
INTRODUCTION

Alcohol dependence is the most prevalent substance use disorder 
[1] that can lead individuals with the disorder to serious health-
related [2, 3] and social problems [4, 5]. According to a report by 
Nutt and colleagues (2007), the level of potential harm and risk of 
alcohol use and misuse was among the top five with heroin and 
cocaine [6]. The 12-month prevalence of alcohol dependence is 
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Original Article

Alcohol dependence is a serious disorder that can be related with a number of potential health-related and social consequences. 
Cortical thickness measurements would provide important information on the cortical structural alterations in patients with alcohol 
dependence. Twenty-one patients with alcohol dependence and 22 healthy comparison subjects have been recruited and underwent 
high-resolution brain magnetic resonance (MR) imaging and clinical assessments. T1-weighted MR images were analyzed using 
the cortical thickness analysis program. Significantly thinner cortical thickness in patients with alcohol dependence than healthy 
comparison subjects was noted in the left superior frontal cortical region, correcting for multiple comparisons and adjusting with 
age and hemispheric average cortical thickness. There was a significant association between thickness in the cluster of the left 
superior frontal cortex and the duration of alcohol use. The prefrontal cortical region may particularly be vulnerable to chronic 
alcohol exposure. It is also possible that the pre-existing deficit in this region may have rendered individuals more susceptible to 
alcohol dependence.
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reported to be approximately 2% to 6% in the general populations 
[7-9].

In part reflecting the high potential harm and high prevalence 
of alcohol dependence, there have been a number of studies on 
how chronic alcohol use or alcohol dependence interacts with 
the structure of the brain of animals [10-13] and humans [14-21]. 
Overall brain atrophy, including the lesser volumes of gray matter 
and white matter with increased cerebrospinal fluid, in patients 
with alcohol use disorders, has consistently been reported [22-
24]. Deficits in the prefrontal cortex [16, 25], temporal cortex [14, 
20, 26], cerebellum [14], striatum, hippocampus and amygdala 
[14, 27-29] have also been reported in patients with alcohol 
dependence. Neuropathological studies have shown that the 
alcohol-related neuronal and glial loss would preferentially involve 
the prefrontal cortex [30, 31] among cortical regions. Functional 
neuroimaging studies demonstrated altered metabolism or 
activation of the frontal cortex in association with the deteriorated 
neuropsychological functioning [32-34].

Cortical thickness analysis, a reliable and valid method [35, 
36], can capture important information on cortical structures 
[37]. However, relatively few studies have investigated cortical 
thickness in alcohol-dependent adults [38-40]. Durazzo and 
colleagues exhibited that alcohol-dependent adults had thinner 
cortical regions in the left anterior cingulate cortex, bilateral 
frontal cortex, and bilateral insula than healthy controls [38]. 
Other researchers found that alcohol-dependent adults had 
reduced cortical thickness in the widespread brain regions of the 
superior frontal, precentral, postcentral, middle frontal, middle 
and superior temporal, middle temporal, and the lateral occipital 
cortex than healthy comparison participants [39]. In the report by 
Momenan and colleagues, participants with alcohol dependence 
exhibited thinner cortical regions that encompass the medial 
superior frontal cortex, insula, precentral and the precuneus of the 
right hemisphere as well as the superior frontal gyrus of the left 
hemisphere, in comparison with the healthy controls [40].

Previous studies have reported widespread cortical deficits 
without covarying out the effects associated with the global 
atrophy of the brain [38-40]. Among these widespread regions 
that show alcohol-related atrophy, we wanted to localize the 
cortical regions that may be particularly vulnerable to alcohol 
consumption. We therefore undertook the cortical thickness 
analysis adjusting for the hemispheric average cortical thickness, in 
21 detoxified alcohol-dependent patients and matched 22 healthy 
comparison subjects. The objective of this study was to identify 
brain regions with cortical thickness alterations that exceed the 
level of global alterations in alcohol dependence. We used the 
whole brain-wise cortical thickness analysis, which is validated 

histologically [36] and with manual outlining method [35]. We 
also investigated whether the magnitude of deficits are correlated 
with the alcohol use-related variable.

