; Rawla et al., 2019; Kuppe et al.,
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2021; Thalla et al., 2021). In the cell body, vimentin is
predominantly perinuclear (Dupin et al., 2011) where it
protects DNA from mechanical damage (Patteson et al., 2019),
but vimentin also co-localizes with the endoplasmic reticulum
(Lee et al., 2020) and contributes to the positioning of
mitochondria and Golgi apparatus in the cytosol (Gao and
Sztul, 2001; Lowery et al., 2015), indicating that vimentin may
play a broader role in cell regulation than previously recognized.

The presence of VIFs in the cell periphery during mitosis is
associated with the organization of cortical actin filament arrays,
suggesting that vimentin filaments may help to strengthen the
cortex during cell division (Duarte et al., 2019). Electron
microscopy and live-cell imaging of cultured cells shows that
vimentin filaments undergo continuous and relatively dynamic
changes of assembly and localisation to produce a broad
repertoire of VIF structures (Herrmann et al., 1996; Noding
et al., 2014; Lowery et al., 2015; Strouhalova et al., 2020).
These structures range from flexible, extended polymerized
networks to non-filamentous structures that are observed in
particles of various sizes (Chou et al., 1990; Robert et al., 2015;
Premchandar et al., 2016). In cultured fibroblasts, VIFs are rather
homogenously distributed throughout the cytoplasm. But
fibroblasts exhibit a perinuclear location of VIF after treatment
with agents that affect vimentin filament organization, such as
withaferin A (Ding et al., 2020) or the p21 kinase inhibitor, IPA3

(Ostrowska-Podhorodecka et al., 2021). The dynamic assembly
and disassembly of VIFs helps cells to adapt to heat-shock or
oxidative stress (Perez-Sala et al., 2015; Robert et al., 2015; Duarte
et al., 2019). The rapid and reversible remodeling of VIFs relies on
the exchange of subunits and on post-translational modifications,
which we consider later in this review.

ROLE OF VIMENTIN AS AN EFFECTOR AND
A TARGET OF POST-TRANSCRIPTIONAL
GENE REGULATION IN ECM BIOLOGY
Vimentin may regulate ECM remodeling through its impact on
post-transcriptional gene regulation, which in turn impacts the
synthesis and degradation of ECM proteins. One of the regulatory
processes affected by vimentin is the spatial regulation of RNA
expression and its interaction with ribonucleoprotein (RNP)
complexes (Figure 2). Ultrastructural in situ hybridization
experiments demonstrate that ~29% of total cytoplasmic poly
(A) mRNAs co-localize with vimentin filaments (Bassell et al.,
1994). More direct evidence of vimentin’s involvement in post-
transcriptional gene regulation arises from its interaction with
type I collagen mRNAs (Zhang and Stefanovic, 2016).
Specifically, RNA co-purification and in situ hybridization
experiments demonstrate a tripartite assembly between the 5′

FIGURE 1 |Cellular localization and functions of vimentin intermediate filaments. Schematic illustration of how vimentin controls several, diverse cellular functions in
organelle anchoring, cytoskeletal plasticity, focal adhesion regulation, and cell migration. Figure created with BioRender.com.
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untranslated region stem-loop (5′ SL) domain of collagen
mRNAs, La ribonucleoprotein domain family member 6
(LARP6) protein, and vimentin filaments (Cai et al., 2010;
Challa and Stefanovic, 2011). In this instance, vimentin
regulates collagen synthesis by sequestering LARP6-bound
collagen mRNAs. During wound healing or in fibrotic lesions,
when demand for type I collagen is increased (Cheng and
Eriksson, 2017), these mRNAs are made available for
translation (Challa and Stefanovic, 2011). In addition to
collagen mRNA, vimentin can specifically bind and post-
transcriptionally regulate several other genes, including
binding to the 5′ UTR and repression of the mu opioid
receptor mRNA in Mouse neuroblastoma cell lines (Song
et al., 2013), binding to the 3′ UTR and stabilisation of the
alkaline phosphatase mRNA in human primary osteoblasts
(Schmidt et al., 2015), and binding to the 3′ UTR and
stabilisation of the tissue factor (TF) mRNA in human breast
cancer cells through blocking miR-dependent negative regulation
of TF mRNA (Francart et al., 2020). Currently, collagen is the
only ECM component whose mRNA is post-transcriptionally
regulated by vimentin.

