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Abstract Familial hypercholesterolemia (FH) is the most com-
moninheritedformofdyslipidemiaandamajorcauseofpremature
cardiovascular disease. Management of FH mainly relies on the
efficiencyof treatments that reduceplasma low-density lipoprotein
(LDL) cholesterol (LDL-C) concentrations. MicroRNAs (miRs)
have been suggested as emerging regulators of plasma LDL-C
concentrations. Notably, there is evidence showing that miRs can
regulate thepost-transcriptionalexpressionofgenes involvedin the
pathogenesis of FH, including LDLR, APOB, PCSK9, and
LDLRAP1. In addition, many miRs are located in genomic loci
associated with abnormal levels of circulating lipids and lipopro-
teins inhumanplasma.ThestrongregulatoryeffectsofmiRsonthe
expression of FH-associated genes support of the notion that ma-
nipulation of miRs might serve as a potential novel therapeutic
approach.Thepresent reviewdescribesmiRs-targetingFH-associ-
ated genes that could be used as potential therapeutic targets in
patients with FHor other severe dyslipidemias.
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Necessity of New Therapeutic Options for FH
Patients

Familial hypercholesterolemia (FH) is a frequent, severe, and
mostly autosomal dominant genetic disorder associated with
elevated plasma low-density lipoprotein cholesterol (LDL-C)
levels that predisposes patients to premature cardiovascular
disease (CVD), especially if remain undiagnosed or inade-
quately treated [1–3].

The disorder most commonly results from loss-of-function
mutations in the LDLR gene encoding LDL receptor protein,
and genes encoding for proteins that interact with the receptor,
including apolipoprotein B (APOB), proprotein convertase
subtilisin/kexin type 9 (PCSK9), or LDLR adaptor protein 1
(LDLRAP1) [4, 5]. These pathogenic mutations cause defi-
cient clearance of circulating LDL particles via hepatic
LDLR leading to increased plasma LDL-C levels from birth
and deposition in the arterial wall, thus accelerating athero-
sclerosis and the risk of premature CVD [6, 7].

Statins, ezetimibe, bile acid sequestrants, and more recently
PCSK9 inhibitors are the main therapeutic drugs for the
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treatment of heterozygous FH (HeFH); all of which work
solely or predominantly via increased LDLR activity and
LDL-C clearance. Additional LDL-C-lowering can be
achieved in homozygous FH (HoFH) patients by decreasing
production of LDL-C, or its precursors, with either the micro-
somal triglyceride transfer protein (MTP) inhibitor,
lomitapide, or the antisense oligonucleotide which reduces
apoB synthesis, mipomersen. LDL-C reduction can also be
achieved by regular LDL apheresis which mechanically
removes LDL. Statins and ezetimibe are the most commonly
used cholesterol-lowering drugs and are now generically
available at low cost in most countries [8–10]. Nevertheless,
despite the 50 to 60% LDL-C reduction achievable by these
two generally well-tolerated agents, a large number of FH
patients still do not reach the recommended LDL-C goals
due to their very high baseline LDL-C levels [2, 3]. In
HeFH patients who already have evidence of CVD, less than
10 to 20% achieve a LDL-C level below 70 mg/dL on con-
ventional drug therapy [11]. In HoFH patients, where the typ-
ical phenotype has untreated LDL-C > 500 mg/dL and at only
minimal to moderate residual LDLR activity, even high doses
of atorvastatin or rosuvastatin reduce mean LDL-C by only
22–25% [12, 13], and ezetimibe achieves an additional 20%
reduction [14], thus few, if any, HoFH patients can reach any-
where near optimal LDL-C levels.

Therefore, alternative therapeutics either alone or in com-
bination with current approved therapies can be considered to
reduce residual disease burden in patients with FH [15]. In this
context, modulation of microRNAs (miRs)-dependent gene
expression represents a promising approach.

