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SUMMARY

Despite the wide application of dynamic models in infectious disease epidemiology, the particular model-
ing of variability in the different model components is often subjective rather than the result of a thorough
model selection process. This is in part because inference for a stochastic transmission model can be
difficult since the likelihood is often intractable due to partial observability. In this work, we address the
question of adequate inclusion of variability by demonstrating a systematic approach for model selection
and parameter inference for dynamic epidemic models. For this, we perform inference for six partially
observed Markov process models, which assume the same underlying transmission dynamics, but differ
with respect to the amount of variability they allow for. The inference framework for the stochastic trans-
mission models is provided by iterated filtering methods, which are readily implemented in the R package
pomp by King and others (2016, Statistical inference for partially observed Markov processes via the R
package pomp. Journal of Statistical Software 69, 1–43). We illustrate our approach on German rotavirus
surveillance data from 2001 to 2008, discuss practical difficulties of the methods used and calculate a
model based estimate for the basic reproduction number R0 using these data.

Keywords: Iterated filtering; Model selection; Parameter inference; Partially observed Markov process; Rotavirus
surveillance data; Seasonal age-stratified SIRS model.

1. INTRODUCTION

Infectious disease outbreaks are often observed in the form of uni- or multivariate time series, e.g. as the
number of newly reported cases aggregated over some time period. In order to estimate the relationship
between variables, a classical statistical approach is the use of time series analysis of the incident cases,
e.g. as in Finkenstädt and others (2002), Held and others (2006). These models are useful for prediction
and forecasting, however, they teach us little about the dynamics of the disease spread, which are crucial if
one wants to, e.g. assess the risk of emerging pathogens or evaluate the impact of control measures such as
vaccination. Hence, another popular approach are transmission models, i.e. dynamic models which reflect
the mechanisms of disease spread between individuals explicitly (Anderson and May, 1991; Keeling and
Rohani, 2008; Diekmann and others, 2013). However, despite their wide application in infectious disease
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epidemiology, the choice between a stochastic and a deterministic transmission model for a specific data
set is often subjective and based on expert knowledge or non-generalizable, ad hoc preferences (Sun
and others, 2015). Additionally, in case of a stochastic transmission model the corresponding likelihood
function is, except for the simplest cases, intractable. This makes inference for this type of models com-
plicated which in turn makes a thorough analysis for model selection and parameter inference difficult. As
it becomes more common to include the results of dynamic models as part of data analysis in infectious
disease epidemiology, this challenge becomes increasingly interesting for, for example, public health
authorities. Hence, the objective of this article is to demonstrate the application of an inference framework
which facilitates (i) model selection for both, deterministic and stochastic transmission models and (ii)
parameter inference and quantification of the uncertainties of the estimates based on the observed data.
The idea of our work is similar to the one in Sun and others (2015), however, the inference method and
area of application are different: we use iterated filtering methods to perform inference and demonstrate
our approach on an age-structured model for rotavirus transmission in Germany. In our work, we consider
a simplified version of the SIRS-type model used in Weidemann and others (2013) who analyzed the
same data in a different context, including fewer disease states and fewer age classes but accounting for
seasonality, age-structure and, in particular, more variability.

A convenient framework to answer infectious disease epidemiology related questions in a model based
and data driven way are partially observed Markov processes (POMP). This model class consists of two
model components: (i) an unobserved Markovian transmission process, which can be either continuous
or discrete in time and in our application operates on the population level describing the dynamics of
disease spread and (ii) an observation model, which relates the data collected at discrete points in time to
the transmission model. In our work, we compare three different transmission models, which all assume
the same underlying disease mechanisms but differ with respect to the amount of stochasticity they allow
for. Namely, we compare a set of ordinary differential equations (ODEs), a continuous time Markov
chain (CTMC), which is purely driven by demographic stochasticity, and an overdispersed CTMC which
allows for variability beyond demographic noise by stochastic transmission rates (Bretó and others, 2009;
He and others, 2009). All three approaches have their advantages and shortcomings. Models based on a
deterministic transmission model component are preferably used when the population size is large and
since they assume no randomness in the transmission, analysis and inference is easier and hence very
popular among practitioners. However, these models explain any discrepancy between the deterministic
model and the data by observation noise since this is the only element where stochasticity enters. In
observed data in turn, we see fluctuations, which are clearly not due to variation in data collection alone
but, e.g. due to environmental changes, different genotypes or variability in social behavior such as super
spreaders etc. Most of these possible sources of variability are in part not sufficiently understood or not
measurable in any way. Hence, stochastic variation in the transmission model is potentially an essential
element to capture in order to quantify these influences. However, inference is more complicated than in
the deterministic case, because the likelihood is often a complex and high dimensional integral resulting
from integrating out stochasticity or missing state information.
With increasing computational power, simulation-based methods to solve those high dimensional integrals
gained more and more attention. In this work, we use iterated filtering (Ionides and others, 2015) for
maximum likelihood estimation in partially observed epidemic models, which takes advantage of the
fact that it is relatively easy to generate samples from the Markov process compared with evaluating its
transition probabilities. The method is, among others, conveniently implemented in the R package pomp
(King and others, 2016), which spans a wide collection of inference tools for both deterministic and
stochastic underlying transmission models. Other likelihood- and simulation-based inference methods for
POMP models are simulated moments (Kendall and others, 1999), nonlinear forecasting (Sugihara and
May, 1990), synthetic likelihood (Wood, 2010), or Bayesian approaches such as approximate Bayesian
computations (Toni and others, 2009) and particle MCMC (Andrieu and others, 2010).
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Since the package was developed fairly recently, we also comment on our experiences with the package
and discuss its scientific as well as practical use. We base our criteria for model selection on Akaike
Information Criterion (AIC) and coverage, i.e. how often the data is covered by the 95% point wise in-
sample prediction interval evaluated at the best choice of parameters. The reasoning behind this choice is
that we are interested in a relative measure assessing the trade-off between goodness-of-fit and complexity
of the models on the one hand, and in an absolute measure of how well the models actually deal with
variability in the data on the other hand. Our analysis will show for the particular data set at hand, to obtain
the lowestAIC and best coverage it is important to include variability in the form of overdispersion into both
model components. In Section 2, we give a short overview of rotavirus disease and the German rotavirus
surveillance data. In Section 3, we present three different but related transmission models for the data. We
explain how the transmission models are connected to the data via an observation component and formulate
an expression for the basic reproduction number R0. In Section 4, we present the inference framework
and give some details concerning implementation. We perform a simulation study to demonstrate the
suitability of the inference method for each of the models in Section 5. In Section 6, we apply our methods
to data introduced in 2 and compare the findings to the approach used in Weidemann and others (2013).
Section 7 ends the article with a discussion.