More recently, proximity-based assays have shed light on
vimentin’s involvement in cellular differentiation, homeostasis,
and stress response through its association with RNA-binding
proteins, misfolded aggregates, Stress Granules and Processing
Bodies (Lin et al., 2016; Pattabiraman et al., 2020). These
processes are of particular importance for cells subjected to
repeated mechanical or inflammatory stressors. Stress Granules

and Processing Bodies are cytoplasmic compartments comprised
of translationally repressed mRNAs, post-transcriptional
regulatory factors, and other RNA binding proteins. These
membrane-less organelles form part of the cellular response to
a broad range of stressful conditions such as starvation and
protein misfolding. For example, these responses prioritize the
translation of stress response mRNAs and targeting the mRNAs
codifying misfolded proteins for degradation (Luo et al., 2018;
Marcelo et al., 2021). Accordingly, during differentiation and
under stressful conditions, vimentin protects cells and their
progeny by spatially segregating misfolded proteins, Stress
Granules and other cytoplasmic RNP complexes. Vimentin
directs their asymmetric partitioning during mitosis so that
undesirable metabolites accumulate in one daughter cell while
the other daughter cell remains healthy (Ogrodnik et al., 2014;
Pattabiraman et al., 2020). The precise mechanisms and extent of
vimentin’s involvement in cellular differentiation, stress response
and the resultant modifications of ECM remodeling through
post-transcriptional gene regulation are not understood in
depth but almost certainly will provide useful avenues for
future research in IF biology.

Vimentin is one of the main mediators of EMT and metastasis
in a variety of cancers (Satelli and Li, 2011; Strouhalova et al.,
2020) and is itself a target of post-transcriptional gene regulation.
One well-studied pathway that affects vimentin expression at the
transcript level is through MicroRNAs (miRNAs) (Guo et al.,
2014), which are ~22 nucleotide-long non-coding RNAs that
bind to the 3′ untranslated region (UTR) of target mRNAs and

FIGURE 2 | Vimentin and post-transcriptional gene regulation. Schematic illustration of various post-transcriptional regulatory pathways that can impact or be
impacted by vimentin. Figure created with BioRender.com.
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mark them for translational repression (Bartel, 2004). For
instance, through direct interaction with the 3’ UTR of
vimentin mRNA and its subsequent downregulation, miR-30a
supresses the invasive phenotypes of breast cancer cell lines
(Cheng et al., 2012) while miR-17-5p inhibits the metastasis of
colorectal cancer in liver tissues (Kim et al., 2020). Conversely, in
an alternative mechanism, a non-coding RNA “sponge” known as
Cullin2 circular RNA (or circ-10720) regulates vimentin
expression by sequestering vimentin-targeting miRNAs, thus
promoting EMT (Meng et al., 2018). Therefore, vimentin
mRNA is a target of post-transcriptional regulatory events that
impact the abundance of vimentin protein. Vimentin protein also
contributes to post-transcriptional regulation of other mRNAs,
especially during cell differentiation and environmental stress.
Obtaining a more detailed understanding of these post-
transcriptional regulatory networks could impact future
translational research as these networks could provide
potential targets for drug development.

VISCOELASTIC PROPERTIES OF
VIMENTIN ENHANCE CELL RESISTANCE
TO DEFORMATION
The migration of cells through soft connective tissues depends in
part on their ability to remodel the ECM through synthesis and
degradation. Migration in turn is reliant on the ability of cells to
attach to ECM proteins and to navigate through pores in the
ECM, which, depending on their size, may require cell
deformation. The deformability of a cell and its ability to
return to its original shape are affected by the viscoelastic
properties of cells and their constituents (Moeendarbary et al.,
2013; van Bodegraven and Etienne-Manneville, 2021). VIFs
exhibit distinct viscoelastic properties that are not typically
exhibited by other filamentous biopolymers such as actin
filaments (Shah et al., 1998). This unique trait confers distinct
rheological properties upon vimentin filaments. As a result,
vimentin not only enhances cell integrity after exposure to
shear force, but also provides flexibility in cells recovering
from membrane deformation. The fine tuning of membrane
stiffness by vimentin may contribute to a wide array of
biological functions including cell migration, division, cell
adhesion to substrates, autophagy, and signal transduction
(Wang and Stamenovic, 2002; Vakhrusheva et al., 2019).

