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High throughput gene expression profiling has showed great promise in pro-

viding insight into molecular mechanisms. Metastasis-related mRNAs may

potentially enrich genes with the ability to predict cancer recurrence, therefore

we attempted to build a recurrence-associated gene signature to improve prog-

nostic prediction of colorectal cancer (CRC). We identified 2848 differentially

expressed mRNAs by analyzing CRC tissues with or without metastasis. For

the selection of prognostic genes, a LASSO Cox regression model (least abso-

lute shrinkage and selection operator method) was employed. Using this

method, a 13-mRNA signature was identified and then validated in two inde-

pendent Gene Expression Omnibus cohorts. This classifier could successfully

discriminate the high-risk patients in discovery cohort [hazard ratio

(HR) = 5.27, 95% confidence interval (CI) 2.30–12.08, P < 0.0001). Analysis

in two independent cohorts yielded consistent results (GSE14333: HR = 4.55,

95% CI 2.18–9.508, P < 0.0001; GSE33113: HR = 3.26, 95% CI 2.16–9.16,
P = 0.0176). Further analysis revealed that the prognostic value of this signa-

ture was independent of tumor stage, postoperative chemotherapy and somatic

mutation. Receiver operating characteristic (ROC) analysis showed that the

area under ROC curve of this signature was 0.8861 and 0.8157 in the discovery

and validation cohort, respectively. A nomogram was constructed for clini-

cians, and did well in the calibration plots. Furthermore, this 13-mRNA signa-

ture outperformed other known gene signatures, including oncotypeDX colon

cancer assay. Single-sample gene-set enrichment analysis revealed that a group

of pathways related to drug resistance, cancer metastasis and stemness were

significantly enriched in the high-risk patients. In conclusion, this 13-mRNA

signature may be a useful tool for prognostic evaluation and will facilitate per-

sonalized management of CRC patients.

1. Introduction

Colorectal cancer (CRC) is one of the most common

cancers worldwide. It ranks as the fourth leading cause

of cancer death after lung, liver, and stomach cancer

(Ferlay et al., 2015). Currently, surgery and

chemotherapy are the most common treatments, and

the treatment selection is mainly based on the tumor
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stage. The American Joint Committee (AJCC) staging

system on cancer has been widely used for cancer

management clinically (Kawaguchi et al., 2013; Mar-

relli et al., 2012). However, the TNM Classification of

Malignant Tumours staging method (TNM; AJCC 6th

edn) cannot provide accurate information to clinicians

for predicting patient survival time. The higher TNM

stage is generally associated with a poorer outcome.

However, the prognosis for stage IIb patients is signifi-

cantly worse than for those with stage IIIa (O’Connell

et al., 2004). Tumor stage can help guide chemother-

apy for CRC patients, and adjuvant chemotherapy is

accepted as standard regimen for these stage III

patients (NIH Consensus Conference, 1990), but it is

still debatable for those with stage II (Benson et al.,

2004; Figueredo et al., 2008; Ratkin, 1997), indicating

that the TNM staging system is not totally recom-

mended for the management of CRC. These limita-

tions have prompted a search for new biomarkers for

discrimination of high-risk patients to improve person-

alized cancer care.

CRC is of a high heterogeneity, originating from

complex interactions between environmental and

genetic factors (Lichtenstein et al., 2000). Some critical

genes and/or associated signaling pathways, such as

chromosomal instability, RAS, Wnt, and other path-

ways (Malumbres and Barbacid, 2003; Pino and

Chung, 2010; Sparks et al., 1998) are implicated in the

initiation, progression, and metastasis of CRC. Great

efforts have been made to identify the molecular mark-

ers for prognosis prediction. However, a systemic anal-

ysis has found conflicting evidence as to the prognostic

significance of genes commonly implicated in the

pathogenesis of CRC (Anwar et al., 2004).

In recent years, many studies have focused on gene

expression profiles in CRC; these have shown great pro-

mise for predicting prognosis in individual patients. A

test approved by the US Food and Drug Administration

(MammaPrint; Agendia, Amsterdam, the Netherlands)

has been successfully developed for prognostic predic-

tion in breast cancer (Glas et al., 2006; van ‘t Veer et al.,

2002). Several gene signatures have also been estab-

lished to distinguish the prognosis of patients beyond

the CRC clinicopathological features; however, most of

them are not used clinically (Agesen et al., 2012; Jensen

et al., 2015; O’Connell et al., 2010; Oh et al., 2012;

Schell et al., 2016; van der Stok et al., 2016). Thus,

identifying a more powerful and practical gene signature

for prognosis prediction is of great clinical significance.