2. MOTIVATING EXAMPLE: ROTAVIRUS DISEASE

Rotavirus disease is a childhood disease and the primary cause for gastroenteritis in infants and young
children, while adults are rarely infected (Grimmwood and Lambert, 2009). By the age of five nearly every
child has been infected with the virus at least once (CDC, 2017). The virus spreads by direct transmission
on the faecal oral route. The incubation time of rotavirus is around 2 days, while severe symptoms last
for approximately 4–8 days (CDC, 2017). Reinfection is possible because neither natural infection with
rotavirus nor rotavirus vaccination provides full protection from future infections. The data, we analyze is
the weekly reported number of new, laboratory-confirmed rotavirus cases among children younger than 5
years of age, individuals between age 5–59 and elderly aged 60–99 years from 2001 to 2008 in Germany.
After 2008, a significant impact on the rotavirus incidence by the increasing vaccination coverage is
observed (Weidemann and others, 2013). The data are available through SurvStat@RKI (RKI, 2017)
and were previously analyzed in Weidemann and others (2013) as part of advising the German standing
board of vaccination (STIKO) about the possible impact of a recommendation of rotavirus vaccination for
children. Such modeling questions are typical in a public health context—mathematical modeling with
SIRS-type models of rotavirus has already been carried out for different countries, cf. e.g. Atkins and
others (2012); Weidemann and others (2013); Martinez and others (2016) and references therein. One
problem with the available routine surveillance data is under-reporting, however, since our focus is on
methodological insights, we use the results from Weidemann and others (2013) and simply scale up the
available data with the inferred under-reporting factors. The time series depicted in Figure 1 shows the
scaled up data for the three age groups. The case report data clearly shows seasonal variation of rotavirus.

3. METHODS

We formulate three different transmission models, which assume the same transmission mechanisms but
differ with respect to the amount of variability they allow for. The three different models are (i) a CTMC
with demographic noise, (ii) an overdispersed CTMC with demographic noise and stochastic transmission
rates, and (iii) a deterministic transmission model. Additionally, we investigate the role of overdispersion
in the observation model, leading to two distinct models one of which allows for overdispersion and
one that does not. By combining the three transmission models with the two observation models we
obtain six different models for rotavirus infection, cf. Table A.1 in the supplementary material available

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy057#supplementary-data
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Fig. 1. Weekly number of new rotavirus cases among the three aggregated age groups of 0–4, 5–59, and 60–99 years
of age in Germany between 2001–2008. The values we used for scaling up are the median estimates of the under-
reporting parameter from the averaged posterior distribution inferred in Weidemann and others (2013), namely 4.3%
in the former western federal states (WFS) and 19.0% in the former eastern federal states (EFS) between 2001 and
2004 and 6.3% in WFS and 24.1% in EFS from 2005 onward. This sudden increase in reporting behavior is due to a
nationwide change in the reimbursement of hospitalized rotavirus cases from January 2005.

Fig. 2. Schematic representation of the states in our SIRS model with three age classes. The rates on the arrows are
explained in the text. Table 1 provides a list of notation, specifying which parameters are estimated in this work, and
which are assumed known from the literature.

at Biostatistics online, where Model DtSt contains the least stochasticity and Model St+St+ the most. We
finish this section by deriving an expression for the basic reproduction number R0 based on the transmission
dynamics assumed here.

3.1. Transmission models

3.1.1. CTMC with demographic noise. We assume that the transmission model is a Markov process
where individuals move between compartments at random times, as described in detail below. The
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schematic representation of our model is given in the flow diagram of Figure 2. We consider a model
that subdivides the population into three age classes, i.e. age 0–4, age 5–59, and age 60–99 years, identi-
fied by the indices 1, 2, and 3, respectively. We choose this age stratification, because the disease burden
is highest for young children, very low for children over 5 years of age and rises again later in life.
The variables Sk(t), Ik(t), Rk(t) ∈ N with k ∈ {1, 2, 3} count the number of susceptible, infectious, and
recovered in each of the three age groups at time t ∈ R

