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With the improvement of living conditions and the popularity of unhealthy eating and living
habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease
that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-
alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also
negatively affects longevity and the quality of life. The traditional Chinese medicines
(TCMs) are highly enriched in bioactive compounds and have been used for the
treatment of obesity and obesity-related metabolic diseases over a long period of
time. In this review, we selected the most commonly used anti-obesity or anti-
hyperlipidemia TCMs and, where known, their major bioactive compounds. We then
summarized their multi-target molecular mechanisms, specifically focusing on lipid
metabolism, including the modulation of lipid absorption, reduction of lipid synthesis,
and increase of lipid decomposition and lipid transportation, as well as the regulation of
appetite. This review produces a current and comprehensive understanding of
integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also
advocate taking advantage of TCMs as another therapy for interventions on obesity-
related diseases, as well as stressing the fact that more is needed to be done,
scientifically, to determine the active compounds and modes of action of the TCMs.

Keywords: traditional Chinese medicines, obesity-related metabolic diseases, anti-obesity effect, lipid metabolism,
mechanisms

INTRODUCTION

The state of being overweight and obesity are defined as the abnormal or excessive
accumulation of fat, mostly in the form of triacylglycerols (TAGs) and cholesterol esters
(CEs) in adipose and non-adipose tissues or organs. The World Health Organization (WHO)
classification uses body mass index (BMI) to define overweight as being 25–29.9 kg/m2 and
obesity as being ≥30 kg/m2 (https://www.who.int/topics/obesity/zh/). Along with an
increasing accessibility to food and the popularity of unhealthy lifestyles, obesity is
becoming a global epidemic and its metabolic consequences are currently among the most
pressing public health challenges (Hossain et al., 2007). The primary consequence of obesity is
associated with an increased mortality and a susceptibility to comorbidities, with few viable
therapeutic interventions being available. Today, obesity is increasingly gaining attention due
to its intimate association with a growing list of diseases beyond T2D, NAFLD, cancers (Stoll,
1998; Arem and Irwin, 2013; Seo et al., 2015; Incio et al., 2018), and CVD (Lazo and Clark,
2008; Zhao et al., 2019), such as atherosclerosis (AS) (Rocha and Libby, 2009; Aboonabi et al.,
2019). Meanwhile, obesity also has a substantial impact on the quality of life. Obesity is usually
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associated with a lower health-related quality of life than
those possessing a normal weight (Pinhas-Hamiel et al.,
2006). In children and adolescents, obesity is usually
associated with sedentary lifestyles, lower levels of self-
esteem, social exclusion, poor educational achievements,
and so on (de Beer et al., 2007; Wille et al., 2008). In
addition, global health costs associated with obesity and its
complications are estimated to be ∼US$2 trillion (Dobbs et al.,
2014). If the prevalence of obesity continues on its rising trend,
almost half of the world’s adult population could be overweight or
obese by 2030, imposing even greater personal, social, and economic
costs (https://www.mckinsey.com/industries/healthcare-systems-
and-services).

Effectively combating obesity around the world may
require a comprehensive strategy involving multiple
interventions (Dobbs et al., 2014). Management of obesity
is aimed at weight loss, which improves the quality of life.
Studies have shown that weight loss after treatment was
associated with varying degrees of improvement in obesity-
related psychosocial problems, physical functioning, physical
role functioning, bodily pain, general health, mental health,
and vitality (Kaukua et al., 2003; Pearl et al., 2018). To lose
weight, lifestyle interventions, dietary changes, and physical
activity are the first-line approaches, followed by medical
treatment and bariatric surgery. Thus far, several drugs have
been approved for weight loss, such as orlistat, liraglutide,
lorcaserin, and diethylpropion (Solas et al., 2016; Gadde et al.,
2018). However, in addition to the considerable financial cost
of these drugs, numerous side effects have been increasingly
reported, such as headache, dizziness, fatigue, nausea, dry
mouth, insomnia, anxiety, and constipation (Smith et al.,
2010; Aronne et al., 2013; Pi-Sunyer et al., 2015; Nissen et al.,
2016; Solas et al., 2016; Gadde et al., 2018).