We mined previously published gene expression

microarray data from the Gene Expression Omnibus

(GEO), and conducted mRNA profiling on large

cohorts of CRC patients. The differentially expressed

mRNAs were identified by analyzing the metastasized

and non-metastasized CRC tissues. According to the

TNM staging system (AJCC 6th edn), non-metasta-

sized and metastasized patients belonged to different

tumor stages and demonstrated significantly different

outcomes (O’Connell et al., 2004). Thus these metasta-

sis-related expression changes might be enriched with

genes with potential prognostic predictive value, useful

for developing a gene signature for predication of

recurrence of these mRNAs. For selection of prognos-

tic genes, the least absolute shrinkage and selection

operator method (LASSO) has been extensively

applied in high-dimensional microarray data (Gui and

Li, 2005; Tibshirani, 1997; Zhang et al., 2013). By this

way, we identified a 13-mRNA signature in discovery

set GSE17536 to predict recurrence-free survival

(RFS) for patients with CRC. RFS was defined as the

incidence of recurrence after resection, which was also

called disease-free survival (DFS) (Jorissen et al., 2009;

Kemper et al., 2012; Smith et al., 2010). We validated

it in another two independent cohorts (GSE14333 and

GSE33113) and assessed the prognostic value of this

gene signature in discovery and validation datasets.

Furthermore, a comparison was made between our 13-

mRNA signature and other three important gene sig-

natures, including OncotypeDX colon cancer assay

(Srivastava et al., 2014).

2. Materials and methods

2.1. CRC gene expression data

CRC gene expression data and corresponding clinical

data used in this study are available on ARRAYEXPRESS

(http://www.ebi.ac.uk/arrayexpress/) and GEO (https://

www.ncbi.nlm.nih.gov/geo/). All data with raw data

CEL files were under the same chip platform (Affyme-

trix HUMAN GENOME U133 PLUS 2.0 chips). The raw data

were downloaded and normalized using a robust multi-

array averaging method (Irizarry et al., 2003). We pro-

cessed the Affymetrix data using ‘affy’ and ‘affycore-

tools’ packages of R software (version 3.3.1, R

Foundation for Statistical Computing Vienna, Austria).

This well-defined process consisted of the following

steps: first, importing the ‘raw’ data in.CEL format and

the associated clinical information; secondly, summariz-

ing the expression values for each probe set; the last step

included background correction, normalization and

summarizing. After excluding the samples without valu-

able clinical survival information, 556 patients in four

datasets were used in this study, including GSE64256

(n = 125), GSE17536 (n = 145), GSE14333 (n = 197),

GSE33113 (n = 89) (see Tables S1–S3). Tumors in
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GSE14333 were recorded with Dukes’ stages, which

were converted to AJCC stages based on the AJCC

Colon and Rectum Cancer staging, 7th Edition, in order

to maintain consistency with other datasets. GSE64256

dataset was used to identify the differentially expressed

mRNAs between 26 metastasized samples and 99 non-

metastasized samples. Dataset GSE17536 was used as

the discovery set to screen out the prognostic gene sig-

nature from the differentially expressed mRNAs. The

gene signature was then validated in GSE14333 and

GSE33113 datasets. The flowchart of this study was

depicted in Fig. S1.

2.2. Identification and validation of the

prognostic gene signature

At first, to construct the prognostic gene signature from

the metastasis-related mRNAs, the ‘limma’ package of R

software (version 3.3.1) was used to generate the differen-

tially expressed mRNAs whose parameter P-value was

less than 0.05 between metastasized samples and non-

metastasized samples in GSE64256. Then, R software

(version 3.3.1) and the ‘glmnet’ package (R Foundation

for Statistical Computing, Vienna, Austria) were used to

perform the LASSO Cox regression model analysis in the

discovery dataset GSE17536. The penalized Cox regres-

sion model with LASSO penalty was used to achieve

shrinkage and variable selection simultaneously, and the

optimal values of the penalty parameter lambda were

determined through 10-times cross-validations (Goeman,

2010; Tibshirani, 1997). Based on the optimal lambda

value, a list of prognostic genes with associated coeffi-

cients was screened out from the metastasis-related

mRNAs based on the gene expression profiling and RFS

data. The risk score for each patient was then calculated

based on the expression level of each prognostic mRNA

and its associated coefficient. The patients in each dataset

were split into a low-risk and a high-risk group according

to the median risk score. The median value of the risk

score was set as the cut-off, since its clinical application is

easy. Finally, the Kaplan–Meier estimator and the log-

rank test were introduced to assess RFS differences

between the low-risk and high-risk groups. The gene sig-

nature was validated in two independent datasets. The

risk scores were calculated using the same formula as in

the discovery set. Each dataset was divided into two risk

groups based on the median risk score and the RFS dif-

ferences were analyzed as above.