Given the studies that suggest the preferential involvement 
of prefrontal cortex among brain structural and functional 
alterations in alcohol dependence [16, 25, 31-33, 41, 42], we 
hypothesized that patients with alcohol dependence would have 
thinner prefrontal cortex in comparison with healthy comparison 
subjects, after correcting for the global cortical thinning associated 
with alcohol dependence.

MATERIALS AND METHODS

Subjects

Patients with alcohol dependence were enrolled from the 
Inpatient Unit of the Department of Neuropsychiatry in a 
university-affiliated hospital, Seoul, South Korea. Age-matched 
healthy comparison subjects were recruited from the community 
via the local advertisement during the same study period. Age 
was matched at the group-level. This study was performed from 
January 2007 to January 2009.

Inclusion criteria for alcohol dependence group were (1) age 
between 20 and 70, and (2) diagnosis of alcohol dependence 
according to the Diagnostic and Statistical Manual of Mental 
Disorders-IV by 2 board-certified psychiatrists.

Exclusion criteria for both alcohol dependence and control 
groups were (1) any symptoms or signs of confusion, major 
medical disorders including kidney disease and chronic 
liver disease, and/or malnutrition, (2) presence or history of 
neurological disorders, (3) presence or history of any mental 
disorders other than alcohol dependence or comorbid depressive 
disorders, including alcohol-induced persistent dementia, alcohol-
induced amnestic disorder, or alcohol withdrawal delirium (3) 
history of head injury, and (4) any contraindications to magnetic 
resonance imaging (MRI) such as pace makers, claustrophobia, or 
metal implants.

Additional exclusion criteria for control group were (1) presence 
or history of mental disorders including alcohol abuse and (2) 
current alcohol consumption greater than 14 equivalent standard 
drinks for men, 7 for women, per time [43].

After being detoxified for 2 weeks, all patients underwent 
physical examination by a physician and the routine laboratory 
tests to screen out any major medical disorders. Clinical evaluation 
was performed by a board-certified psychiatrist. MRI evaluations 
were performed under the supervision of the key investigators. 
The study was approved by the University Institutional Review 
Board. All subjects provided written informed consent before 
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study participation.

Brain magnetic resonance (MR) image acquisition and 

cortical thickness analysis

T1 and T2 weighted MR images were obtained using 1.5 Tesla 
Siemens whole body scanner. T1 weighted images of 43 subjects 
were obtained with following image acquisition protocol. 
Repetition time [TR]=2,050 ms, echo time [TE]=4.39 ms, 
inversion time [TI]=1,100 ms, number of excitation [NEX]=2, 
flip angle [FA]=15o, slice thickness=1.3 mm, field of  view 
[FOV]=180×180 mm, acquisition matrix=256×180. T1 weighted 
images of 7 subjects were obtained with slightly different image 
acquisition protocol (TR=1,960 ms, TE=4.38 ms, TI=1,100 ms, 
NEX=2, flip angle [FA]=15o, slice thickness=1.5 mm, FOV=250 
X 250, acquisition matrix=256 X 180). T2 weighted images were 
acquired in order to screen for gross brain abnormality (TR=9,710 
ms, TE=120 ms, NEX=2, flip angle [FA]=170o, slice thickness=3 
mm).

Measurements of cortical thickness were conducted by using 
the cortical surface-based analysis [44, 45]. Detailed procedures 
of the cortical thickness analysis are described elsewhere [46]. 
Smoothing processes were conducted using an iterative nearest-
neighbor averaging procedure with the full-width half maximum 
(FWHM) 15 mm 2-D Gaussian kernel [45]. 