The pathogenesis of obesity is complex and determined by
the interaction of genetic, environmental, and psychosocial
factors acting through several physiological mediators
(González-Muniesa et al., 2017). Many studies have
reported that lipid metabolic pathways are a potential
therapeutic target to prevent or delay the occurrence and
progression of obesity and obesity-related metabolic diseases,
as the major physiological factor in these diseases is the
disturbance of lipid metabolism, such as a dysfunction in
lipid absorption, lipid synthesis, lipid decomposition, and/or
lipid transportation (Meikle and Summers, 2017). Compared
with the modern drugs mentioned above, TCMs have been
widely used to treat obesity for a very long time. This fact
alone suggests that TCMs may be used as a vast resource for
the development of natural anti-obesity drugs possessing
fewer side effects (Li et al., 2017; Martel et al., 2017; Zhang
Y. et al., 2018; Zhang et al., 2020; Ji-Ping et al., 2021). While
some of the anti-obesity effects and mechanisms of TCMs
have been studied in the past decade, most of these studies
only focused on single/several genes or signaling pathways
involved in lipid metabolism. Our goal in this review is to
collate these data and give a systematic and comprehensive
overview of the anti-obesity effects and mechanisms of TCMs
and their major ingredients by targeting lipid metabolism.

THE TRADITIONAL CHINESE MEDICINES
WITH ANTI-OBESITY EFFECTS

The diverse evolution of plants represents a near inexhaustible
source of biologically active compounds. The importance of
these natural products for medicine and health has been
immense (Courdavault et al., 2020). For many years,
scientists have been researching and applying natural,
plant-derived preparations as medicine in clinical
treatment. Through these actions, active compounds such
as strychnine and brucine (Langley, 1918), quinine (Dickson,
1823), colchicine (1890), caffeine (Bennett, 1873), and
artemisinin (Ma et al., 2020) have been discovered. Thus,
natural products provide important clues to the identification
and development of synergistic drugs.

TCM refers to substances used for the prevention,
diagnosis, and treatment of diseases, as well as for
rehabilitation and health care under the guidance of TCM
theories. It may be the best resource for the use of natural
products, and it represents the accumulated experiences of
thousands of years of medical practice. The written records of
TCM date back at least 2,000 years to Shen Nong’s Classic of
Materia Medica. In the long history of China, TCM has made
an indelible contribution to the health of the Chinese people.
Moreover, based on 2,000 years of experience in the use of
TCMs and modern scientific research, the eleventh edition of
the Pharmacopoeia of the People’s Republic of China (ChP)
was promulgated and implemented in 2020. In this volume,
the ChP stipulated the processing, usage, dosage, and
compatibility of TCMs and included many classic
prescriptions (Chinese Pharmacopoeia Commission).

Notably, in recent decades, there has been a growing interest in
TCM. Since 1973, there have been 2,104 articles related to
“traditional Chinese medicine” AND “lipid metabolism” in
PubMed, while in 2020 alone, there were 389 articles
(PubMed, https://pubmed.ncbi.nlm.nih.gov, last accessed on
March 31, 2021). And 35 individual prescriptions from the
ChP (2020 edition) were identified, each of which is clearly
indicated as being anti-obesity and anti-hyperlipidemia
(Table 1). Based on the formulation of these 35 prescriptions,
we searched the Latin name of each single TCM for “anti-obesity”
OR “anti-hyperlipidemia” in PubMed and CNKI in recent
decades. Five TCMs including Crataegus pinnatifida Bunge,
Salvia miltiorrhiza Bunge, Polygonum multiflorum Thunb.,
Alisma plantago-aquatica L., and Panax notoginseng (Burkill)
F.H. Chen were identified. Each of these plants was implicated
not only to function in anti-obesity and anti-hyperlipidemia but
also to be mechanistically associated with these processes. Also,
based on the widespread use of edible TCMs among people, some
medicinal plants appear in diets. We also reviewed commonly
used edible TCMs possessing the effects of anti-obesity and anti-
hyperlipidemia including Scutellaria baicalensisGeorgi, Curcuma
longa L., pu-erh tea, green tea, Tripterygium wilfordii Hook. f.,
chilli peppers, and grape and the main bioactive compounds from
them, such as baicalin, curcumin, epigallocatechin gallate, green
tea polyphenol, triptolide and celastrol, capsaicin, and resveratrol
(Sham et al., 2014; Wang S., et al., 2014; Martel et al., 2017).
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TABLE 1 | TCM anti-obesity formulations from the Pharmacopoeia of the People’s Republic of China (ChP) (2020 edition).