2.3. Statistical analysis

Univariable and multivariable Cox regression were

performed to investigate whether this gene signature

was independent of age, gender and tumor stage.

Receiver operating characteristic (ROC) analysis was

used to assess the sensitivity and specificity of the sur-

vival prediction based on the multi-mRNA risk score,

tumor stage, combined model of risk score and tumor

stage, and prognostic indexes of other gene signatures.

An area under ROC curve (AUC) was used as a mea-

sure of the accuracy in diagnostic tests (Bunger and

Mallet, 2016). We adopted the ‘pROC’ package for

ROC analysis, and the method ‘delong’ was used to

test the significance of differences between the ROC

curves. For ROC analysis, it was necessary to exclude

patients who had not had a recurrence at the time of

the last follow-up and in whom RFS duration was less

than the median RFS. The remaining patients were

classified into two subgroups based on the median

RFS (Kang et al., 2012).

Survival times of patients were from the date of sur-

gery to the time of recurrence or the date on which

data were taken, based on the method of Kaplan–
Meier. The curves were analyzed using the log rank

test. A P-value less than 0.05 was set as the significant

difference for all the Cox regression analyses, log-rank

tests and ROC analyses.

2.4. Construction of nomogram

The nomogram and calibration plots were generated

using the ‘rms’ package of R software (version 3.3.1).

The predictive accuracy of a nomogram was assessed

by a concordance index which investigated the level of

consistency between the actual observed outcome fre-

quencies and predicted probabilities (Wang et al.,

2013). After the construction of nomogram model,

cross-validation was performed to address model over-

fitting; a bootstrap resampling method was adopted to

generate the confidence interval (CI) for concordance

indexes (Pencina and D’Agostino, 2004; Wang et al.,

2013). A calibration plot was used to visualize the per-

formance of the nomogram. Nomogram-predicted

recurrence and observed outcome were plotted on the

x-axis and y-axis, respectively; the 45° line represented

the best prediction.

2.5. Gene set enrichment analysis

To identify the differentially expressed gene sets

between the low-risk and high-risk subgroups, single

sample gene set enrichment analysis (ssGSEA) was

performed. Enrichment scores in each sample were cal-

culated using the ‘GSVA’ package of R software (ver-

sion 3.3.1) and its ssGSEA method (http://www.bioc

onductor.org) (Hanzelmann et al., 2013). The
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enrichment score represented the degree of absolute

enrichment of a certain gene set in each sample within

a dataset (Barbie et al., 2009; Subramanian et al.,

2005). The risk-associated gene sets (adjusted P-

value < 0.001) were identified for further analysis. For

correlation analysis, ‘corrplot’ package was used, and

the correlation coefficients, CI and P-values were cal-

culated using R software.

3. Results

3.1. Development and validation of prognostic

13-mRNA signature

A set of 2848 differentially expressed mRNAs between

metastasized and non-metastasized tumors was identi-

fied from dataset GSE64256. LASSO Cox regression

model was applied for further analysis of these 2848

genes in the discovery set GSE17536 (see Fig. S2). We

identified a 13-mRNA signature that was significantly

correlated with RFS in CRC patients. Table S4 shows

a list of probes with associated coefficients which were

generated from the LASSO analysis.

The risk score for each patient was calculated based

on the expression levels of all 13 genes in the multivari-

ate model and their associated coefficients (see

Table S5). Among the 13-mRNAs, 11 genes had positive

coefficients – THBS2, CAV2, SCG2, SLC6A1, SAV1,

EZ6L2, ERO1A, RAB3B, OBSL1, CD109, and

PTPN14. The coefficients for the other two genes

(MRPL35, LRPAP1) were negative. For the CRC

patients, the higher risk score meant a poorer prognosis;

thus the higher expression levels of genes with a positive

weighting coefficient indicated higher risk scores, and an

increased risk of recurrence. Conversely, the higher

expression levels of genes with a negative coefficient

were associated with a better outcome.

The 13-mRNA signature risk score for each patient

was calculated in the discovery set GSE17536 (min:

13.18, median: 13.98, max: 15.48). In survival analysis,

a dichotomous score was adopted. The patients were

divided into a low-risk group (n = 73) and a high-risk

group (n = 72) based on the median risk score.

Patients in the high-risk group demonstrated a worse

outcome compared with those in the low-risk group

(HR = 5.27, 95% CI 2.30–12.08, P < 0.0001)

(Fig. 1A). The univariable and multivariable Cox

regression analyses also showed that the 13-mRNA

risk score was significantly associated with RFS as a

continuous variable (P < 0.0001) (Fig. 2A,B). The dis-

tribution of risk score, the recurrence status of the

CRC patients, and the mRNA expression profiling

were analyzed and the results showed that significantly

more patients had a recurrence in the high-risk group

than in the low-risk group, and the expression levels of

genes with positive coefficients were higher in high-risk

patients (Fig. S3).