+. Concerning the rates, young children “age”
with a rate δ1 into the second age class and individuals of age 5–59 “age” with a rate δ2 into the class
of elderly (age 60 +). The vector λ(t) = (λ1(t), λ2(t), λ3(t))′ is called the force of infection and is the
per capita rate at which susceptible individuals get infected, which depends on the number of currently
infected individuals Ik(t). Susceptible individuals can become infected by transmission from an infectious
individual in one of the three age groups. The recovery rate γ ∈ R

+ is assumed to be independent of
age. We also assume that waning of immunity is independent of age and immunity from infection lasts
for a limited, exponentially distributed period with mean 1/ω ∈ R

+ after which the individual is again
fully susceptible; for a discussion of those assumptions cf. Section 7. To account for demographics, we
assume that the average population size, N , is constant, which implies that the birth rate, αN ∈ R

+,
equals the overall death rate. Furthermore, it is assumed that death can only occur in the last age class
with rate μ ∈ R

+ independent of the health status of the individual. This seems reasonable because in
developed countries 90 % of the mortality comes from individuals older than 60 years, hence, premature
death can be ignored for our purposes (Atkins and others, 2012). In the following, the notation is adopted
from King and others (2016). We let NAB(t), t ≥ 0 denote a stochastic counting process counting the
number of individuals which have moved from compartment A to compartment B during the time interval
[0, t) with A, B ∈ X , where X = {S1, S2, S3, I1, I2, I3, R1, R2, R3} contains all compartments of our model.
Furthermore, N�A(t) counts the number of births and NA�(t) counts the number of deaths in the respective
compartment up until time t. The infinitesimal increment probabilities of a jump between compartments
connected by an arrow (Figure 2) fully specify the continuous time Markov process describing disease
transmission. Let �NAB(t) = NAB(t +τ)−NAB(t) count the number of individuals changing compartment
in an infinitesimal time interval τ > 0. Then we define for the model depicted in Figure 2 the following
system of transition probabilities:

P[�N�S1(t) = 1|Ft] = αNτ + o(τ )

P[�NSk Sk+1(t) = 1|Ft] = δkSk(t)τ + o(τ ) with k ∈ {1, 2}
P[�NSk Ik (t) = 1|Ft] = λk(t)Sk(t)τ + o(τ ) with k ∈ {1, 2, 3}

P[�NIk Ik+1(t) = 1|Ft] = δk Ik(t)τ + o(τ ) with k ∈ {1, 2}
P[�NIk Rk (t) = 1|Ft] = γ Ik(t)τ + o(τ ) with k ∈ {1, 2, 3}

P[�NRk Rk+1(t) = 1|Ft] = δkRk(t)τ + o(τ ) with k ∈ {1, 2}
P[�NRk Sk (t) = 1|Ft] = ωRk(t)τ + o(τ ) with k ∈ {1, 2, 3} (3.1)

P[�NA�(t) = 1|Ft] = μA(t)τ + o(τ ) with A ∈ {S3, I3, R3}

with the filtration Ft = σ(S1(u), I1(t), R1(u), S2(u), I2(u), R2(u), S3(u), I3(u), R3(u), ∀ 0 ≤ u ≤ t) denot-
ing the history of the process until time t; cf. Appendix A.1 of the supplementary material available at
Biostatistics online for how transition rates and the state variables are related. A consequence of this
model formulation is that we assume that the waiting time of each individual within each compartment is
exponentially distributed given the current state; we discuss how this assumption can be relaxed in Section
7. The number of newly infected individuals in age class k accumulated in each observation time period

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy057#supplementary-data
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(tn−1, tn] is then given as

H stoch
k (tn) = NSk Ik (tn) − NSk Ik (tn−1). (3.2)

The force of infection, written in vector notation, consists of the following components

λ(t) = β · I (t) · κ(t) · 1

N
, (3.3)

where I (t) = (I1(t), I2(t), I3(t))′. Disease transmission is represented in a transmission-matrix β =
(βkj)k ,j∈{1,2,3} where the parameter βkj denotes the average number of infectious contacts of infected indi-
viduals of age group j with susceptible individuals of age group k per time unit and hence is the product
of contact rates and transmission probability. Our modeling should account for the possibility that indi-
viduals in each age class k could have a different immune status due to age and hence having differing
susceptibility to the disease, so we assume βkj = βk for all k , j ∈ {1, 2, 3}. Furthermore, motivated by the
rotavirus application, we introduce a seasonal periodic forcing to account for the clear seasonal pattern in
the data. In contrast to λ(t) which is state dependent, the seasonal forcing function κ(t) is assumed to be
purely time dependent, i.e. it has the same effect in all age groups. We let

κ(t) =
(

1 + ρ cos
(

2π

w
t + φ

))
, (3.4)

where ρ ∈ [0, 1] denotes the amplitude of the forcing, 2π/w ∈ R
+ denotes the period of the forcing

(e.g. if the time unit is weeks, then w = 52) and φ ∈ [0, 2π ] denotes the phase shift parameter. Note that
with the choice of forcing in Equation (3.4) the parameter βk denotes the baseline transmission rate of an
individual of age group j with age group k which varies between (1 − ρ)βk and (1 + ρ)βk during the year
(Keeling and Rohani, 2008).