Cell migration through ECMs like collagen networks often
provokes nuclear rupture, which is related to constriction and
deformation of the nuclear membrane as cells traverse pores in
the ECM. VIFs form intricate networks such as the nuclear cage
that extends from the perinuclear region to the sub-cortex. In
these networks, vimentin filaments function as elastic springs,
dissipating tensile forces when migrating cells squeeze through
constricting pores. These properties of vimentin can prevent
extensive fluctuations of nuclear shape (Block et al., 2018). In
addition, vimentin may interact with nucleases to buffer DNA
damage (Irianto et al., 2016). In view of these findings, vimentin
may play a crucial role in maintaining the precision of signaling
by safeguarding DNA integrity, which is observed in cells

subjected to migration-induced nuclear deformation (Patteson
et al., 2019). Taken together, VIF expression contributes to cell
viability by limiting organellar deformation during mechanical
stress and by facilitating the recovery of cell and organellar shape.

POST-TRANSLATIONAL MODIFICATIONS
OF VIMENTIN AFFECT MIGRATION AND
THE ECM
Post-translational modifications (PTMs) are implicated in the
spatiotemporal regulation of vimentin expression and
organization of the VIF network, which consequently impacts
the stability of the underlying cytoskeleton and remodelling of the
ECM (Kalyanasundaram et al., 2021). Currently it is not
straightforward to dissect the repertoire of signaling pathways
associated with each vimentin PTM because of the sheer
redundancy and complexity of the system and its multiple
components (Figure 3). Moreover, modifications to single
amino acids in vimentin may yield opposite downstream
effects compared with modifications to multiple residues
because of altered binding of interacting proteins and the
resultant generation of downstream signals. One of the most
carefully studied PTMs of vimentin is phosphorylation, which
can promote VIF disassembly into squiggles, as seen in migrating
cells (Yang et al., 2019). Phosphorylation is one of the cardinal
features of signaling processes that are contemporaneously
stimulated by other PTMs (Snider and Omary, 2014). The
phosphorylation and dephosphorylation of vimentin have been
reviewed previously. Shi et al., 2016 provide a comprehensive
analysis of the effect of vimentin phosphorylation on cell motility.
Accordingly, we focus here on separate vimentin PTMs that are
associated with cell migration and/or ECM remodeling.

Proteolysis
Vimentin, like other intracellular proteins, is prone to caspase-
mediated proteolytic cleavage. Phosphorylation protects
vimentin from caspase-mediated proteolysis (Tripathi and
Kulkarni, 2021), which occurs at vimentin D85 (via caspase 3
and caspase 7) and D259 (via caspase 6) to generate pro-apoptotic
N-terminal fragments (Byun et al., 2001). AKT1 activation
induces migration of sarcoma cells through an interaction
with the vimentin head region, resulting in S39
phosphorylation and protection from caspase-induced
proteolysis of vimentin (Zhu et al., 2011), thereby providing
an example of the central position of vimentin in signaling
systems that affect cell migration.

Ubiquitination
Proteasome-dependent degradation of vimentin by
ubiquitination promotes the collapse of vimentin network
architecture, triggering major cytoskeletal rearrangements.
Specific ubiquitination sites are not well studied and recorded.
Vimentin can be ubiquitinated at K97, K120, K129, K139, K143,
K168, K188, K223, K236, K282, K294, K313, K334, K373, K439,
and K445 (Database, 2022). Substrate proteins are linked to
ubiquitin via distinct ubiquitin lysine residues (K6, K11, K27,
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K29, K33, K48, and K63) (Technology, 2022). Beclin 1, a critical
regulator of autophagy, increases cell migration by interacting
with vimentin to affect its K48-linked ubiquitination. The K48-
linked polyubiquitin chains mainly target proteins for
proteasomal degradation (Manohar et al., 2019). Beclin 1 also
interacts with ubiquitin-specific peptidase 14, a key de-
ubiquitinase of vimentin (Cheng et al., 2019). Thus, autophagy
processes mediated through ubiquitination, which impact
vimentin filament integrity, affecting cell migration. Moreover,
vimentin ubiquitination is balanced by deubiquitination in
selected systems. For instance, in human gastric cancer cell
lines, the deubiquitinating enzyme USP14 directly interacts
with vimentin and stabilizes it through deubiquitination (Zhu

et al., 2017). This report also shows that miR320, as a tumor
suppressor, is upstream of U14 and vimentin. It downregulates
vimentin directly by targeting its 3′UTR, or indirectly by
inhibiting the USP14 deubiquitination pathway (Zhu et al., 2017).