The efficacy of the 13-mRNA signature for progno-

sis prediction of CRC patients was further validated in

two independent datasets (GSE14333 and GSE33113).

Patients were classified into a high-risk and a low-risk

group using the same risk score-based classifier; the

median risk score in each dataset was taken as the cut-

off value. Consistent with the findings described above,
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Fig. 1. Kaplan–Meier estimates of the patients’ recurrence using the 13-mRNA signature. The Kaplan–Meier plots were used to visualize

the patients’ recurrence probabilities for the low-risk versus high-risk group of patients based on the median risk score from corresponding

GEO datasets. (A) Kaplan–Meier curves for discovery dataset GSE17536 patients (n = 145). (B) Kaplan–Meier curves for GSE14333 patients

(n = 197). (C) Kaplan–Meier curves for GSE33113 patients (n = 89). The tick marks on the Kaplan–Meier curves represent the subjects

studied. The differences between the two curves were determined by the two-sided log-rank test.
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high-risk patients in the GSE14333 cohort had a sig-

nificantly shorter median RFS compared with low-risk

patients (HR = 4.55, 95% CI 2.18–9.50, P < 0.0001)

(Fig. 1B). Analysis in the GSE33113 dataset produced

similar results (HR = 3.26, 95% CI 1.16–9.16,
P = 0.0176) (Fig. 1C). The univariable and multivari-

able Cox regression analyses also showed that the

association of 13-mRNA risk score with RFS was sta-

tistically significant as a continuous variable in the

GSE14333 cohort (Fig. 2C,D).

We also performed a Chi-square test to investigate

whether the recurrence status was associated with risk

stratification (low-risk group versus high-risk group).

Results showed that the P-values in all three cohorts

were less than 0.05. Moreover, more samples in the

patients with recurrence fell into the high-risk group,

in which the range and median of RFS were shorter

than that in low-risk group (Table S2).

3.2. Prognostic value of the 13-mRNA signature

To investigate whether the prognostic value of the 13-

mRNA signature was independent of tumor stage, the

univariable and multivariable Cox regression analyses

were performed using the risk score, age, gender, and

tumor stage as covariates. We found that both the risk

score and tumor stage were significantly associated

with RFS even when adjusted by other clinical factors

in GSE17536; there were no stage IV patients in

GSE14333 (Fig. 2A–D). Then the stratification analy-

sis was introduced based on tumor stage. Patients were

stratified into two subgroups where AJCC stage

I and II were fictitiously defined as early-stage stratum

and AJCC stage III and IV as late-stage stratum.

Regardless of the stratum, the 13-mRNA signature

still had the capability to distinguish high-risk patients.

Figure 3A showed that the prognosis of high-risk
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Fig. 2. Forest plot summary of analyses of recurrence-free survival (RFS). Univariable and multivariable analyses of the 13-mRNA risk score,
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patients was significantly worse than that of low-risk

patients in the early-stage stratum of the GSE17536

cohort (HR = 6.52, 95% CI 1.53–27.8, P = 0.0009),

consistent with the results in the late-stage stratum of

the GSE17536 cohort (HR = 2.46, 95% CI 1.28–4.75,
P = 0.0042) (Fig. 3B). Stratification analysis of

another dataset, GSE14333, yielded similar results;

Fig. 3C shows the results in the early-stage stratum of

this cohort (HR = 3.55, 95% CI 1.46–8.63,
P = 0.0014), and Fig. 3D the results in the late-stage

(HR = 2.28, 95% CI 1.20–4.35, P = 0.0081). These

results indicate that the prognostic value of the 13-

mRNA signature was independent of tumor stage. We

also assessed the prognostic ability of 13-mRNA signa-

ture in patients based on postoperative chemotherapy,

somatic mutation, and tumor location in dataset

GSE14333. The patients were stratified into different

subgroups, including patients with postoperative

chemotherapy, patients without postoperative

chemotherapy, patients with BRAF gene mutation,

patients whose KRAS gene and BRAF gene were both

wild-type, patients with left-sided CRC, patients with

right-sided CRC, and patients with rectum carcinoma.

Interestingly, we found that except for the subgroup of

rectum carcinoma, high-risk patients in all the sub-

groups were inclined to have unfavorable RFS

(Figs 3E–H, S4).