3.1.2. Overdispersed CTMC with demographic noise and stochastic transmission rates. Including suf-
ficient stochasticity in a model as a way to capture drivers and phenomena not covered otherwise by the
model (e.g. late season peak) is essential if one wants the model to fit the data, e.g. to explain the data
well (Bretó and others, 2009). So far, we have accounted for stochasticity in the underlying system by
assuming that individuals move between classes at random times. However, for the transmission model
in Section 3.1.1 the role of randomness diminishes as the population size increases. The same occurs by
modeling disease spread via stochastic differential equations (Fuchs, 2013). One way to introduce vari-
ability, which is independent of population size, is to assume stochastic fluctuations in the transmission
rates. In this work, we follow the approach of Bretó and others (2009) and introduce a time continuous
stochastic process, ξ(t), which fluctuates around the value one and is multiplied onto the transmission
rate. It can be shown that by choosing the corresponding integrated noise process, �(t), in a way such that
its increments are independent, stationary, non-negative, and unbiased the Markov property is retained
(Bretó and others, 2009). One convenient example for a process which satisfies these conditions is a
Lévy process with ξ(t) = d

dt �(t), where marginally �(t + τ) − �(t) ∼ Gamma
(

τ

σ2 , σ 2
)

and where τ/σ 2

denotes the shape and σ 2 the age-independent scale parameter with corresponding mean τ and variance
τσ 2. Note that the integral of ξ(t) over a time interval is well defined even though the sample paths of
�(t) are not formally differentiable (Bretó and others, 2009). We build this into the model as defined
in Equation (3.1) and Equation (A.1) of the supplementary material available at Biostatistics online by
modifying Equation (3.3) as

λ(t) = β
I (t)

N
κ(t)ξ(t). (3.5)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy057#supplementary-data
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A consequence of this construction is that the variability of the distribution of the transmission process for
a given time t becomes larger compared with the case when there is no extra-demographic noise, hence we
call the CTMC overdispersed. This form of overdispersion has been used in previous studies of infectious
diseases, for example, measles (He and others, 2009), malaria (Bhadra and others, 2011), or rotavirus
(Martinez and others, 2016).

3.1.3. Deterministic transmission model. Calculating the expected values of the equations in (A.1) in
Appendix A.1 of the supplementary material available at Biostatistics online with the aid of (3.1), dividing
by τ , and taking the limit as τ → 0, we obtain the underlying deterministic form of the model

dSk(t)

dt
= αN1{k=1} + δk−1Sk−1(t)1{k=2,3} − δkSk(t)1{k=1,2} − μSk(t)1{k=3} − λk(t)Sk(t) + ωRk(t),

dIk(t)

dt
= λk(t)Sk(t) + δk−1Ik−1(t)1{k=2,3} − δk Ik(t)1{k=1,2} − μIk(t)1{k=3} − γ Ik(t), (3.6)

dRk(t)

dt
= γ Ik(t) + δk−1Rk−1(t)1{k=2,3} − δkRk(t)1{k=1,2} − μRk(t)1{k=3} − ωRk(t),

for k = 1, 2, 3, the force of infection as in (3.3) and initial values satisfying
∑3

i=1 Si(0)+Ii(0)+Ri(0) = N .
Note that for the deterministic model, the state variables are continuous rather than integer valued. The
number of newly infected individuals in age class k accumulated in each observation time unit (tn−1, tn],
n ∈ {1, 2, . . . , N } is then given as

H det
k (tn) =

∫ tn

tn−1

λk(t)Sk(t)dt. (3.7)

3.2. Observation models

To incorporate the count nature of the observations a natural first assumption would be to model the
reported cases as realizations of a Poisson distributed random variable with a given time dependent
mean to account for errors in classification of cases, including false positives. However, the data at hand
suggests that the sample variance is larger than the sample mean, i.e. there is indication of overdispersion
in the data. Another choice in this case is the negative binomial distribution which allows for additional
variance. Hence, let the number of recorded cases Ykn, k ∈ {1, 2, 3} within a given reporting interval
(tn−1, tn], n ∈ {1, 2, . . . , N } be either

Ykn ∼ Pois (Hk(tn)) or Ykn ∼ NegBin
(

Hk(tn),
1

θ

)
, (3.8)

with Hk(tn) being the true number of accumulated incidences in age class k per time unit (tn−1, tn],
in the model, cf. Equation (3.2) for the stochastic models and (3.7) for the deterministic model. Here
NegBin(μ, 1/θ) denotes the negative binomial distribution with mean μ and variance μ+ θμ2. To reduce
the number of parameters, the same dispersion parameter θ for all age classes is chosen as in Weidemann
and others (2013).

3.3. Calculation of R0

An important mathematical characteristic of an epidemic model is its basic reproduction number R0; we
apply the theory of Diekmann and others (2013), Chapter 7, in the following. R0 is the expected number

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy057#supplementary-data
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of new infections by a typical infectee during the early stage of an epidemic when everyone is susceptible.
We can calculate the basic reproduction number R0 for the deterministic transmission model which is, also,
representative for the stochastic transmission model, because it approaches the deterministic system for a
large population size N . Hence, let πk = Nk/N denote the community fraction of age class k ∈ {1, 2, 3} in
the population and νk = 1/(γ +δk) for k = 1, 2 and ν3 = 1/(γ +μ) the average length an individual of type
k ∈ {1, 2, 3} stays in the infectious compartment. With the seasonal forcing function chosen as in Equation
(3.4) the expected number of k individuals a j individual infects if everyone is susceptible is mkj = βkπkνj,
which represents a yearly average. The basic reproduction number R0 can then be calculated as the largest
eigenvalue of the matrix M = (mkj)k ,j∈{1,2,3}. It follows with “proportionate mixing” that R0 = ∑3

k=1 R(k)

0 πk

where we denote R(k)

0 = βkνk as the age-specific basic reproduction number for age group k = 1, 2, 3.
Since R0 is a yearly average here, its interpretation as a threshold value for an epidemic changes slightly.
Only if the yearly range does not cover the value one it can be interpreted in the traditional way.