Citrullination
The search for causative mechanisms in rheumatic diseases and
fibrosis, which involves extensive and often dysregulated ECM
remodeling, has generated considerable interest in citrullinated
vimentin, which involves the conversion of arginine residues to
citrulline by the enzyme, peptidyl arginine deiminase (PAD)
(Pruitt et al., 2014). Vimentin is a substrate for PAD2 that
citrullinates residues in the non-α-helical head domain, which

FIGURE 3 | Post-translational modifications (PTMs) of vimentin intermediate filaments (VIFs). VIFs undergo multiple PTMs, including proteolysis, ubiquitination,
citrullination, acetylation, ADP-Ribosylation, SUMOylation (SUMO), S-Nitrosylation, S-Glutathionylation, and glycosylation. The horizontal arrows presented in the
acetylation and SUMOylation panel shows decreased cell mobility. Figure created with BioRender.com.
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contains about 9% arginine residues (Inagaki et al., 1989; Hsu
et al., 2014). A vimentin peptide with citrullinated R176, which is
found in coil 1B of vimentin, was identified in a vimentin pool
secreted from lung macrophages and characterized by tandem
MS2 (Li et al., 2021). Vimentin can also be citrullinated at several
arginine residues in the tail domain. For example, R440 and R450
are citrullinated in reactive astrocytes in brain tissues of scrapie-
infected mice (Jang et al., 2020). Citrullination impairs vimentin
filament assembly, which enhances the formation of soluble
precursors that are transported extracellularly (Inagaki et al.,
1989) and that subsequently elicit autoimmune responses in
joints affected by rheumatoid arthritis (Musaelyan et al., 2018)
and in liver fibrosis (Vassiliadis et al., 2012). Citrullinated
vimentin is increased after cell injury and is strongly expressed
in the leading edge of repair-modulating leader cells, which
stimulates their migration and differentiation into
myofibroblasts (Walker et al., 2018). These leader cells display
invasive potential that facilitates three-dimensional migration
(Bleaken et al., 2016) and contribute to alterations of ECM
structure.

Acetylation
The acetylation of vimentin and other EMT-related proteins
affects the migratory capacity and the metastatic properties of
various types of cancer cells (Boggs et al., 2015). Acetylation
mainly targets vimentin at lysine residues, including K294, K313,
K334, K373, and K439 (Yang et al., 2019). Hyperacetylation is
generally associated with decreased cell motility through
enhancement of vimentin filament stability and the formation
of EMT-related protein complexes (Yang et al., 2019). In contrast,
deacetylation of K120 of vimentin reduces metastasis in
hepatocellular carcinoma, suggesting that acetyl-modified K120
regulates cell migration, possibly through upregulation of Snail
and downregulation of E-cadherin, processes that ultimately
enhance EMT (Guo et al., 2018).

ADP-Ribosylation
ADP-ribosylation is exhibited by certain pathogenic bacterial
species and involves the attachment of ADP-ribose to host
proteins through the formation of an O-glycosidic bond by
pathogen-derived enzymes (Palazzo et al., 2018). Vimentin in
mammalian cells is a target of Streptococcus pyogenes
(Icenogle et al., 2012), which involves the secretion of the
exotoxin, ADP-ribosyltransferase and is followed by sharp
reductions of host cell migration, alterations of ECM
structure and increased spreading of the pathogen (Coye
and Collins, 2004).