We also performed ROC analysis to demonstrate

the sensitivity and specificity of survival prediction in

GSE17536 and GSE14333 sets. AUC was evaluated

and compared between the 13-mRNA risk score model

and tumor stage. Figure 4A showed that the

13-mRNA risk score model possessed a stronger pre-

dictive power than AJCC stage for the prognostic

evaluation of CRC patients in the discovery cohort

GSE17536 (0.8861 versus 0.6687, 95% CI 0.8197–
0.9525 versus 0.5726–0.7647, P < 0.0001). When the

13-mRNA risk score model was combined with tumor

stage, no significant difference was found between the

combined model and the 13-mRNA risk score model

(0.9190 versus 0.8861, 95% CI 0.8671–9710 versus

0.8197–0.9525, P = 0.0757). Analysis in the validation

cohort GSE14333 produced similar results (Fig. 4B).

The results from the validation dataset further con-

firmed the reliable predictive ability of the 13-mRNA

risk score model.

3.3. Construction of nomogram based on 13-

mRNA signature

To develop a practical method for clinicians to predict

the probability of CRC recurrence, a nomogram was

constructed which integrated the 13-mRNA signature,

tumor stage, and tumor differentiation (Fig. 5A). Fig-

ure 5B showed that the line-segment in the calibration

plots was very close to the 45° line which represented

the best prediction, indicating that the nomogram did

quite well. The predictive accuracy of the nomogram

was calculated through ROC analysis: the AUC of

nomogram is 0.9206, as shown in Fig. 5C.

3.4. Comparison with other known gene

signatures

To further investigate the predictive power of the 13-

mRNA risk score model, some important gene signa-

tures for prognosis prediction in CRC were analyzed

in GSE17536 and GSE14333, including oncotypeDX

colon cancer assay, ColoGuideEx, and Sang_signature

(Agesen et al., 2012; Oh et al., 2012; Srivastava et al.,

2014). Our study was not a comprehensive review of

all biomarkers associated with CRC; the three selected

signatures represented a purposive convenience sample.

According to the associated formula, the prognostic

indexes were calculated respectively (Table S5). We

performed the univariable Cox regression analysis to

investigate the association between each prognostic

index and RFS, using the prognostic indexes as contin-

uous variables. Figure S5 showed that except for the

13-mRNA risk score model, only the oncotypeDX

colon cancer assay was significantly associated with

RFS. Moreover, the hazard ratio of the 13-mRNA

risk score model was significantly larger than that of

oncotypeDX colon cancer assay. In the GSE17536 and

GSE14333 datasets, the median RFS was 37.31 and

38.07 months, respectively. The patients whose follow-

up duration was less than median RFS were excluded

if they still did not recur in the most recent follow-up.

ROC analysis was then performed (Fig. 4A,B); the

AUC of the 13-mRNA risk score model was signifi-

cantly greater than that of other gene signatures.

Remarkably, the selected gene signatures above mainly

applied to prognosis predictions for stage II and III

patients (Agesen et al., 2012; You et al., 2015). For a

fair comparison, ROC analysis was carried out for

stage II and III patients in dataset GSE17536, and

yielded the similar results (Fig. S6), indicating that

the 13-mRNA risk score model outperformed other

classifiers.

3.5. Identification of 13-mRNA signature-

associated biological pathways

We performed ssGSEA analysis in dataset GSE17536

to identify the 13-mRNA-associated signaling path-

ways. The patients were divided into low- or high-risk
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Fig. 3. Kaplan–Meier survival analysis to evaluate the independence of the 13-mRNA signature from AJCC stage, postoperative chemotherapy,

and somatic muation. The patients from GSE62254 and GSE14333 were stratified into subgroups. The 13-mRNA signature was applied to the

low-stage patients (A,C), high-stage patients (B,D), patients with postoperative chemotherapy (E), patients without postoperative chemotherapy

(F), patients with Braf gene mutation (G) or patients whose Kras gene and Braf genes were both wild type (H), separately.
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groups based on the 13-mRNA model. Figure 6A

showed that a group of pathways related to drug resis-

tance, cancer metastasis, and stemness were signifi-

cantly more activated in the high-risk patients than

low-risk ones. Interestingly, these pathways and the

risk score showed the same trend; with the increase of

the risk score, the degree of enrichment gradually

increased in the associated pathways. The association

between the risk score and the pathways was further

validated through correlation analysis, and the results

confirmed the close relevance between them

(P < 0.0001) (Fig. 6B, Table S6).

4. Discussion

Microarray profiling has received much attention in

recent years, and has shown great promise in gaining

an insight into molecular mechanisms through the

analysis of thousands of genes (Cristescu et al., 2015;

De Sousa et al., 2013). In our study, a 13-mRNA sig-

nature was constructed for prognostic predication in

CRC. When stratified by important clinicopathological

factors, the 13-mRNA signature retained a strong

prognostic ability. Moreover, it outperformed other

known gene signatures, indicating that it could

improve the prediction of disease recurrence in CRC

with considerable reliability and robustness.