4. INFERENCE AND IMPLEMENTATION

We describe the general procedures of how to perform likelihood-based inference for a POMP for both a
deterministic and a stochastic underlying transmission model. Since we use the R package pomp we give
details on the implementation and provide the code at Stocks (2017).

4.1. Likelihood of a POMP

Let Y n = (Y1n, . . . , Y3n)
′ with n = 1, . . . , N denote the random variables counting the new cases at time

tn in each of the three age-classes. These depend on the state of the continuous time transmission process
X n = (S(tn), I (tn), R(tn)) at that time where, e.g. S(tn) = (S1(tn), S2(tn), S3(t3))

′. Furthermore, we let
X 0:N = (X 0, . . . , X N ) and denote the parameter vector by ψ . The joint density of the states and the
observations is then defined as the product of the one-step transmission density, fX n|X n−1(xn|xn−1;ψ), the
observation density, fY n|X n(yn|xn;ψ), and the initial density fX 0(x0;ψ) as

fX 0:N ,Y 1:N (x0:N , y1:N ;ψ) = fX 0(x0;ψ)

N∏
n=1

fX n|X n−1(xn|xn−1;ψ)fY n|X n(yn|xn;ψ).

The likelihood of the parameter vector is then given as the marginal density for a sequence of observations,
Y 1:N , evaluated at the data, y∗

1:N , as

L(ψ) = fY 1:N (y∗
1:N ;ψ) =

∫
fX 0:N ,Y 1:N (x0:N , y∗

1:N ;ψ)dx0:N , (4.1)

see, e.g. King and Ionides (2017). Note that for our model this is a high-dimensional integral of dimension
(N + 1) × 9, which, except for the simplest cases, cannot be reduced analytically, see Section 4.1.2.

4.1.1. Maximum likelihood estimation for deterministic transmission model. Inference for partially
observed dynamical systems with a deterministic underlying transmission model is relatively straight-
forward, because Equation (4.1) is computable. Indeed X n = xn(ψ) is a known function ofψ for each n if
the initial values of the system are fixed and known, cf. Section 4.2. Hence, the integral over X 0:N in Equa-
tion (4.1) is over a function which only has a single point mass, i.e. L(ψ) = fX 0:N ,Y 1:N (x0:N (ψ), y∗

1:N ;ψ).
The solution of the ODE system can be calculated numerically with, e.g. Runge–Kutta methods. Given this
solution, maximum likelihood estimation boils down to a classical numerical optimization problem for a
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nonlinear function of the parameter vector. Maximum likelihood estimation for partially observed dynami-
cal systems with a deterministic underlying transmission model is, e.g. implemented in the traj.match
function in the R package pomp (King and others, 2016), which accesses R’s optim function. For fur-
ther implementational details see Appendix B.1 of the supplementary material available at Biostatistics
online. To determine a 95% confidence interval (CI) for the obtained estimates we calculate the profile
log-likelihood for each parameter of interest and invert Wilks’ (likelihood ratio) test to get the desired
intervals (Held and Sabanés Bové, 2013). To construct a 95% pointwise prediction interval for model
realizations we calculate the 2.5% as well as the 97.5% quantile of the respective observation distribution
(Equation 3.8) at each observation time tn with mean H det

k (tn) (Equation 3.7) evaluated at the MLE and
hence ignoring uncertainty in the parameters.

4.1.2. Maximum likelihood estimation for stochastic transmission model. For a partially observed sto-
chastic transmission model the likelihood is not tractable, because knowledge of the parameters does not
uniquely determine the solution of the transmission model and marginal likelihoods are very computation-
ally demanding. Iterated filtering is a simulation-based method to find the maximum likelihood estimate,
cf. Ionides and others (2015) and references therein. It explores the parameter space by adding noise to
the parameters of interest and at each iteration approximates the likelihood of the perturbed model by
evaluating the particle filter (Doucet and others, 2001). Particle filtering methods return a stochastic esti-
mate of the log-likelihood marginalized over the latent states using re-sampling techniques which make
them more efficient than standard Monte Carlo methods. The iterated filtering algorithm is implemented
in the mif2 function in the R package pomp (King and others, 2016). All algorithm specific parame-
ters are reported in Appendix B.2 of the supplementary material available at Biostatistics online. For an
application oriented introduction to iterated filtering methods see Stocks, 2017. To obtain 95% CIs for the
parameters we construct a Monte Carlo error adjusted profile log-likelihood (Ionides and others, 2017) of
each parameter and use Wilks’ test. For each observation, a 95% prediction interval is computed based on
1000 realizations of the model evaluated at the MLE. Note that these are in-sample prediction intervals
because all observations where used to fit the model.

4.2. Initial values and starting values

Optimally, all parameters of a model can be inferred from the data. However, our investigations showed
that the inference algorithms are very sensitive to starting values of parameters as well as initial values of
the system and fail if those values are chosen completely at random. We discuss in detail how to overcome
this practical issue in Appendix C of the supplementary material available at Biostatistics online. Based
on this analysis we estimate the two seasonality parameters φ, ρ, the age-specific susceptibilities β1, β2,
and β3 and the overdispersion parameters σ and θ in the following.