SUMOylation
The conjugation of small, ubiquitin-like modifier (SUMO)
protein to lysine residues of acceptor proteins like vimentin
can impact cell migration through poorly defined mechanisms
(Wang et al., 2010). PIAS1 mediates SUMOylation of vimentin
(K439, K445) in the C-terminus, which disrupts filament
disassembly (Li et al., 2020). This modification increases
vimentin solubility by inducing hyperphosphorylation of the
vimentin N-terminus and retards cell migration, suggesting

that vimentin filament assembly is required for efficient cell
migration.

S-Nitrosylation
Reactive nitric oxide transfers nitrosyl moieties from donor to
acceptor proteins, a process that involves nitric oxide synthase
and modifies C328 of vimentin in response to
mechanotransduction through the Akt pathway (Huang et al.,
2009) and in stress sensing (Perez-Sala et al., 2015). The presence
of thiol modifications seems to retard the longitudinal assembly
of vimentin filaments without inhibiting the formation of more
mature filaments (Kaus-Drobek et al., 2020) and leads to altered
ECM remodeling. As altered network rearrangements, filament
stabilization, and bundling are linked to cysteine modifications of
vimentin structure (Viedma-Poyatos et al., 2020), it will be
important to define how these modifications contribute to
altered cell migration (Kaschula et al., 2019) and potentially,
ECM remodeling.

S-Glutathionylation
Modifications of vimentin C328 protect against electrophilic and
oxidative stress by preserving the flexibility of VIFs (Perez-Sala
et al., 2015). But unlike S-nitrosylation, S-glutathiolylation
completely blocks the maturation of unit length filaments to
mature filaments (Kaus-Drobek et al., 2020), indicating that this
process is an efficient molecular switch that contributes to the
assembly of the vimentin network, thereby affecting cell-
mediated remodeling of the ECM.

Glycosylation
This vimentin PTM is mediated by the addition of O-linked β-
N-acetylglucosamine (O-GlcNAc) on serine and threonine
residues mediated by O-GlcNAc transferase and
O-GlcNAcase (Hanover et al., 2010; Hart et al., 2011; Hart,
2014). Glycosylation of vimentin is restricted to the head
domain of mature filaments (i.e., not ULFs) at residues T33,
S34, S39, and S49, which impacts the formation of homo-
oligomeric complexes between adjacent filaments (Tarbet
et al., 2018). In particular, glycosylation of S34 and S39
promotes the assembly of VIFs while S49 eliminates
crosslinking of adjacent filaments; these processes
contribute to the alterations of normal filament
morphology. In mammalian cells, site-specific glycosylation
of vimentin is required for the cytoskeletal modifications
involved in cell migration (Tarbet et al., 2018).

ROLE OF VIMENTIN IN TRACTIONAL
FORCE GENERATION AND ECM
CONTRACTION
As described in the discussion of PTMs above, some of the
mechanisms by which vimentin regulate cell migration
through ECM are now being defined. As vimentin interacts
with actin filaments and microtubules to affect their structure
and function (Mendez et al., 2010; Hookway et al., 2015), these
interactions are also likely to regulate cell motility and the
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ability of migrating cells to remodel the ECM (Battaglia et al.,
2018). Many types of cell migration rely on the formation and
extension of relatively short (< 2 μm) membrane protrusions
like filopodia, which then coalesce and contribute to the
generation of lamellipodia and invadopodia (Lorenz et al.,
2004; Yamaguchi et al., 2005; Baldassarre et al., 2006; Gardel
et al., 2010). These protrusive regions of the cell are filled with
highly polarized arrays of actin filaments situated in the cortex
that enable the formation of longer (>10 μm) cell extensions.
Cortical actin filaments are mechanically integrated with
collagen fibrils by integrin receptors during early phases of
cell migration and in collagen contraction (Grinnell et al.,
2006; Ostrowska-Podhorodecka et al., 2021). In these
processes, vimentin facilitates and supports cell extension
formation through direct associations with actin filaments
(Esue et al., 2006; Battaglia et al., 2018) or indirectly
through interactions with proteins such as CARMIL2
(Lanier et al., 2015; Battaglia et al., 2018).