RNA-Based Therapeutic Approaches

In the past decade, RNA-based approaches have shown po-
tential as novel therapies for human disorders. These thera-
peutic approaches are indebted to the advances in knowledge
of the RNA field. As revealed by ENCODE (Encyclopedia of
DNA Elements) project, a multi-center study aiming to find a
collection of functional elements in the human genome via
sequencing RNA from various sources, more than 90% of
the human genome contains non-coding RNAs that can affect
other coding sequences of the genome [16]. Several new clas-
ses of non-coding RNAs associated with the most disparate
and critical functions have been identified [17]. Among these,
small interfering RNAs (siRNAs) and miRs have attracted
considerable interest for drug discovery and development be-
cause of their important role in gene regulation [18].

RNA Interference Pathway

miRs and siRNAs are endogenously transcribed non-coding
short hairpin RNAs that inhibit gene expression through RNA

interference (RNAi) pathways [19–21]. RNAi is a highly con-
served cellular mechanism present in the most eukaryotic cells
that interferes with post-transcription steps and consequently
silences the expression of homologous genes [21, 22]. Either
double-stranded miRs or siRNAs, composed of a passenger
strand (sense strand) and a guide strand (antisense strand), can
interact with and activate the RNA-induced silencing complex
(RISC). The passenger strand is cleaved by the endonuclease
argonaute 2 (AGO2) of the RISC, while the guide strand re-
mains associated with the RISC. Subsequently, the guide strand
directs the active RISC to target mRNA that is cleaved by
AGO2 component [22, 23]. miRs inhibit the expression of
genes by hybridizing guide strand to partially complementary
binding sites typically localized in the 3′ untranslated regions (3′
UTR) of target mRNAs, while siRNA guide strand only binds
to mRNA that is fully complementary to it, causing specific
gene silencing [24, 25]. In rare cases, mRNAs contain highly
complementary miRNA-binding sites and therefore miRs guide
the sequence-specific cleavage of the mRNA in a process sim-
ilar to that mediated by siRNAs [25]. Mechanistically, efficient
inhibition is either supplied by interfering with translation or by
predisposing mRNAs to degradation that is initiated by
deadenylation and decapping of the mRNAs [24].

Therapeutic Potential of RNAi-Based Therapeutics

The therapeutic potential of miRs and siRNAs has been
shown in the treatment of many different diseases such as
cancers [26–29], infections [29–32], and cardiovascular dis-
eases [33, 34]. The siRNA-based therapeutic approaches in-
volve the delivery of a synthetic siRNA into the target cells
aimed at suppressing the expression of a specific mRNA, and
provide a gene silencing effect [35]. The siRNA-based cho-
lesterol-lowering agent inclisiran (formerly ALN-PCS) has
recently successfully completed a phase II trial in 497 patients
with a baseline LDL-C of ~130mg/dL [36]. Patients receiving
a single subcutaneous injection of 300 mg of inclisiran
achieved mean LDL-C reductions of 51 and 45% at Days 60
and 90, respectively (p < 0.0001 compared to placebo).
Inclisiran was generally well tolerated with treatment emer-
gent adverse events of 54% both in patients randomized to
placebo or inclisiran, and with no differences between
inclisiran doses. Injection site reactions (ISRs) with inclisiran
were seen in 3.2% of patients, and were mild or moderate, and
mostly transient. Inclisiran thus appears to provide a durable
reduction in PCSK9 and LDL-C levels with small and infre-
quent subcutaneous injections [36].

In contrast to the siRNA approach, therapeutic procedures
based onmiRs embrace two different strategies including miR
inhibition and miR replacement. The former strategy exploits
antisense therapy to suppress the action of the endogenous
miRs by using synthetic single-stranded RNAs acting as
miR antagonists with sequences complementary to the
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endogenous miR [37]. The miR antagonists include anti-
miRs, locked-nucleic acids (LNA) or antagomiRs carrying
chemical modifications that magnify the affinity for the target
miR and trap the endogenous miR in a configuration that
cannot be incorporated into RISC complex, or cause degrada-
tion of the endogenous miR [38].

In the case of replacement strategy, synthetic miRs (miR
mimics) are applied to mimic the function of the endogenous
miRs causing mRNA inhibition/degradation, and exert a gene
silencing effect [38].