5. SIMULATION STUDY

We perform a simulation study to demonstrate the suitability of the inference method for each of the
models presented in Table A.1 of the supplementary material available at Biostatistics online. As proof of
concept, we generate one realization of each model with parameters chosen as the periodic equilibrium of
the deterministic model (cf. Appendix C of the supplementary material available at Biostatistics online),
which we then treat as data to estimate parameters from. All other parameters are fixed at biological
plausible values shown in Table 1. After the inference we compare the obtained estimates to the true
parameters which serves as validation of our implementation, the results can be found in Table D.2 in
the supplementary material available at Biostatistics online. For all models the estimated parameters are
in good accordance with the true parameters. As an example, Figure D.1 in the supplementary material
available at Biostatistics online shows the simulated data from Model DtSt+, together with pointwise
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95% prediction intervals obtained from the model evaluated at the MLE for the solution of the ODE. To
provide evidence that the results are also consistent for more than one model realization we carry out a small
additional study, the results of which can be found in Appendix D of the supplementary material available
at Biostatistics online, cf. Figures D.2 and D.3. In order to check if observation noise and transmission
noise are distinguishable and how the estimation results change under model misspecification we carry out
a robustness study. For this we generate one realization of each model and fit the obtained realizations to
every model respectively. We find that both noise components θ and σ are indeed distinguishable from each
other and parameters are estimated correctly even under model misspecification. However, Models St+St
and StSt give a substantial amount of filtering failures in every iteration when fitting model realizations
from models with overdispersion, for an example, cf. Figure D.4 in the supplementary material available
at Biostatistics online. A filtering failure occurs if at some observation time point all suggested particles
are too unlikely, i.e. the probability of each particle given the observation is below a certain threshold
which generally implies that the model and data are inconsistent (King and Ionides, 2017). Even when
doubling the number of particles the problem persists. This means that those two models fit data from
other models (hence under the type of model misspecification we investigated) very poorly. We, therefore,
conclude that for inference for stochastic transmission models, overdispersion in the observation model is
an important ingredient in order to get robust results also under model misspecification. As a consequence,
we exclude those two models from our comparative analysis. To investigate the performance of model
selection, we calculate the AIC for each model fit, cf. Table D.3 of the supplementary material available
at Biostatistics online. We find that for each realization, the respective true model always has the lowest
AIC which confirms the correctness of our methods. To ensure that the AIC is a reasonable choice for the
problem at hand we investigate in a small simulation study tailored to our specific model setting (SIRS
in endemic state) how well the AIC can detect potential misspecifications in the transmission model. We
find that for this particular case the AIC can explicitly discriminate between forms that directly affect the
transmission event, for details, cf. Section D.2 of the supplementary material available at Biostatistics
online.

6. ROTAVIRUS INFECTION APPLICATION RESULTS

Parameter estimates, CIs as well as model diagnostics for the four models are given in Table 2. We report
in the column “coverage” how often the actual data is covered by the pointwise 95% prediction interval of
the respective model. For the stochastic transmission models StSt+ and St+St+ we also report how often
the 95% prediction interval of the stochastic transmission model covers the data in order to investigate
how much the observation noise additionally contributes to explaining the data. We find that matching
Model DtSt to the data coincides well with the equilibrium results for the susceptibility parameters of
the deterministic model without seasonality (cf. Equations C.5 in Appendix C.2 of the supplementary
material available at Biostatistics online), although, this model obviously neither has an observation
model nor a seasonal forcing component. However, the 95% prediction interval only covers 8.8% of the
observed data and, hence, the model only poorly explains the variation in the data as is also reflected in
a low log-likelihood value, cf. Figure E.5 in the supplementary material available at Biostatistics online.
Fitting the deterministic model with overdispersion (Model DtSt+) to the data improves the fit by several
thousands log units. The 95% prediction interval of the estimated parameter values covers now 96.2%
of the data, cf. Figure E.6 in the supplementary material available at Biostatistics online. The difference
between Model DtSt+ and Model St+St+ is the nature of their transmission model and we find that a
stochastic transmission model improves the fit by additional 180 log units. We find that the coverage of
the 95% prediction interval decreases to 90.6%, however, the coverage of the prediction interval of the
transmission model is 28.9%, cf. Figure E.7 in the supplementary material available at Biostatistics online.
The diagnostic plots which show how the log-likelihood of themif2model and the parameters evolve with
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Table 1. Full list of notation and parameter values used

Parameter Explanation Value Unit

N Population size 82 372 825 individuals
α Individual birth rate 1/(52 · 78.9) week−1

δ1 Aging from age group 1 (age 0–4) to 2 (age 5–59) 1/(52 · 5) week−1

δ2 Aging from age group 2 (age 5–59) to 3 (age 60+) 1/(52 · 55) week−1

μ Death rate (from age group 3 (age 60+) ) 1/(52 · 18.9) week−1

βk Susceptibility of age group k ∈ {1, 2, 3} To be estimated individuals/week
ω Immunity waning rate 1/(1 · 52) week−1

γ Recovery rate 1 week−1

φ Phase shift of the seasonal forcing To be estimated 1
ρ Amplitude of the seasonal forcing To be estimated 1
λk(t) Force of infection of age group k ∈ {1, 2, 3} Defined by Eqn. (3.3) individuals/week
κ(t) Seasonal forcing function Defined by Eqn. (3.4) 1
θ Overdispersion parameter To be estimated 1
σ 2 Scale parameter of the �-noise To be estimated 1
τ Time step To be estimated week
R0 Basic reproduction number To be estimated individuals