Vimentin is essential for the elongation of invadopodia
(Yoneyama et al., 2014), and promotes lamellipodia growth
and the formation and stabilization of long cytoplasmic
extensions (Ding et al., 2020; Ostrowska-Podhorodecka et al.,
2021). Moreover, vimentin colocalizes with non-muscle myosin
II (Menko et al., 2014) and regulates the contractility of
actomyosin bundles through the guanine exchange factor H1
and RhoA, which affect cell migration (Jiu et al., 2017) and
tractional remodeling of the ECM. In fibroblasts,
mechanosensitive actin stress fibers (Skau et al., 2018) along
with vimentin filaments insert into ECM adhesions and regulate
the mechanical integrity of cells and tissues (Costigliola et al.,
2017).

IMPACT OF VIMENTIN ON SINGLE CELL
AND COLLECTIVE CELL MIGRATION

Arising from its involvement in several discrete cellular processes,
VIF networks orchestrate cell spreading (Figure 4A) (Ostrowska-
Podhorodecka and McCulloch, 2021), single cell migration
(Figure 4B) (Patteson et al., 2019) and collective migration
(Figure 4C) (De Pascalis et al., 2018). In cell spreading, the
expansion of cell area on an unoccupied surface initiates adhesive
interactions that enable cells to migrate (Janmey et al., 2021),
which requires the formation of cell protrusions stabilized by
VIFs (Ostrowska-Podhorodecka et al., 2021). Cell migration is
strongly influenced by the nature of the local microenvironment.
In two-dimensional single cell migration, cells spread within a
single plane, which is guided by vimentin filaments (Ding et al.,
2020). Vimentin mediates the transition of mesenchymal leader
cells to a myofibroblast phenotype in the single cell migration of
EMT (Walker et al., 2018). VIFs are also prominent elements of
reparative cells at the wound edge and are associated with
accelerated wound closure (Helfand et al., 2011; Menko et al.,
2014).

At higher resolution, long (>4 μm) vimentin filaments serve as
a load-bearing scaffolds to distribute traction stress during single
cell migration (Costigliola et al., 2017). As wound closure involves
the generation of contractile forces that can affect the structure of
actin cytoskeletons, the vimentin network serves to diminish cell
deformation (Janmey et al., 1991) and preserve cell integrity.
Reduced vimentin expression in human mesenchymal stem cells
is associated with increased deformation of the cell body after
stretching (Sharma et al., 2018). Overexpression of vimentin in
ameboid cancer cells contributes to cell resilience by limiting

FIGURE 4 | Overview of different modes of cell migration. (A) Early stages of cell spreading. Cell attachment to the extracellular matrix (ECM) involves initial cell
polarization and edge extension. (B) Single-cell migration relies on vimentin-dependent cross-linking of collagen receptors. (C) In collective migration, cells are tightly
connected, which restricts migration. Symmetry-breaking events lead to cell polarization and directed migration. Motile cells at the front exert attractive forces on their
neighbors, which then coordinate their movement. Created with BioRender.com.
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deformations in response to fast contractions (Lavenus et al.,
2020), indicating that cell type-specific expression levels of
vimentin endow cells with a broad range of mechanical
properties.

Collective cell migration is promoted by the elevation of
traction forces in the migrating cell monolayer and by the
preservation of intercellular contacts (Figure 4C) (De Pascalis
et al., 2018), which also serve to coordinate cell movement
through dense connective tissue (Messica et al., 2017). In
smooth muscle cells, VIFs are involved in the formation of
intercellular junctions by associating with linker proteins such
as plakoglobin and desmoplakin, which in turn connect with the
cytoplasmic tails of cadherins (Delva et al., 2009; Tang et al.,
2019). At the same time vimentin associates with actin filaments
to facilitate intracellular and intercellular mechanical force
transmission, which is required for cell motility (Tang, 2008).

Vimentin promotes collective cell migration by restricting
actin flow, aligning tractional stress (Jiu et al., 2015; Costigliola

et al., 2017; Battaglia et al., 2018) and supporting lateral cell–cell
contacts (Mayor and Etienne-Manneville, 2016; Battaglia et al.,
2018). In the collective cell migration that is seen in certain
wound healing sites, reduced vimentin expression (along with
nestin) diminishes the abundance of actin stress fibers parallel to
the wound and promotes stress fiber formation perpendicular to
the wound; these changes impact retrograde actin flow and the
ability of cells to translocate (De Pascalis et al., 2018). In epithelial
cells that express vimentin, VIFs are a component of junctional
complexes that couple VE-cadherin to actin filaments, the IF
cytoskeleton (Kowalczyk et al., 1998) and to FAs (Tsuruta and
Jones, 2003; Kreis et al., 2005; Terriac et al., 2017), where VIFs
bind to integrin-enriched matrix adhesions (Ivaska et al., 2007).