TCM formulation of anti-obesity and anti-hyperlipidemia

Dahuang zhechong wan Liuweidihuang wan Xuezhikang pian
Danxiang qingzhi keli Renshen shouwu jiaonang Xuezhiling pian
Danlou pian Shanlücha jiangya pian Xuezhining wan
Dingkun dan Sangge jiangzhi wan Xiaokeping pian
Fangfeng tongsheng keli Songling xuemaikang jiaonang Yangxinshi pian
Guizhi fuling wan Shouwu wan Yindan xinnaotong ruanjiaonang
Hedan pian Tongxinluo jiaonang Yixintong pian
Huoxue tongmai pian Xin̂anning pian Yinxingye jiaonang
Jinshuibao pian Xinkeshu pian Zhikang keli
Jiangzhiling pian Xinxuening pian Zhimaikang jiaonang
Jiangzhi tongluo ruanjiaonang Xinyuan jiaonang Zhengxin jiangzhi pian
Liujunzi wan Xuefu zhuyu jiaonang

FIGURE 1 | Overview of systematic regulated lipid metabolism of TCMs. TCM treatment of obesity mainly regulates lipid metabolism from five aspects: appetite,
lipid absorption, lipid synthesis, lipid decomposition, and lipid transportation. Each link intersects and regulates each other to maintain the stability of the internal
environment. One of the advantages of TCM is that it can act on multiple aspects and targets at the same time and systematically regulate life activities. Appetite is
regulated by the level of leptin, adiponectin, ghrelin, and so on. These hormones serve as a critical signal to regulate food intake. The small intestine absorbs lipids
derived exogenously from the diet. Dietary fat comprises a variety of lipids, while lipids synthesized in the liver are packaged in very low–density lipoproteins and delivered
to adipose tissue for storage. CD36, FATP, NPC1L1, and LDLR are the classic regulators of lipid absorption. Apart from lipid absorption, excessive lipid synthesis is
another cause of obesity. Some enzymes of lipid synthesis are the key to disease treatment, such as ACC, FAS, SCD, HMGCR, SM, and ACAT. These enzymesmay also
be regulated by the transcription factors SREBP and LXR. Cytoplasmic lipolysis and lysosomal-mediated autophagy (lipophagy) are two pathways that are known to
break down TAGs and CEs in lipid droplets. In this process, ATGL, HSL, and MGL break down TAGs into free fatty acids which then undergo oxidative decomposition in
the mitochondria via CPT1 to provide energy. The activity of these enzymes may also be controlled by SIRT1, FOXO1, and PGC1α. Lipoproteins are the major carriers of
lipids in circulation. The major forms of lipoproteins are chylomicrons, VLDL, IDL, LDL, and HDL. The lipoproteins are responsible for transportation of FAs and
cholesterol. Furthermore, the transportation of cholesterol to the extracellular environment is controlled by ABCA1, ABCG1, and ABCG5/8.
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TARGETING LIPID METABOLISM WITH
BIOACTIVE COMPOUNDS FROM TCMS
WITH ANTI-OBESITY EFFECTS
Over many years of observation and research, it has been
found that TCMs can regulate all steps of lipid metabolism,
targeting multiple pathways, including the modulation of
lipid absorption, reduction of lipid synthesis, and increase
of lipid decomposition and lipid transportation, as well as the
physiological process of appetite regulation (Figure 1). The
following is a systematic and comprehensive review of the
anti-obesity effect of TCMs by targeting the above-mentioned
lipid metabolism.

Regulation of Appetite
Feelings of hunger and satiety are regulated by complex neural and
endocrine interactions among the gut, brain, adipose tissues, and
other organs. As early as the 1960s, leptin was identified as a
hormone linked to obesity. Leptin is secreted by adipose tissue
and regulates appetite through inhibiting orexigenic neurons while
stimulating anorexigenic pro-opiomelanocortin neurons (Friedman,
1997; Elias et al., 1999). Another hormone, ghrelin, which is released
by the gastrointestinal tract when the stomach is empty, induces
hunger by acting on hypothalamic brain cells in the central nervous
system (CNS) (Ahima and Antwi, 2008). Moreover, the protein
hormone adiponectin is secreted by adipocytes and circulates in the
plasma. In contrast to leptin, adiponectin is reduced in obesity and
increased in response to fasting. Adiponectin deficiency induces
insulin resistance (IR) and hyperlipidemia and is associated with
increased susceptibility toward vascular injury and atherosclerosis
(Kadowaki et al., 2008).