The inverse of the yearly birth rate equals the sum of the inverses of the yearly aging and death rates which add up to 78.9, which
is the total life expectancy at birth in Germany averaged between the years 2001 and 2008, taken from The World Bank (2016).
The averaged population size N in Germany during that time period is taken from Statistisches Bundesamt (2016) and the reporting
interval is 1 week. As in Atkins and others (2012), we assume that all individuals are immune against rotavirus for an average of
one year. A more detailed discussion on the choice of this assumption can be found in Section 7.

each iteration can be found in Figures E.9 and E.11 in the supplementary material available at Biostatistics
online. Finally, Model St+St+ allows for additional variability by having stochastic transmission rates.
It has the highest log-likelihood and lowest AIC of the four models and is hence the best suited model to
explain the data. The prediction interval covers 96.5% of the data. It is interesting to note is that now the
transmission model by itself is able to explain nearly all the data because its prediction interval covers
93.7%, cf. Figure 3. This indicates that the observation noise component is not as strong as the three
previous models suggest. A detailed interpretation of the estimates for βk and R0 can be found in Section
E.2 of the supplementary material available at Biostatistics online.

6.1. Comparison with previous results

We find that Model St+St+ explains the data very well, although the transmission component does not go
into the same epidemiological detail as, e.g. the work ofAtkins and others (2012) or Weidemann and others
(2013). Since we analyzed the same data as in Weidemann and others (2013) with the only difference that
we directly scaled the data for under-reporting, it is very insightful to compare the model fits in order to
see if it is worthwhile to model disease transmission very detailed and to give recommendations to future
modelers of what we consider important. In Weidemann and others (2013) a Bayesian model averaging
approach was used to infer the parameters of 18 very detailed but deterministic transmission models with
negative binomial distributed observations. The models included 19 age classes, three susceptibility states,
maternal antibody protection, distinguishing between symptomatic and asymptomatic cases resulting in
an overall number of 266 age-specific states. Moreover, the data was split into two data sets (former
eastern federal states and western federal states) so a region specific analysis was carried out and time
specific birth and migration rates between age classes were included. In order to compare the fit of this
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Table 2. Inference results for the four models with maximum likelihood estimate (MLE), 95% confidence
intervals (CI), basic reproduction number R0, 95% confidence interval for R0, seasonal variability of
R0, coverage of the data by the 95% prediction interval of the full model, (coverage of the data 95%
prediction interval only generated by the transmission model), log-likelihood (LL), Akaike information
criterion (AIC), and standard error of the Monte Carlo approximations

Model DtSt (LL: −371 713, AIC: 743 436, coverage: 8.8%)
β1 β2 β3 ρ φ

MLE 12.659 0.237 0.418 0.151 0.037
CI [12.658, 12.659] [0.237, 0.238] [0.418, 0.419] [0.151, 0.151] [0.036, 0.038]
R0 = 1.065 (1.065–1.066), seasonal range: [0.904, 1.226]
Model DtSt+ (LL: −10 383.05, AIC: 20 778.1, coverage: 96.2%)

β1 β2 β3 ρ φ θ

MLE 11.718 0.284 0.477 0.129 0.067 0.221
CI [11.474, 11.956] [0.270, 0.298] [0.454, 0.503] [0.125, 0.133] [0.034, 0.100] [0.205, 0.238]
R0 = 1.052 (1.021–1.083), seasonal range: [0.916, 1.188]
Model StSt+ (LL: −10 201.64 (s.e. 1.94), AIC: 20 415.28, coverage: 90.6% [only transmission model: 28.9%])

β1 β2 β3 ρ φ θ

MLE 11.198 0.266 0.450 0.142 0.075 0.150
CI [10.889, 11.326] [0.267, 0.289] [0.435, 0.474] [0.138, 0.146] [0.040, 0.109] [0.143, 0.164]
R0 = 1.000 (0.981–1.031), seasonal range: [0.859, 1.142]
Model St+St+ (LL: −10 060.19 (s.e. 0.25), AIC: 20 134.38, coverage: 96.5% [only transmission model: 93.7%] )

β1 β2 β3 ρ φ θ σ

MLE 11.298 0.267 0.433 0.148 0.085 0.111 0.091
CI [11.131, 11.531] [0.259, 0.278] [0.415, 0.449] [0.136, 0.158] [0.006, 0.165] [0.114, 0.127] [0.080, 0.106]
R0 = 1.004 (0.986–1.027), seasonal range: [0.855, 1.152]

approach with our model on equal grounds we choose the model with the highest weight (Model 18)
evaluated at the posterior mode of the fitted parameters, available at Weidemann (2017). The AIC we
obtain is 20 479.2, hence, based on AIC this very complex model is competitive with Model StSt+ but
is outperformed by Model St+St+ by approximately 300 AIC units. Note, that this is a conservative
estimate, for details concerning the calculations, see Section E of the supplementary material available at
Biostatistics online. Assuming that all region specific under-reporting rates were one (no decomposition of
the expected number of incidences into the two regions) we then sampled the reported incidences according
to a negative binomial observation distribution and calculated the 2.5% and 97.5% sample quantiles. The
plot of these prediction intervals and the rotavirus data used in our analysis is shown in Figure E.8 in
the supplementary material available at Biostatistics online. A coverage of 95.9% was obtained which
is comparable to Models DtSt+ and St+St+. We conclude that a model which is simpler with respect to
clinical detail in the disease transmission is sufficient in terms of fit to explain the rotavirus data as long
as it accounts for overdispersion in both model components, for a discussion on this cf. Section 7.