Although siRNAs have been frequently used for silencing
the target genes, and even a few siRNAs are studied in clinical
trials [39], there are several fundamental disadvantages which
considerably limit therapeutic use of siRNA methodology.
The most important drawbacks include scrambling in the bio-
genesis of the endogenous miR, evocation of the interferon
response, and the off-target effects [40–43]. On the other
hand, the unique biogenesis and mechanism of miR action
enables it to be freed from aforementioned limitations.
Impressive advantages of miR-based tools, such as specificity
and safety, and the fascinating feature of multiple-targeting
potential nominate miRs as a useful therapeutic approach [44].

miRs as Therapeutic Target and Tool for FH
Therapy

Since miRs are known to have a pivotal role in LDL-C me-
tabolism [45] and dysregulated miRs have been frequently
found to be involved in the pathogenesis of FH and various
CVDs, they have been suggested as potential targets for ther-
apeutic intervention [46–49].

Different lines of evidence support the legitimacy
of considering miRs as therapeutic targets for FH
teatmenttr. First, miR-based therapy with miR-34- and
miR-122-based drugs has reached phase 2 clinical trial
development [50–52]. Second, a number of in vitro and
in vivo studies have revealed the importance of miRs in
controlling plasma LDL-C through modulating LDLR,
apoB, and PCSK9 expression. Hence, in attention to
critical and well-established role of LDLR, APOB, and
PCSK9 genes in LDL-C hemostasis and metabolism,
therapeutic manipulation of related miRs, via miR
mimics or inhibitors, can be an efficient and attractive
approach for lowering elevated LDL-C and reducing
risk of CV events in FH patients (Fig. 1).

Fig. 1 A schematic view of miR-
mediated regulation of FH-related
genes
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LDLR-Targeting miRs

To date, a large number of mutations in the LDLR gene have
been found to be associated with FH [5]. LDLR gene muta-
tions may affect function and structure of LDLR protein lead-
ing to decreased affinity of the receptor to ligands such as
apoB-containing lipoproteins [53] and/or to deficiency of
LDLR internalization [54] which consequently result in ab-
normal accumulation of LDL-C in plasma [38].

As emerged bioinformatically by genome-wide association
studies (GWAS), LDLR was predicted as a target gene for
miR-130b, miR-301b, miR-148a, and miR-128-1, thereby
they may have the potential to regulate circulating LDL-C
levels [55]. In vitro studies on human and mouse hepatoma
cells have shown that a large number of miRs, including miR-
27a, miR-27b, miR-185, miR-148a, miR-128-1, miR-130b,
and miR-301b, can directly modulate LDLR expression
through post-transcriptional regulation via targeting the 3’
UTR of LDLR [56–60] (Table 1). Among these miRs, as
revealed by in vivo studies on genetically modified mice, only
miR128-1, miR-148a, and miR-185 could significantly
change plasma LDL-C levels. Inhibition of miR128-1 and
miR-148a expression markedly reduced circulating levels of
plasma LDL-C in ApoE−/− and Ldlr−/+ mice, respectively [58,
59]. Inhibition of miR-185 expression was also associated
with significantly less plasma LDL-C levels and slow athero-
sclerotic plaque progression [60]. In addition to the aforemen-
tioned validated miRs, a wide range of miRs, including hsa-
miR-130a-3p, bta-miR-17-5p, bta-miR-146a, bta-miR-146b,
hsa-miR-27a-3p, hsa-miR-17-5p, and many other miRs have
been predicted by Miranda to interact with the 3’ UTR region
of LDLR mRNA. Finally, a recent study by He et al. revealed
that miR-195 inhibited lipopolysaccharide-mediated intracel-
lular cholesterol accumulation and LDL cell uptake by de-
creasing LDLR gene expression [62]. These findings illustrate
that inhibition of miR128-1, miR-148a, and miR-185 might
be an efficient therapy to decrease plasma LDL-C levels in
patients with FH.