For survival analysis, the Cox proportional hazards

regression analysis is wide used at present. However, it

is not suitable for high-dimensional microarray data

(Simon and Altman, 1994). Overfitting is one common

limitation in modeling high-dimensional microarray

data for the selection of prognostic genes. The LASSO

method could remove this limitation and was applied

in our study for optimal selection of genes (Goeman,

2010; Tibshirani, 1997). Using this method, a 13-

mRNA signature was created by exploring the correla-

tion between gene expression profiles and clinical out-

come of CRC patients in the discovery dataset and

was verified in two independent datasets, indicating

favorable reproducibility.

The current TNM staging system (AJCC 6th edn)

was closely associated with patient prognosis (O’Con-

nell et al., 2004). The univariable and multivariable

Cox regression analyses in our study consistently

showed that tumor stage was a significant prognostic

factor in the discovery and validation cohorts. Stratifi-

cation analysis was therefore performed to investigate

whether this 13-mRNA signature was independent of

tumor stage. The results showed that it could also dis-

criminate the high-risk patients from the stratified

groups in the discovery and validation cohorts.

One important question should be mentioned here.

The ethnicity in these three cohorts differed, as well as
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the constitution of tumor stages. Our discovery dataset

(GSE17536) contained patients in all four AJCC

stages; however, one validation dataset (GSE14333)

had no AJCC stage IV patients; and another valida-

tion dataset (GSE33113) consisted only of AJCC stage

II patients. The inconsistency in the constitution of

tumor stages might increase the difficulty of validating

our signature. The successful validation indicated that

our gene signature was not only across populations,

but was also independent of tumor stage, which was in

accordance with the results of the stratification

analysis above. As our signature was independent of

tumor stage, it could be considered that the discrep-

ancy in constitution of tumor stages did not affect the

representativeness of these cohorts. Thus, the conclu-

sions in our analyses were convincing.

Sporadic CRCs occurred through the accumulation

of somatic genetic and epigenetic events (Carethers

and Jung, 2015). Coincidentally, GSE14333 provided

the information about KRAS and BRAF mutations,

which were associated with a poor outcome in CRC.

Moreover, the emergence of KRAS/NRAS mutations
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might underlie acquired resistance to target therapy in

CRC (Dienstmann et al., 2015; Van Cutsem et al.,

2011). Another important prognostic factor was adju-

vant chemotherapy, which could significantly improve

the outcome of CRC patients, especially for stage III

patients (Ratkin, 1997); however, a study indicated

that adjuvant FOLFOX for primary CRC was

associated with a high frequency of somatic mutations

in liver metastases and poor prognosis (Andreou et al.,

2012). The interaction between these factors made it

complex even for the prognostic prediction in CRC,

necessitating further analysis to confirm the indepen-

dence of our 13-mRNA signature. Thus the CRC

patients were also stratified into subgroups based on
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postoperative chemotherapy and somatic mutation. In

accordance with the results above, the 13-mRNA sig-

nature retained the ability to predict recurrence in all

subgroups, indicating that this 13-mRNA signature

was independent of tumor stage, postoperative

chemotherapy, and somatic mutation, and might com-

plement clinicopathological features. Recent studies

have shown that right- and left-sided CRCs had differ-

ent epidemiologic and histological characteristics, as

well as underlying biologic mechanisms (Benedix et al.,

2010; Bufill, 1990; Lee et al., 2017). However, when we

stratified the patients by tumor location in GSE14333,

we found that our 13-mRNA signature could not dis-

criminate high-risk patients from the subgroup of rec-

tum carcinoma. This result indicated that our

signature may only apply to left-sided or right-sided

CRCs. Note that there were only 23 patients with rec-

tum carcinoma, so bias might have occurred in the

stratification analysis. It is necessary to enlarge the

sample size to generate more reliable results.

ROC analysis showed that our 13-mRNA signature

was superior to tumor stage for prognostic evaluation.

To further improve the ability of prognostic prediction,

we combined the 13-mRNA risk model with tumor

stage. There was no significant difference between the

combined model and our gene signature, indicating that

our 13-mRNA signature could yield results by itself.