7. DISCUSSION

In this work, we demonstrated how an inference framework via iterated filtering can be applied to perform
model selection and parameter estimation for POMP models in a statistical systematic way for German
routine surveillance rotavirus data. We focused on the discrepancy between common epidemiological
practice, which uses ODE models for large populations and more modern stochastic approaches, where
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Fig. 3. The 95% prediction interval (light shading) for 1000 realizations of Model St+St+ evaluated at the maximum
likelihood estimate for the rotavirus incidence data (solid back line) and the median (solid white line). Furthermore,
the 95 % prediction interval of these 1000 realizations for only the transmission model is shown (darker shading).

statistical inference quickly becomes complicated. Furthermore, we demonstrated some practical difficul-
ties when fitting those epidemic models to data, a task which has become increasingly important in the
public health context. Although our model was focusing on rotavirus transmission in Germany, it could
easily be modified to explain other infectious diseases which have comparable transmission characteris-
tics. Based on AIC and coverage we found that for the specific data set, a POMP model which accounts
for overdispersion in both the transmission model and the observational component performed best and,
moreover, that the two noise components can be disentangled; He and others (2009) reached similar con-
clusions when modeling measles. Alternative model selection approaches would have been possible—see
Gibson and others (2018) for a comprehensive overview and, e.g. Streftaris and Gibson (2012) and Lau
and others (2014) for applications of such criterion for individual based epidemic models. Note also
that AIC based on the marginal likelihood can have difficulties (Greven and Kneib, 2010; Gibson and
others, 2018). For our 80 mio individuals model with count data response due to interval-censored obser-
vations, predictive scoring rules (Held and others, 2017) could circumvent these problems, but at the cost
of many additional computations. Because simulation studies showed that AIC worked sufficiently well
for our model selection setting (see Section D.2 of the supplementary material available at Biostatistics
online), we did not pursue such strategies further. Throughout, we used a frequentist approach rather than
a Bayesian setting for fitting the models. Bayesian approaches can be a natural choice in order to translate
existing domain specific knowledge into prior distributions on unknown model parameters. However, as
already stated in Bhadra (2010) and Gibson and others (2018) the choice of inference framework should
be a pragmatic one and dependent on whether one wants to impose this prior knowledge on unknown
parameters or not. Caution should be exercised as those prior assumptions could obscure the fact that the
models reach a complexity which makes individual parameters hardly identifiable and consequently the
prior plays a crucial, but sometimes unintended, role. From a technical perspective, the Bayesian analog
of iterated filtering is particle MCMC, the simplest and most commonly used algorithm of which is the
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particle marginal Metropolis Hastings algorithm (PMMH) (Andrieu and others, 2010) also implemented
in the pomp package. The conceptual difference between iterated filtering and PMMH is that iterated
filtering explores simultaneously the parameter and state space in one iteration, while in PMMH in each
iteration only a single noisy likelihood approximation for a parameter vector drawn at random from the
proposal distribution is used (Ionides and others, 2015). Hence, for problems where filtering is a substan-
tial computational expense, PMMH shows to perform much slower than mif2. For details, how those
two methods fare against each other see Bhadra, 2010; Ionides and others, 2015. Although there exist
approaches to make Bayesian inference algorithms for the class of dynamic models we consider compu-
tationally more efficient, cf. e.g. Dureau and others (2013); Murray and others (2016), the pomp package
provides a convenient and flexible infrastructure for efficient simulation and a large variety of inference
methods for POMP models. Using such flexible general purpose epidemic modeling software is of great
interest for public health decision makers, and we hope to see such stochastic approaches in routine use
of, e.g., assessing vaccination programs in the future.

The reduced complexity of our model came at the cost of neglecting some potentially important clinical
details of rotavirus transmission. We did not consider maternal immunity, a latent period, premature
death or immigration and we assumed that the waning immunity as well as the reporting rates, recovery
rates and overdispersion parameters are age independent. Furthermore, we assumed that the population
mixes homogeneously and that waiting times are exponentially distributed. The main reason for those
simplifications was that the observations only carry information about time of diagnosis aggregated over
one week which makes the separation of latent and infectious periods not identifiable as well as they
do not contain information on how long people have been infected or who infected whom if we at the
same time want to estimate the age-specific susceptibility parameters. If more was known about, e.g.
age-specific recovery rates, we could have fixed the rates at those literature informed values and perform
model selection, however, this data does to our knowledge not exist. Also, it would have been possible
to add a latent period of known distribution, but since this would have been only be a two days shift, we
decided to ignore this for simplification. To relax the homogeneously mixing assumption we could have
assumed a “known” contact structure matrix as can, e.g. be obtained from the POLYMOD study (Mossong
and others, 2008) and estimate the age-specific proportionality factors to this matrix, however, not the
contact matrix itself. One option to enhance the exponential distribution could have been to divide the
waiting period for a change in a certain compartment into several stages, yielding a gamma distribution,
hence, a distribution with a more pronounced mode which is often more realistic. However, since the
focus of this work was the demonstration of an inference and model selection framework we were aiming
at a simple model.
In general, model complexity depends on which questions one wants to answer, e.g. more age classes or
infectious states might be needed, if one was to assess vaccination strategies with our model. Nevertheless,
we see from this work that, in terms of fit, simplicity has its virtues: adequate modeling of variability, can
be more useful than trying to get every biological detail right, because even without this detail our model
still fits the data very well. This is an important message to convey in practical public health modeling,
because many transmission models tend to include overly many biological details in order to gain medical
acceptance.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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