PCSK9-Targeting miRs

PCSK9 is an intriguing protein with a ubiquitous expression
and a range of partially unexplored functions [73–75]. PCSK9
is well-known for its homeostatic role in cholesterol metabo-
lism through regulation of LDLR fate via binding to the ex-
tracellular EGF-A domain of the hepatic LDLR and promot-
ing its lysosomal degradation. In rare (less than 0.5%) of FH
patients, a missense gain-of-function mutation in the PCSK9
gene results in elevated plasma PCSK9 levels, increased
LDLR degradation and impaired recycling leading to reduced
LDLR-mediated clearance of LDL-C from the bloodstream
and increased plasma LDL-C levels [76, 77].

PCSK9 inhibition has emerged as an effective, ap-
proved and marketed LDL-C-lowering therapy where
monoclonal antibodies (mAbs) to PCSK9 profoundly re-
duce LDL-C in FH patients [78–82]{Sahebkar, 2013
#48; Sahebkar, 2013 #49}. Evolocumab (Repatha®)
and alirocumab (Praluent®) are now approved by regu-
latory authorities in the USA, Europe, Japan, and many
other countries for the treatment of HeFH where LDL-C
is inadequately reduced by maximal doses of statins. In
addition, evolocumab is approved at a dose of 420 mg
monthly for the treatment of HoFH. Preliminary find-
ings from post-hoc or exploratory analysis of phase III
trials with evolocumab and alirocumab provided encour-
aging evidence that the LDL-C reductions resulted in
further reductions in CVD when added to existing statin
with or without ezetimibe therapy [83, 84]. The CVD
benefit has recently been confirmed in the Further
Cardiovascular Outcomes Research With PCSK9
Inhibition in Subjects With Elevated Risk (FOURIER)
trial with evolocumab with 27,500 patients (15% risk
reduction of primary endpoint and 20% significant risk
reduction of key secondary outcomes) [85].

PCSK9 mAbs at the currently approved doses (140 mg
biweekly or 420 mg monthly) have a relatively short duration
of effect, necessitating every 2- or 4-week administration;
however, this may not be a concern for the management of
patients owing to the satisfactory adherence of patient to these
mAbs in phase III trials [86–88]. In addition, the cost-
effectiveness of PCSK9 mAbs for the treatment of FH, which
could be life-long, is debatable [89]. These issues highlight the
need for durable and less expensive PCSK9 inhibitors that
could potentially serve as alternatives to PCSK9 mAbs in
order to reduce the cost of treatment. miR-based therapeutic
approaches can be regarded as such an alternative for PCSK9
inhibition.

Although there are not many verified miRs for PCSK9
regulation, some recent studies have shown that PCSK9 can
be regulated directly and indirectly by some miRs. As verified
by luciferase reporter method, miR-224 directly targets
PCSK9mRNA and significantly downregulates its expression
[61]. Notably, miR-27a was reported to target promoter region
of the PCSK9 gene and up-regulate its expression [56]. Also,
miR-195 was able to increase PCSK9 gene expression in liver
cancer cells stimulated with lipopolysaccharide [62]. Such
inducing effect of the miR is supported by evidence showing
miRs can enhance expression of target genes via interaction
with promoter region instead of 3’ UTR of the mRNAs [90]
(Table 1).

Furthermore, PCSK9 expression has been reported to be
modulated by miRs regulating SREBP transcription factors.
The proximal promoter of PCSK9 gene harbors a functional
sterol regulatory element (SRE) that is targeted by sterol-
responsive element binding proteins (SREBPs) in response
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to alterations in intracellular cholesterol levels [76, 77]. miR-
132 and miR-499 have been recently identified to indirectly
downregulate SREBP-1c [63] that is known to be a PCSK9
transcription factor [64, 76]. It was also found that miR-185
and miR-342 can inhibit the expression of SREBP-1 and -2,
and therefore, reduce cholesterol synthesis [65, 66]. Given
that SREBPs are the crucial transcription factors upregulating
PCSK9 gene, miRs inhibiting these transcription factors can
be potentially exploited for FH miR therapy using miR
mimetics.