As a result of poor reproducibility, most established

signatures have not been used clinically for prognostic

prediction in CRC. The reasons of poor reproducibil-

ity are manifold. In early studies, small sample series

and lack of validation in independent samples limited

the strength of the conclusions. Besides, some gene sig-

natures use too many genes for the construction of a

model, which inhibits the clinical utility. Importantly,

most studies of gene signatures are retrospective; the

good reproducibility is still hampered by the lack of

validation in prospective multicenter studies. To con-

firm further the availability of our 13-mRNA signa-

ture, we chose three important gene signatures for

comparison analysis in the discovery and validation

datasets. Among them, both OncotypeDX colon can-

cer assay and ColoGuideEx have now been used clini-

cally for CRC survival analysis (Agesen et al., 2012;

O’Connell et al., 2010). As a new diagnostic test for

determining the likelihood of recurrence in stage II

colon cancer patients after surgical resection, Onco-

typeDX colon cancer assay has been commercially

available worldwide since 2010 (Clark-Langone et al.,

2010; Webber et al., 2010). Specially, the effectiveness

of the Oncotype DX colon cancer assay has been vali-

dated in a prospective multicenter study for the predic-

tion of recurrence risk in stage II colon cancer patients

(Brenner et al., 2016; Srivastava et al., 2014). Yothers

et al. (2013) also found that incorporating the Onco-

typeDX colon cancer assay might better inform adju-

vant therapy decisions in stage II and III colon cancer.

Sang_signature could discriminate patient prognosis,

as well as predict the response to adjuvant chemother-

apy (Oh et al., 2012). Both Oncotype DX colon cancer

assay and ColoGuideEx measured RFS risk as out-

come, and Sang_signature used DFS, which was the

same as RFS. So the three signatures were suitable for

comparison with our signature. The results revealed

that the 13-mRNA signature was more significantly

associated with RFS, and had more powerful ability

for prognostic predication compared with the other

gene signatures. Considering that Oncotype DX colon

cancer assay and ColoGuideEx were more suitable for

the stage II and III patients, these patients were

selected for further comparison in discovery dataset

GSE17536. Interestingly, our gene signature still signif-

icantly outperformed other gene signatures. The results

indicated that this 13-mRNA signature might be a use-

ful tool for the management of CRC patients. As our

study was retrospective, its reliability still needs further

validation in a large prospective study.

As the 13-mRNA signature showed considerable

ability to discriminate the high-risk patients based on

risk score, the underlying molecular mechanism needs

to be investigated. Studies revealed that cancer metas-

tasis, drug resistance, and cancer stemness exerted an

adverse impact on patient prognosis, and posed signifi-

cant confusion among clinicians (Chau et al., 2004; Di

Franco et al., 2014; Wicki et al., 2016). Coincidentally,

the results of ssGSEA demonstrated that the 13-

mRNA signature was significantly associated with

these pathways, which were highly enriched in the

high-risk group. A correlation analysis further con-

firmed this result, indicating these signaling pathways

might underlie the carcinogenesis and progression of

CRC, and providing a potential therapeutic target for

clinic intervention.

The findings from ssGSEA analysis not only shed

some light on the biogenesis of CRC, but also verified

that it is reasonable to use our gene signature for

prognostic prediction. The ssGSEA analysis demon-

strated that our 13-mRNA signature was closely asso-

ciated with cancer metastasis, drug resistance, and

cancer stemness, which are important prognostic fac-

tors (Chau et al., 2004; Di Franco et al., 2014; Wicki

et al., 2016). Patients with these activated signaling

pathways tend to have adverse outcomes. Thus using

the 13-mRNA signature for prognostic predication in

CRC was quite logical and reliable. Meanwhile, the

reason why our signature outperformed other
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signatures could perhaps be due partly to the appro-

priateness of our gene signature.

The biological functions of 13-mRNA have been

reported in previous research; however, only a few

genes were investigated in CRC. THBS2 has been

shown to function as a potent inhibitor of tumor

growth and angiogenesis, and was associated with

many kinds of diseases. Some studies indicated that it

might be a biomarker for prognosis prediction of gas-

tric and CRC (Jeong et al., 2015; Sun et al., 2014;

Wang et al., 2016). CAV2 was a major component of

the inner surface of caveolae, and the expression of

CAV2 was necessary for the control of E2-dependent

cellular proliferation in breast cancer (Totta et al.,

2016). SCG2 was a member of the chromogranin/se-

cretogranin family of neuroendocrine secretory pro-

teins, and it might contribute to the neuroendocrine

differentiation by promoting the formation of secretory

granules and the proliferation of prostate cancer cells

(Courel et al., 2014). The SLC6A1 gene encoded a

gamma-aminobutyric acid (GABA) transporter, which

removes GABA from the synaptic cleft (Hirunsatit et al.,

2009), but there have been no studies in relation to cancer

as of now. SAV is a scaffold protein containing a WW

domain; SAV1 was reported to interact with HAX1 and

attenuated its protective role against apoptosis in MCF-7

breast cancer cells (Luo et al., 2011). MRPL35 encoded

Mammalian mitochondrial ribosomal protein, whose

impact on cancers has rarely been reported (Koc et al.,

2001). SEZ6L2 encoded a seizure-related protein, which

was up-regulated in lung cancer and was considered to be

a novel prognostic marker (Ishikawa et al., 2006).