Discovery of leptin brought hopes for treatment of obesity.
Data from both humans and animals have established that the
leptin level increases and is positively correlated with fat mass,
thereby suppressing appetite. Conversely, weight loss leads to a
decrease in the leptin level and produces a consequent increase in
food intake (Campfield et al., 1995; Halaas et al., 1995;
Pelleymounter et al., 1995; Montague et al., 1997; Licinio
et al., 2004; Farooqi et al., 2007). Adiponectin levels decrease
in obesity. Adiponectin enhances AMPK activity in the arcuate
hypothalamus (ARH) via its receptor AdipoR1 to stimulate food
intake; this stimulation of appetite by adiponectin is attenuated by
the dominant-negative AMPK expression in the ARH (Kubota
et al., 2007). Ghrelin levels increase during food deprivation in
animals and prior to meals in humans and may serve as a critical
signal to induce hunger during fasting (Ahima and Antwi, 2008).

As mentioned, TCMs can affect multiple steps in these
hormone signaling pathways. Salvia miltiorrhiza Bunge can
significantly inhibit the appetite and body weight by increasing
the sensitivity to leptin and inhibiting ghrelin activity (Xin-Min
et al., 2010; Tung et al., 2017). A high-fat diet (HFD) can increase
the serum levels of leptin, insulin, and glucose. Polygonum
multiflorum Thunb. could reverse these changes (Choi et al.,
2018). Administration of Panax notoginseng (Burkill) F.H. Chen
saponins (PNSs) for 30 days resulted in a significant decrease in
serum insulin, leptin, body weight, food intake, and serum
triglyceride (TG) levels compared with a diabetic control

group (Yang et al., 2010). Curcuma longa L. may contribute to
decreasing body weight and regulating leptin secretion in animals
(Song and Choi, 2016) and humans (Navekar et al., 2017).
Baicalin, a flavonoid of the herbal medicine Scutellaria
baicalensis Georgi, also increased the plasma leptin level vs.
the diabetic control (Waisundara et al., 2009). Finally, rats fed
with fructose/green tea and fructose/pu-erh tea showed the
greatest reduction in serum TG, cholesterol, insulin, and leptin
levels (Huang and Lin, 2012). Consistent with obesity induction,
adiponectin levels were reduced in HFD-fed mice and
adiponectin levels were restored after green tea treatment in
the wild type (WT) (Bolin et al., 2020). The green tea
polyphenols also have the same curative effect (Tian et al., 2013).

Capsaicin is the molecule that is responsible for the pungency
of hot peppers. It functions by stimulating the sympathoadrenal
system that mediates the thermogenic and anorexigenic effects of
capsaicinoids. Capsaicin treatment in mice fed on an HFD for
10 weeks lowered obesity, fasting glucose, insulin, leptin, and
hepatic TGs while increasing adiponectin mRNA/protein in the
adipose tissue. Furthermore, capsaicin increased GLP1 and
decreased ghrelin secretion, indicating a possible interaction
between transient receptor potential cation channel
subfamily V member 1 (TrpV1) and GLP1 (Smeets and
Westerterp-Plantenga, 2009; Kang et al., 2010). Also,
leptin levels in the plasma were significantly lower in
resveratrol-treated animals (Jimoh et al., 2018; Yu et al.,
2019) and humans (Timmers et al., 2011). Celastrol, a
compound of Tripterygium wilfordii Hook. f., is a leptin
sensitizer (Xu et al., 2021). It can suppress appetite, block
the reduction of energy expenditures, and lead up to a 45%
weight loss in hyperleptinemic diet–induced obese mice by
increasing leptin sensitivity (Liu et al., 2015). Celastrol, an
NF-κB inhibitor, reduced IR and lipid abnormalities and led
to higher plasma adiponectin levels in the db/db mice with
celastrol treatment for 2 months (Kim et al., 2013).