In highly motile epithelial cells, VIFs often co-distribute with
keratin, the IF type first expressed in embryogenesis (Franz et al.,
1983). In collective cell migration, co-expressed keratin and
vimentin filaments exhibit spatially-distinct arrays (Osborn
et al., 1980), which are necessary for preserving cytoplasmic

FIGURE 5 | Schematic illustration of vimentin-dependent regulation of migratory signaling transduction. Vimentin coordinates filopodia formation by controlling
actin filaments assembly via Rac1/Cdc42 and PAK1 pathways. Vimentin-dependent Rho/ROCK1 signalling transduction controls cell contractility and migration.
Vimentin impacts Notch signaling by binding to Jagged1. Regulation of Slug phosphorylation and activity by Vim-ERK cooperation. Vimentin protects ERK from
dephosphorylation and thus supports its activity and Slug phosphorylation. Vimentin coordinates cell proliferation by downregulation of the PI3K/AKT signalling
cascade. Vimentin induces ECM remodeling by MT1-MMP-dependent collagen proteolysis. Vimentin filaments mediate integrin mechanotransduction and control the
assembly of focal adhesions. Figure was created with BioRender.com.
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viscoelasticity and for coupling through integrins to the ECM and
to neighboring cells (Bilandzic et al., 2019; Yoon and Leube,
2019).

IMPACT OF VIMENTIN ON SIGNALING
PATHWAYS THAT AFFECT CELL
MIGRATION AND ECM
Vimentin expression accelerates cell migration through paxillin-
dependent regulation of Cdc42 activation, which leads to PAK1-
dependent vimentin phosphorylation and filament assembly
(Ostrowska-Podhorodecka et al., 2021). Thus, vimentin can
regulate cell migration through its physical properties and by
activating downstream signaling pathways that regulate cell
movement (Figure 5). Further, vimentin affects Notch
signaling in response to hemodynamic stress in the arterial
wall. As a result of increased shear stress, phosphorylation of
vimentin S38 initiates interactions between vimentin and
Jagged1, which strengthens the Notch activation potential and
adversely affects arterial wall remodeling and the ECM (van
Engeland et al., 2019). Moreover, loss of vimentin in hepatic
stellate cells decreases the phosphorylation of extracellular-signal
regulated kinase (ERK) and AKT signaling, indicating a role for
vimentin in controlling migration of hepatic stellate cells via the
ERK/AKT and Rho pathways (Wang et al., 2019). Further,
vimentin plays a role in wound healing through its regulation
of TGF-β1 and Slug signalling, which are of central importance
for ECM synthesis and remodeling and which manifest as the
effect of vimentin depletion on suppression of the TGF-
Slug–EMT pathway in fibroblasts (Cheng et al., 2016; Cheng
and Eriksson, 2017). Taken together, these studies suggest an
unexpected signaling role for vimentin in ECM structure and cell
migration.

ROLE OF VIMENTIN IN REGULATING
INTEGRIN-DEPENDENT CELL MIGRATION

Cells organize their migratory activities partly through tightly
controlled protein-protein interactions in cell adhesions to
the ECM. Integrins are transmembrane receptors expressed
by many cells and are obligate heterodimers comprised of α
and β subunits. The β subunit contains a large extracellular
domain, a transmembrane domain and a cytoplasmic
domain, while the α subunit forms a similar structure, but
contains different motifs within its extracellular domain
(Takada et al., 2007). The interaction of different α and β
extracellular domains and their ability to bind to specific
sequences, contribute to the ligand specificity exhibited by
integrins. Intracellular signals that affect the cytoplasmic face
of α and β subunits promotes allosteric modifications of
integrins that affect their binding to extracellular ECM
ligands. In this context, vimentin spatially localises to cell-
matrix adhesions in various cell types (Danielsson et al.,
2018) where vimentin filaments directly interact with β1
integrin (Kreis et al., 2005) and β3 integrin tails

(Vohnoutka et al., 2019). Vimentin thus plays an essential
role in the assembly and function of FA complexes.