On the other hand, several miRs were recently pre-
dicted to bind to the 3′ UTR of PCSK9 mRNA. These
include miR-18a-5p, miR-148, miR-323-5P, miR-570,
miR-584t, miR-663-b, miR-922, miR-3919, miR-3974,
miR-4509, miR-4690-5p, miR-4732-5p, miR-4795-5P,
miR-5586-3P, and miR-6134 [91]. There are also sever-
al miRs presented by miRTarBase database, which are
predicted, by Miranda, to interact with 3′ UTR of
PCSK9, including hsa-miR-335-5p, hsa-miR-124-3p,
hsa-miR-215-5p, hsa-miR-192-5p, hsa-miR-6864-5p,
hsa-miR-6515-5p, hsa-miR-4656, hsa-miR-6797-5p,
hsa-miR-1249-5p, hsa-miR-6875-5p, hsa-miR-4721,
hsa-miR-6761-5p, hsa-miR-3126-5p, hsa-miR-4802-5p,
hsa-miR-4446-3p, hsa-miR-6873-5p, hsa-miR-7845-5p,
hsa-miR-6856-5p, hsa-miR-6758-5p, hsa-miR-6882-5p,
hsa-miR-1303, hsa-miR-744-3p, hsa-miR-6501-5p, hsa-
miR-4423-5p, hsa-miR-367-5p, hsa-miR-6764-5p, hsa-
miR-1304-3p, hsa-miR-1915-3p, hsa-miR-1208, and
hsa-miR-193a-5p. The aforementioned miRs merit fur-
ther studies to be experimentally verified as direct reg-
ulators of PCSK9.

apoB-Containing Lipoproteins-Targeting miRs

LDL-C-lowering approaches acting via modulation of
LDLR activity or expression are ineffective in patients
with HoFH with LDLR activity less than 2% [92–94].
In this condition, elevated plasma cholesterol can be
modulated via reducing production of atherogenic
apoB-containing lipoproteins including LDL-C and
lipoprotein(a). This approach has been found to lower
plasma cholesterol in HoFH patients by reducing apoB
expression using mipomersen, an antisense oligonucleo-
tide (ASO), and by inhibiting the activity of MTP by
using lomitapide [95–98]. Side effects of both
mipomersen and lomitapide, such as fatty liver and ele-
vation in plasma transaminases [99], call for the neces-
sity of alternative agents—with different mechanisms of
action—modulating plasma cholesterol without causing
side effects.

Hepatic production of atherogenic apoB-containing lipo-
proteins has been identified to be regulated by three miRs,
including miR-34a [67], miR-30c [68, 69], and miR-122

[70, 71] (Table 1). The miRs have been reported to reduce
production of liver apoB-containing lipoproteins through in-
hibition of HNF4α and MTP mRNA expression. Both
HNF4α and MPT have critical roles in the assembly of
apoB-containing lipoproteins. HNF4α is a transcription factor
that binds to the promoter regions of APOB andMTP genes to
enhance their expression [100–102]. It was found that miR-
34a reduces HNF4α levels causing reduction of apoB and
MTP expression [67, 103]. MTP is an important chaperone
that transfers lipids to apoB peptide [104, 105]. miR-30c in-
hibits MTP expression via binding to the 3′ UTR of MTP
mRNA and induces post-transcriptional degradation leading
to reduced assembly of apoB-containing lipoproteins [68, 69].
In the case of miR-122, it decreases MTP expression by yet an
unknown mechanism [106].

In addition, a number of miRs proposed to interact with 3′
UTR of apoB100 mRNA has been predicted by Miranda and
presented in miRTarBase database. These include mmu-miR-
122-5p, hsa-miR-885-5p, hsa-miR-7151-5p, hsa-miR-6869-
5p, hsa-miR-502-5p, hsa-miR-1911-5p, hsa-miR-499b-5p,
hsa-miR-500b-3p, hsa-miR-6862-3p, hsa-miR-6784-3p, and
hsa-miR-624-5p.

To sum up, overexpression of miR-122, miR-34a, and
miR-30c, as well as other predicted miRs, can be therapeuti-
cally useful to reduce production and plasma levels of athero-
genic apoB-containing lipoproteins independent of LDLR
targeting in FH, particularly in homozygous patients.
However, the interactions and effectiveness of these miRs
needs to be experimentally verified by using miR mimetics.