ERO1A has previously been reported to be induced by

hypoxia in cervical cancer cell lines (Halle et al., 2012),

and it was considered to be a predictive biomarker in

pancreatic ductal adenocarcinoma (Li et al., 2017).

RAB3B was a member of the RAS oncogene family,

which has been demonstrated to be closely implicated in

CRC (Cha et al., 2016; Hoogwater et al., 2010). OBSL1

encoded a cytoskeletal adaptor protein, which was a

member of the Unc-89/obscurin family, and studies

showed that 3M Syndrome was associated with this gene

(Keskin et al., 2017; Marshall et al., 2015). CD109

encoded a glycosyl phosphatidylinositol-linked glycopro-

tein, and some reports indicated it was concerned with

the prognosis in CRC (Ashktorab et al., 2013; Yi et al.,

2011). PTPN14 is a member of the protein tyrosine phos-

phatase family, and it has been reported to be a regulator

of lymphatic function and choanal development (Au

et al., 2010; Mendola et al., 2013). LRPAP1 interacts

with the low density lipoprotein receptor-related protein,

and reports have shown that this gene was associated

with myopia and Parkinson’s disease (Khan et al., 2016;

Singh et al., 2014). Up to now, most of the 13 mRNA

have not been studied in CRC. Our study indicates that

our method may be a new way to identify cancer-asso-

ciated genes. Studies on these prognostic genes might

reveal new mechanisms underlying the carcinogenesis

and development in CRC. In a word, the underlying

molecular mechanism remains unclear, and the roles of

these genes deserve further investigation in CRC.

Studies have shown that the benefit of adjuvant

chemotherapy remains controversial in stage II CRC

patients, which has created a great deal of difficulty

for treatment in the clinic (O’Connell et al., 2004).

Our signature possesses good power to discriminate

high-risk patients from low-risk ones. Furthermore,

pathway analysis indicated a close relation between

our gene signature and drug resistance, and it there-

fore could help clinicians to assess the risk of recur-

rence and guide therapeutic regimens. In future

studies, the ability of the 13-mRNA model to assess

the benefit of adjuvant chemotherapy deserves further

investigation. To improve the utility in the clinic, we

plan to validate our gene signature through RT-PCR.

RT-PCR is much cheaper and easy to operate than

gene microarray. This PCR-based risk score method is

the trend of the future, and will improve the manage-

ment in CRC patients greatly.

The innovation of our research rests on the follow-

ing aspects. First, the AUC of our 13-mRNA signa-

ture is fairly large (> 0.8), indicating a good prognostic

ability. Secondly, our study is a relatively systematic

examination of prognostic gene signatures in CRC.

Three representative gene signatures, including Onco-

typeDx, were selected for comparison analysis to verify

further the prognostic power; our signature was

demonstrated to be superior to all three. Thirdly, our

study is of high methodological rationality. Our signa-

ture is derived from metastasis-related mRNA, thus

this signature is closely related to metastasis and

should be suitable for prognostic assessment. The

results of survival analyses are concordant with this

hypothesis; in addition, pathway analysis confirms

once again that our 13-mRNA signature is closely

associated with cancer metastasis.

There are some limitations to our study. First, one

of our validation datasets, GSE33113, consisted only

of stage II patients, which is not in agreement with

the other two datasets. It is therefore not suitable for

further analyses. Secondly, our study is retrospective

and the sample size is limited, so the robustness and

utility of the 13-mRNA signature for prognostic pre-

diction needs further validation in large prospective

clinic trials, through which we can carry out a com-

prehensive evaluation of our signature. Thirdly, some
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of our analyses were hampered by a lack of detailed

clinical information, which can be addressed in future

through integrated data collection and detailed experi-

mental design. Fourthly, there is still one more step to

complete before clinical application. PCR-based vali-

dation in large perspective trials will be of great clini-

cal significance. Finally, more experimental data

about these mRNA is required to elucidate the inher-

ent association between the 13-mRNA signature and

CRC prognosis.

5. Conclusions

An innovative prognostic 13-mRNA signature in CRC

has been generated by exploring and analyzing the cur-

rently published microarray datasets. This 13-mRNA

signature is independent of tumor stage, postoperative

chemotherapy, and somatic mutation. Moreover, it

outperforms other known gene signatures, indicating

that the 13-mRNA signature may be a useful tool for

clinicians and will facilitate personalized management

of CRC patients.
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