Regulation of Lipid Uptake From the
Intestine
The small intestine absorbs lipids derived exogenously from the
diet including non-polar lipids, predominantly TAGs and CEs,
and polar PLs. Dietary lipids such as TAGs, CEs, and PLs along with
endogenous lipids from the bile are completely digested by pancreatic
enzymes in the intestinal lumen, producing fatty acids (FAs),
monoacylglycerols (MAGs), cholesterol, and lysophospholipids (Ko
et al., 2020). The uptake of FAs and MAGs can be driven by the
concentration gradient or facilitated by other proteins such as cluster
of differentiation 36 (CD36) and fatty acid transport protein 4
(FATP4). Cholesterol uptake is mediated by Niemann–Pick C1-
like 1 (NPC1L1). The TCMs can regulate lipid(s) uptake from the
intestine (Figure 2).

Regulation of Uptake of FAs
FAs in the liver originate from the diet, de novo lipogenesis
(DNL), and recycling of FAs released from adipose tissue during
fasting (Mashek, 2013). FAs are taken in the intestinal lumen into
enterocytes by two distinct mechanisms. In the first process, FAs
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diffuse passively through the apical membrane when luminal
concentrations are higher than those inside the cell. The other
mechanism of FA uptake is saturable and probably protein
dependent as this transport occurs when the intracellular FA
concentration is higher than that in the lumen.

Tanshinone ⅡA could decrease oxidized low-density
lipoprotein (oxLDL)-induced expression of lectin-like oxidized
LDL receptor-1 (LOX-1) and CD36 (Wen et al., 2020). And
salvianolic acid B inhibited macrophage uptake of modified LDL
in a scavenger receptor CD36–dependent manner (Bao et al.,
2012). Curcuma longa L. suppressed the expression levels of
CD36 and FATP, which were increased in HFD groups (Mun
et al., 2019). Curcumin, a yellow-colored hydrophobic
polyphenol, is the principal curcuminoid of the spice turmeric,
the ground rhizome of Curcuma longa L.. Curcumin could also

downregulate the mRNA level of Cd36 during adipocyte
differentiation of 3T3-L1 cells (Zhao et al., 2011). CD36
mRNA and protein levels were decreased in high-fructose
diet–induced rats when treated with green tea polyphenol
(Qin et al., 2010). Epigallocatechin gallate (EGCG), a green tea
bioactive polyphenol, also dose-dependently reversed HFD-
induced effects on intestinal substrate transporters CD36,
FATP4, and sodium-dependent glucose transporter 1
(Friedrich et al., 2012). In contrast, capsaicin or capsinoids
could upregulate the expression of CD36 (Hong et al., 2015).

Regulation of Cholesterol Uptake
Classical cholesterol metabolism studies have confirmed that
there are two main sources of cholesterol in the human body:
exogenous cholesterol from the diet absorbed in the intestine and

FIGURE 2 |Molecular mechanisms of TCMs in lipid absorption and transportation. CD36, FATP, and LDLR are the classic regulators of lipid absorption. CD36 and
FATP mediate the absorption of FA, and LDLR mediates the absorption of LDL. SR-BI can mediate the selective absorption of CE, which plays an important role in HDL
metabolism and cholesterol “reversal.” Cholesterol is synthesized from acetyl-CoA. Excess cholesterol in hepatic cells is exported to the blood by ABCA1 or the
homodimer of ABCG1, or to the intestinal lumen and bile ducts by the ABCG5 and ABCG8 heterodimers. Cholesterol can also be converted to CE by ACAT for
storage in lipid droplets or for secretion as lipoproteins. The major forms of lipoproteins are chylomicrons, VLDL, IDL, LDL, and HDL, and they differ in their size, density,
composition, and functions. CYP7A1 converts cholesterol into bile acids in the reverse cholesterol transport pathway. In the endogenous pathway, the liver produces
VLDL, which interacts with LPL in the circulation to form IDL, with the release of TG and FAs. IDL is rapidly removed by the liver via the interaction of its apolipoprotein E
component with LDLR. Furthermore, IDL forms LDL upon removal of TG by hepatic lipase. CETP induces LDL to generate HDL, which is an anti-atherogenic lipoprotein
or “good cholesterol,” as it captures the cholesterol from peripheral tissues or other lipoproteins and transports it back to the liver by the third pathway, which is termed
reverse cholesterol transport. ↑/⊥ depicts the positive or negative effect of TCMs in the cellular process, respectively.
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reabsorbed in the bile and endogenous cholesterol obtained
through de novo synthesis from acetyl-CoA by the liver and
peripheral tissue.