Statistical analysis

For calculating statistical difference maps of cortical thickness 
between alcohol dependence and healthy comparison groups, 
general linear model (GLM) with cortical thickness at each vertex 
as the dependent variable has been used. Non-cortical areas of 
medial wall and corpus callosum were excluded from the model 
building [47, 48]. Hemispheric average cortical thickness was 
included in the model as a covariate since there was a significant 
difference in hemispheric average cortical thickness between 
groups and our aim was to identify the particularly vulnerable 
cortical regions beyond the global brain atrophy associated with 
alcohol dependence. Age was also included as a covariate. To 
correct for multiple comparisons, 5,000 permutation simulations 
have been performed with random group-label shuffling, with a 
threshold for a significant vertex of p<0.05 [49, 50]. Clusters with 
the size that would pass the family-wise error rate correction were 
considered significant [50].

Thickness values of the surface point with highest z values (local 
maxima) within the cluster, where significant group differences 
of cortical thickness were found, were extracted for post hoc 
analyses. Pair-wise correlations were used to test whether there 
were associations between the magnitude of cortical thickness 

deficits in patients with alcohol dependence and the duration of 
alcohol use [21].

Considering the relatively modest sample size, sensitivity 
analyses to rule out the possibility that the current results may 
be modulated by other confounding factors such as comorbid 
depression, anxiety symptoms and scan parameter difference 
were performed [51, 52]. Local maxima thickness values within 
the cluster extracted as described above were subjected to linear 
regression models that included the scan parameter difference, 
the presence of comorbid depression as defined by 19 or more 
scores on the 17-item Hamilton Depression Rating Scale (HDRS) 
[53], or the presence of anxiety as defined by 40 or more scores on 
the State-Trait Anxiety Inventory (STAI-T) [54, 55] as additional 
covariates.

Data are presented as means±standard deviations. Computations 
were performed using STATA version 11 (Stata corp., College 
Station, TX, USA). Two-tailed p<0.05 was considered significant.

RESULTS

There were no significant differences in age and sex between 
diagnostic groups (Table 1). Patients with alcohol dependence 
drank alcohol more frequently and more heavily than healthy 
comparison subjects (Table 1).

Patients with alcohol dependence had general cortical thinning 
(left hemispheric average cortical thickness (mm): 2.44±0.07 
[healthy comparison subjects] vs 2.24±0.27 [patients with alcohol 
dependence], t=3.35, p=0.002) (right hemispheric average cortical 
thickness (mm): 2.45±0.07 [healthy comparison subjects] vs 
2.25±0.23 [patients with alcohol dependence], t=3.77, p<0.001). In 
order to identify regionally specific cortical deficits in patients with 
alcohol dependence compared to healthy comparison subjects, 
hemispheric average cortical thickness was added as a covariate 
in the whole brain vertex-wise analysis. In the GLM model that 
includes age and average cortical thickness as covariates, significant 
cortical thickness deficits in patients with alcohol dependence, 
compared to healthy comparison subjects, were noted in the left 
superior frontal cortex, after correcting for multiple comparisons 
with the permutation method (Fig. 1) (cluster size=1489.5 mm2; 
number of vertices in the cluster=2,035; Talairach coordinates=x 
[-15.3], y [61.8], z [5.0]; cluster p value=0.024). 

Given that different scanning parameter may influence on 
the cortical thickness variations [51], analysis was re-run with 
scan parameter as a covariate. Trend level significance was noted 
(p=0.091). When analysis was repeated covarying for comorbid 
depression that may be associated with thinner prefronto-
temporal cortex [31, 52, 56], the diagnostic group effect remained 
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significant (p=0.001). When analysis was repeated covarying 
for comorbid anxiety that may also be associated with thinner 
prefronto-temporal cortex [57, 58], the diagnostic group effect 
remained significant in the left superior frontal cluster (p=0.017). 