LDLRAP-Targeting miRs

Low-density lipoprotein receptor adaptor protein 1
(LDLRAP1) is a cytosolic protein containing an N-
terminal phosphotyrosine-binding (PTD) domain that in-
teracts with the cytoplasmic tail of the LDLR and facil-
itates circulating plasma LDL-C clearance. Through
clathrin-mediated endocytosis of hepatic LDLR, PTD
domain of LDLRAP1 binds to the internalization se-
quence of the cytoplasmic tail of LDLR, and acts as
an adaptor for LDLR endocytosis in the hepatocytes.
A rarely-occurring recessive form of FH, named autoso-
mal recessive hypercholesterolaemia, is caused by loss-
of-function mutations in LDLRAP1 gene leading to de-
fection in LDLR internalization and subsequently, the
reduced clearance of plasma LDL-C [5, 107].

miR-27a, miR-27b, and plant miR-168a have been
found to directly target LDLRAP1 expression, and con-
sequently modulate LDLR activity (Table 1). As validat-
ed by luciferase reporter assays, 3′ UTR of LDLRAP1
mRNA is directly and specifically targeted by miR-27a
[56] and miR-27b [57]. Although in vitro study on hu-
man hepatic Huh7 cells revealed that over-expression of
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miR-27b can profoundly downregulate mRNA expres-
sion of LDLRAP1 gene, in vivo study on wild type mice
showed that modulation of miR-27b cannot affect plasma
levels of LDL-C and other indices of lipid profile [57].
miR-27a was also found to downregulate mRNA level of
LDLRAP1 in HepG2 cells [56], while its in vivo effect
on plasma LDL-C is unknown and needs to be studied.
Furthermore, miR168a is a plant miR abundant in rice
and has been found to be one of the most enriched ex-
ogenous plant-based miRs in the sera of Chinese peo-
ples. In vitro and in vivo mechanistical studies revealed
that miR168a has a high degree of complementarity with
the exon 4 of mammalian LDLRAP1, which can bind to
the human or mouse LDLRAP1 mRNA, inhibit
LDLRAP1 expression in hepatocytes, and result in re-
duced clearance of LDL-C from mouse plasma [72]. As
predicted by Miranda algorithm, there are several miRs
in miRTarBase database which are proposed to interact
with 3′ UTR of LDLRAP1 mRNA, including hsa-miR-
124-3p, mmu-miR-124-3p, hsa-miR-9-5p, hsa-miR-615-
3p, and hsa-miR-92a-3p.

In summary, miR inhibition using antisense approach can
be a useful strategy to suppress aforementioned miRs,
resulting in enhanced LDLRAP1 activity and improved clear-
ance of plasma circulating LDL-C.

Concluding Remarks

miRs regulating critical genes closed to FH, including
LDL, APOB, PCSK9, and LDLRAP1, can be considered
as potential therapeutic targets for FH patients. LDLR
can be upregulated through inhibition of miRs including
miR128-1, miR-148a, and miR-185 and consequently
enhances liver clearance of LDL-C. In the case of
PCSK9, use of therapeutic miRs mimic miR-224, miR-
132 and miR-499, miR-185, and miR-342, and also in-
hibition of miR-27a can downregulate PCSK9 expres-
sion, and therefore, can also lower elevated LDL-C in
FH patients. Notably, reduction of atherogenic apoB-
containing lipoproteins, as an efficient therapeutic ap-
proach in HoFH, can be achieved via miR-122, miR-
34a and miR-30c mimics, which are known to reduce
atherogenic lipoproteins independent of LDLR. In the
case of LDLRAP1, inhibition of miR-27a and miR-27b
can be a reliable and efficient approach for upregulation
of LDLRAP1 protein and enhancing LDLR activity
leading to improved clearance of LDL-C from sera of
hypercholesterolemic patients. Overall, among the afore-
mentioned miRs, miR-27a is suggested to be the most
putative therapeutic target as it can regulate three of the
4 important photogenic genes in FH patients including
LDLR, PCSK9, and LDLRAP1.
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