Exogenous cholesterol enters the enterocytes throughNPC1L1
and the associated flotillins present on the apical surface of these
cells. Curcumin could lower plasma cholesterol and prevent diet-
induced hypercholesterolemia through modulating intestinal
NPC1L1 expression via transcriptional regulation and the
involvement of the sterol regulatory element–binding protein 2
(SREBP2) transcription factor (Kumar et al., 2011). In addition to
NPC1L1-mediated cholesterol absorption from the intestinal
lumen, another pathway is LDL receptor (LDLR)-mediated
uptake of cholesterol containing LDL particles (LDL-c) from
the blood. LDL in the blood is captured by LDLR on the cell
surface and internalized, and as the endosomal pH decreases,
LDLR dissociates from LDL and is recycled back to the surface for
additional uptake. LDL is further delivered to lysosomes, and the
carried cholesteryl esters (CEs) are hydrolyzed to cholesterol.

Tanshinone ⅡA and Crataegus pinnatifida Bunge can regulate
the expressions of LDLR in the liver (Hu et al., 2016; Jia et al.,
2016b). The Ldlr mRNA level was significantly higher in rats by
treatment with an n-butanol extract (NE3) of Panax notoginseng
(Burkill) F.H. Chen (Ji and Gong, 2007). The Scutellaria
baicalensis Georgi extract also activated Ldlr genes in the liver.
Co-administration of this extract with baicalin and metformin
exerted a better effect on obesity-induced IR and lipidmetabolism
in a rat model system than treatment with metformin alone (Han
et al., 2017). Also, proprotein convertase subtilisin/kexin type 9
(PCSK9), a negative regulator of LDLR, is also an SREBP2 target.
Tanshinone ⅡA treatment inhibited the expression of PCSK9 and
concomitantly increased LDLR activity (Chen et al., 2016).

Regulation of Gut Microbiota
The community of microorganisms living in the gastrointestinal
tract in animals and humans has been shown to participate in
various physiological and pathological processes in the gut and
many other bodily processes. The link between the microbes in
the human gut and the development of obesity and obesity-
related diseases is becoming clearer. Studies have shown
differences in the gut microbiota between obese individuals
and lean individuals. Obesity and the associated metabolic
syndromes are associated with microbiota alterations,
including an increase in the ratio of Firmicutes to
Bacteroidetes and in the relative abundance of Proteobacteria
as well as alterations in specific bacteria such as Lactobacillus and
Clostridium (Ley et al., 2005; Turnbaugh et al., 2006; Fei and
Zhao, 2013; Cortés-Martín et al., 2020). There are also a reduced
bacterial diversity and altered representations of bacterial genes
and metabolic pathways (Turnbaugh et al., 2009; Wu et al., 2021).

Studies on both mice and humans show effects of gut
microbiota on lipid metabolism by improving energy
extraction from food, which is considered an environmental
factor contributing to obesity and its comorbidities (Santacruz
et al., 2009; Ridaura et al., 2013). Compared to lean mice, the gut
microbiota of the obese mice have an increased capacity to
harvest energy from the diet (Turnbaugh et al., 2006).
Moreover, when compared with conventional mice, germ-free

mice were able to resist obesity on a high-fat, high-carbohydrate
Western diet, which could be explained by their intake of fewer
calories, increased lipid excretion in the feces, and increased lipid
oxidation in the intestine and peripheral tissues (Bäckhed et al.,
2007; Rabot et al., 2010). In an observational study using fecal
microbiota transplantation, the transplantation of feces from
twins discordant for obesity into germ-free mice in a diet-
dependent manner demonstrated transmissible, rapid, and
modifiable effects of diet-by-microbiota interactions (Ridaura
et al., 2013).