Post hoc correlation analysis between cortical thicknesses in the 
left superior frontal cluster of significant group difference and 
duration of alcohol use in alcohol dependence group demonstrated 
the significant association (r =-0.55; p=0.02) (Fig. 2). Cortical 
thicknesses in the left superior frontal cluster was also correlated 
with the Clinical Institute Withdrawal Assessment for Alcohol 
scores (r =-0.548, p=0.028). Otherwise we found no significant 
results between cortical thicknesses in the left superior frontal 

cluster and AUDIT scores (r =0.048, p=0.859); and calculated 
alcohol use (alcohol dose x frequency x duration) (r =-0.193, 
p=0.509).

DISCUSSION

In the current study, we have identified the brain region with 
altered cortical thickness in patients with alcohol dependence. 
The region of cortical thickness deficits in patients with alcohol 
dependence encompassed primarily the superior frontal cortex, 
after adjusting for the effects on the global cortical atrophy 
induced by alcohol dependence (Fig. 1). 

Table 1. Characteristics of participants

Variables
Patients 

with alcohol 
dependence (N=21)

Healthy 
comparison 

subjects (N=22)
Statistical values

Demographic variables
    Age, years
    Sex, male/female
Alcohol use variables
    Duration of alcohol use, years
    Frequency of alcohol use, times per month
    Average alcohol dose, standard drinksb per time
    Alcohol Use Disorders Identification Test (AUDIT) scores
    Clinical Institute Withdrawal Assessment for Alcohol (CIWA) scores
Other clinical variables
    Comorbid depressionc

    Comorbid anxietyd

 
50.6 (8.2)

18/3
 

32.1 (11.5)
19.4 (8.0)

6.9 (3.6)
22.1 (7.4)

6.8 (8.8)
 

4 (24)
11 (65)

 
50.2 (8.1)

19/3
 

30.0 (8.7)
2.0 (2.2)
2.0 (1.8)
3.8 (3.7)
1.0 (1.1)

 
0 (0) 
3 (14)

 
t=0.17
 
 
t=0.65
t=9.71
t=5.53
t=10.06
t=3.10
 
 
 

 
df=41

 
 

df=37
df=37
df=37
df=37
df=37

 
 
 

 
p=0.861
p=0.645a

 
p=0.523
p<0.001
p<0.001
p<0.001
p=0.004
 
p=0.029a

p=0.002a

Data are expressed as mean (standard deviations) or numbers (%).
aFisher's exact test.
bOne standard drink contains 14 gram of alcohol.
cPresence of depression was defined as ≥19 on the 17-item Hamilton Rating Scale for Depression.
dPresence of anxiety was defined as ≥40 on the State-Trait Anxiety Inventory. 

Fig. 1. The cortical region with significant cortical thickness differences between alcohol dependence (N=21) and healthy comparison groups 
(N=22). Multiple comparisons were corrected using the permutation tests of 5,000 iterations of random shuffling the group labeling. Clusters that pass 
the threshold for multiple comparison correction with family-wise error correction cluster size inferences are shown here. Covariates were age and 
hemispheric average cortical thickness.
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This is consistent with prior reports indicating that chronic 
alcohol use may have the most detrimental effects on prefrontal 
cortical regions [26, 59, 60]. The level of N-acetyl aspartate, the 
viability marker of neurons, was decreased in prefrontal brain 
regions in chronic alcohol abusers [61]. Neuronal and glial loss 
has consistently been noted in the prefrontal cortical regions, 
particularly in the superior frontal cortex [30, 62-64]. Alcohol use 
has been associated with the decreased performances in executive 
and attention tasks that are important function of the prefrontal 
cortex [49]. 

The superior frontal cortex has a key role in the reward circuitry 
[65]. Pre-existing vulnerability in these regions may predispose 
individuals to alcohol dependence [65], since the function of these 
regions are to executively control over drug craving and seeking. 
These regions may be associated with the compulsive substance-
related behaviors [66], which is also in line with our finding that 
shows the association between duration of alcohol use with the 
magnitude of the cortical deficits in this region. 