Vimentin incorporates into nascent focal complexes and
mature adhesions in a structure-dependent manner. While
small vimentin oligomers (e.g., unit length filaments) are
abundant in nascent adhesions, mature adhesions exhibit fully
organized vimentin filaments (Terriac et al., 2017). In fibroblasts,
vimentin deletion results in the limitation of the size of
β1 integrin-rich focal adhesion through the inhibition of
paxillin enrichment in adhesion sites (Terriac et al., 2017;
Ostrowska-Podhorodecka et al., 2021). Further, vimentin is
required for β1 integrin trafficking to the leading edge of
migrating prostate cancer cells (Hafeez et al., 2011). Through
its interactions with focal adhesion proteins like talin, the
cytoplasmic domain of the β integrin subunit can interact with
the actomyosin contractile machinery (Calderwood et al., 2013;
Zacharchenko et al., 2016; Wang et al., 2019). In this context,
vimentin plays an important role in the turnover of FAs and in
the formation and release of integrin endocytic vesicles. Further,
vimentin may regulate collagen remodeling through a functional
link between β1 integrin and the membrane-bound collagenase,
MT1-MMP (Galvez et al., 2002; Kwak et al., 2012). Vimentin
complexes with the cytoplasmic tail of MT1-MMP and is
necessary for MT1-MMP translocation to the plasma
membrane (Kwak et al., 2012). Thus, vimentin influences the
subcellular localization and activity of MT1-MMP, which
through its interactions with the β1 and αvβ3 integrins,
facilitates collective cell migration through collagen matrices
(Galvez et al., 2002).

As vimentin can also be detected on the surface of cells
(extracellular vimentin-ECV) and in the ECM after its release
from activated macrophages (Mor-Vaknin et al., 2003; Frescas
et al., 2017), there has been increasing interest in ECV and its
potential effects on cell migration, particularly through
modifications of the interactions of cell with the ECM through
integrins. While ECV enhances axonal growth in injured mouse
spinal cord (Shigyo and Tohda, 2016), the impact of ECV on cell
motility and the ECM is not defined. Recent data indicate that
ECV facilitates adherence of vimentin-negative MCF-7 cells to
their underlying substrate. Further, gap closure and Transwell
migration assays show that the migration rates of MCF-7 and
MCF-10a cells are increased after treatment with ECV (100 ng/
ml) (Thalla et al., 2021). The very limited data on the impact of
ECV on cell migration and ECM suggest productive avenues for
future research.

CONCLUSION AND FUTURE
PERSPECTIVES: AROLE FORVIMENTINAS
A REGULATOR OF CELL-MATRIX
ADHESIONS AND MATRIX REMODELING

In the context of ECM remodeling and cell migration, we
considered how vimentin helps cells to sense, integrate, and
respond to microenvironmental information. Vimentin can
directly interact with focal adhesions and regulate cellular
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processes and discrete signaling pathways. These events in turn
affect cell migration and ECM remodeling by spatially and
temporally integrating arrays of external and internal signals.
Cell-specific levels of vimentin expression, PTMs, and direct and
indirect interactions with other cytoskeletal components, control
the mechanical properties of cells during migration and ECM
remodeling. It appears that the extraordinarily broad array of
PTMs of vimentin and its structure in response to extracellular
and intracellular mechanical signals are crucial for cell and tissue
integrity (Costigliola et al., 2017; Messica et al., 2017; van
Bodegraven and Etienne-Manneville, 2021). Expression of VIF
may thus control the mechanical properties of the cells and
modify their ability to remodel collagen by its incorporation as
an adaptor protein in the β1 integrin adhesive machinery (Terriac
et al., 2017; Ostrowska-Podhorodecka et al., 2021). Further
studies on vimentin’s role in regulating cell signaling and
matrix remodeling could advance our understanding of the
pathology of vimentin-dependent changes in ECM remodeling,
which contribute to the fibrosis associated with chronic

inflammation. Further, a deeper knowledge of vimentin-
dependent signaling systems in wound healing and tissue
regeneration could provide new avenues for identifying drug
targets for fibrosis and wound care.
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