Many studies have emerged suggesting that the therapeutic
potential of TCMs and their bioactive compounds may be due to
the interaction with gut microbiota. Theabrownin, one of the
most active and abundant pigments in pu-erh tea, altered the gut
microbiota in both mice and humans and increased the levels of
ileal conjugated bile acids by predominantly suppressing
microbes associated with bile-salt hydrolase (BSH) activity.
This in turn inhibited the intestinal farnesoid X receptor
(FXR)–fibroblast growth factor 15 (FGF15) signaling pathway
that increased hepatic production and fecal excretion of bile acids,
thereby reducing hepatic cholesterol and decreasing lipogenesis
(Huang et al., 2019). Green tea polyphenols decreased the relative
abundance of Bacteroidetes and Fusobacteria and increased the
relative abundance of Firmicutes as revealed by 16S rRNA gene
sequencing analysis in canines with HFD-induced obesity (Li
et al., 2020). The gut microbiota played an important role in the
anti-obesity effects of celastrol, in which it promoted energy
expenditure at a dose of 500 µg/kg body weight and improved
the diversity of the gut microbiota with an increased ratio of
Bacteroidetes to Firmicutes (Hu et al., 2020). Capsaicin has an
anti-obesity effect through alterations in gut microbiota
populations and short-chain FA concentrations, which were
beneficial in prevention and treatment of obesity (Song et al.,
2017; Rosca et al., 2020; Wang Y. et al., 2020). Resveratrol-
induced gut microbiota modulated lipid metabolism,
stimulated the development of beige adipocytes in white
adipose tissue, reduced inflammation, and improved intestinal
barrier function in HFD-fed mice. Therefore, the anti-obesity
benefits of resveratrol might be through the “gut
microbiota–adipose tissue” axis (Wang P, et al., 2020; Zhou
et al., 2019).

Regulation of Lipid Transportation
Lipoproteins are the major carriers of lipids in circulation and
participate in three major pathways that are responsible for the
generation and transport of lipids within the body. The twomajor
forms of circulating lipids in the body, TG and cholesterol, are
packaged with apolipoproteins and PLs to form lipoproteins. The
major forms of lipoproteins are chylomicrons, very low–density
lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-
density lipoprotein (LDL), and high-density lipoprotein (HDL),
which differ in their size, density, composition, and functions.

In the exogenous pathway, dietary lipids, which mainly consist
of TGs and some PLs, free FAs, and cholesterol, are packaged into
chylomicrons by intestinal mucosal cells. These chylomicrons
enter the lymphatic system and then the circulation, where TGs
are released as free FAs by lipoprotein lipase (LPL) activity on the
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capillary endothelium. These free FAs are taken up by the muscle,
adipose, and other peripheral tissues, whereas the remnants of
chylomicrons are cleared by the liver. In the endogenous
pathway, the liver produces VLDL, which interacts with LPL
in the circulation to form IDL, with the release of TGs and free
FAs. IDL is rapidly removed by the liver via the interaction of its
apolipoprotein E component with LDLR. Furthermore, IDL
forms LDL upon removal of TGs by hepatic lipase (HL). LDL,
which is very high in cholesterol content, is in turn removed from
the circulation by binding to LDLR in the liver and in extrahepatic
tissues. HDL is an anti-atherogenic lipoprotein or “good
cholesterol,” as it captures the cholesterol from peripheral
tissues or other lipoproteins and transports it back to the liver
by the third pathway, which is termed reverse cholesterol
transport (Luo et al., 2020) (Figure 2).

Regulation of Lipoprotein Uptake
The liver has a role in the regulation of systemic lipid metabolism
as it assembles and secretes TAG-rich VLDL particles into the
systemic circulation for distribution of FAs to the peripheral
tissues. Surface LDLR captures the circulating LDL via the
extracellular ligand–binding domain. Many results suggest that
green tea polyphenols inhibit the ubiquitin/proteasome-mediated
upregulation of LDLR. This identified molecular mechanism
might be related to the previously reported cholesterol-
lowering and heart disease–preventative effects of green tea
polyphenols (Kuhn et al., 2004). Trans-resveratrol exhibited
the anti-atherogenic effect, at least, in part, by increased
hepatic LDLR expression via proteolytic activation of SREBPs
and subsequent LDL uptake (Yashiro et al., 2012).