The current findings do not provide information regarding 
whether the pre-existing prefrontal cortical deficits have rendered 
individuals vulnerable to alcohol dependence [18], whether 
neurotoxicity of chronic alcohol use, including the oxidative 
stress [67], have damaged the cortex, or whether both processes 
have contributed to the observed findings. Supporting evidence 
for the neurotoxicity as the cause of prefrontal deficits may come 
from the reports that show patients with longer abstinence have 
lesser deficits [68]. It has also been suggested that subjects with 
alcohol dependence may have prefrontal cortex that are less 
recuperative from toxic effects and may undergo vicious cycle 
after initial exposure to substances [65, 69]. Considering that 

alcohol dependence can be divided into two subtypes, type 1 
more environmentally influenced, and type 2 more genetically 
induced [70, 71], a comparison between type 1 and type 2 alcohol 
dependent patients in a study with larger sample with balanced 
composition of type 1 and type 2 alcohol dependence may provide 
an opportunity to approach this question. Longitudinal brain 
imaging study that follows up patients with alcohol dependence 
would also provide important insights.

This study alone does not provide direct information as to 
cellular level mechanisms that may underlie the observed deficits 
of the cortical thickness. However, there is a vast literature 
describing the impact of chronic alcohol on the brain [12, 21, 26, 
31, 72]. Miguel-Hidalgo and colleagues (2002) reported, in their 
study with the postmortem brain of alcohol-dependent patients 
without Wernicke or Korsakoff syndromes, that the glial pathology 
of reduced size and density was the most characteristic finding. 
Kril and colleagues (1997) have shown selective loss of non-
GABAergic pyramidal neurons. Selective dendritic retraction, 
rather than cellular death, has been suggested as main pathology 
related to the volume loss of the gray matter [73].

There is a study that examined the cortical thickness differences 
in subjects with fetal alcohol syndrome or prenatal alcohol 
exposure, compared to control subjects [74], which demonstrated 
deficits in prefronto-temporo-parietal regions. However, few 
studies have examined cortical thickness in alcohol-dependent 
adults [38-40]. The cortical thickness analysis has been reported 
to provide information on an important aspect of the gray matter 
structure, complementary to the conventional volumetry or the 
VBM [37, 44, 75]. For example, highly folded regions could have 
high gray matter density in VBM analysis since there would be 

Fig. 2.  Correlation between mean 
cortical thickness of the left superior 
frontal cortical clustera and duration of 
alcohol use. aThis is the cluster where 
the significant diagnostic group effect 
was noted after correcting for multiple 
comparisons using the permutation 
methods.
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more voxels of gray matter within a fixed radius, but thinner 
cortical thickness [37]. This is the first study that used cortical 
thickness analysis in patients with alcohol dependence excluding 
comorbid substance use, which showed regionally specific cortical 
thickness deficits in alcohol dependence.

There are limitations of the current study. Relatively modest 
sample size may limit the generalizability of the findings. Large 
age range, though covaried in the statistical model, can be another 
weakness of the study. With the current study of a cross-sectional 
design, information on whether the observed cortical deficits 
would be progressive and could be recovered with abstinence 
cannot be provided. Nicotine dependence, which is highly co-
morbid with alcohol dependence, has also been reported to 
be associated with cortical atrophy, particularly that in frontal 
cortex [76]. Now that we neither were able to exclude participants 
with co-morbid nicotine dependence nor delineate the effects 
of alcohol dependence from those of nicotine dependence, the 
current results may have been confounded by the effects of 
chronic nicotine use. Intellectual ability has also been reported to 
be associated with the prefrontal cortical development [77]. The 
fact that the intelligence quotient was not included in the statistical 
model for comparisons of cortical thickness measures, is also an 
important limitation of the current study. Future studies in larger 
samples with narrow age range and with neuropsychological 
assessments for the frontal lobe function, would provide valuable 
information. Although there could be challenges in following 
up patients with alcohol dependence, long-term prospective 
longitudinal study is also warranted.
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