By contrast, HDLs are generated by the intestine and the liver
through the secretion of lipid-free apolipoprotein A-I (ApoA-I).
ApoA-I then recruits cholesterol from these organs through the
actions of ATP-binding cassette transporter A1 (ABCA1),
forming nascent HDLs. In the peripheral tissues, nascent
HDLs promote the efflux of cholesterol from tissues, including
frommacrophages, through the actions of ABCA1. Mature HDLs
also promote this efflux, but through the actions of ATP-binding
cassette transporter G (ABCA) 1. Tanshinone ⅡA reduced the
lipid deposition in the liver. Moreover, it did not affect the serum
lipid levels but reduced the levels of HDLmiddle subfractions and
increased the levels of HDL large subfractions (Jia et al., 2016b).
Treatment of THP-1 macrophages with baicalin significantly
accelerated HDL-mediated but not ApoA-I–mediated
cholesterol efflux. However, baicalin treatment increased the
expression of scavenger receptor class B type I (SR-BI) in a
dose- and time-dependent manner. Furthermore, baicalin
increased the expression of peroxisome proliferator–activated
receptor (PPAR) c, a key regulator of reverse cholesterol
transport, and liver X receptor (LXR) α (Yu et al., 2016).
Administration of Curcuma longa L. significantly decreased
the serum LDL and ApoB but increased the serum HDL and
ApoA of healthy subjects (Ramirez-Bosca et al., 2000).
Resveratrol treatment after 6 months decreased LDL-c, ApoB,
oxLDL, and oxLDL/ApoB on statin-treated patients in primary
cardiovascular disease prevention (Tome-Carneiro et al., 2012).
The LPL was increased significantly in muscular tissues and

decreased in adipose tissues by treatment with Crataegus
pinnatifida Bunge flavonoids in mice (Fan et al., 2006).
Finally, PNSs could also upregulate the mRNA expression of
Lpl (Wang et al., 2016).

Regulation of Cholesterol Efflux
Cholesterol export from cells is mediated by ATP-binding
cassette transporters. ABCA1 is expressed on the plasma
membrane of most cells, including the basolateral surface of
enterocytes. ABCG1 is most abundantly expressed on the
surface of macrophages, whereas ABCG5 and ABCG8 are
expressed at the apical surface of enterocytes and hepatocytes,
forming a heterodimer. Excess cholesterol is esterified by acyl
coenzyme A–cholesterol acyltransferases (ACATs). ABCA1
mediates cholesterol transport to ApoA-I in the blood, and
this generates a nascent HDL that serves as an acceptor for
ABCG1-mediated cholesterol efflux, leading to the production
of HDL.

Tanshinone IIA treatment suppressed the expression of
miR-33a, an ABCA1 negative regulator, whereas it
upregulated the expression levels of ABCA1, SREBP2,
PCSK9, cholesterol 7α-hydroxylase (CYP7A1), CD36, and
LDLR in hyperlipidemic rats (Jia et al., 2016a; Jia et al.,
2016b). The expression of PPARα and ApoA-Ⅰ was
significantly downregulated in the hyperlipidemia group
with tanshinone IIA treatment (Yi-Xin et al., 2017). A
high dose of Crataegus pinnatifida Bunge increased the
expressions of ApoA-I gene and HDL-c in HFD-fed mice
(Shih et al., 2013). In addition, curcumin increased
cholesterol efflux by activating and upregulating the
expression of LXR and ABCA1 in subcutaneous adipocytes
isolated from rabbits (Dong et al., 2011). The Curcuma longa
L. oil treatment significantly increased the hepatic expression
of PPARα, LXRα, CYP7A1, ABCA1, ABCG5, ABCG8, and
LPL accompanied by a reduced SREBP2 and 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGCR) expression.
Curcuma longa L. oil treatment also suppressed NPC1L1
expression in the jejunum compared with high-cholesterol
diets (Singh et al., 2013). The expression of the reverse
cholesterol transporters ABCA1 and ABCG1 was highly
expressed in the livers of mice on pu-erh tea intervention
(Huang et al., 2019). Furthermore, apolipoprotein B100
(ApoB100) is a constitutive protein of LDL-c, and it was
significantly downregulated by pu-erh tea extract (PTE)
treatment (Hu et al., 2017).

Cholesterol and sitosterol can be exported by the
ABCG5–ABCG8 heterodimers to the intestinal lumen and bile,
where cholesterol is extracted by bile salts. Re-synthesis of
cholesterol induces pathways for cholesterol export and storage
and acts to suppress further cholesterol biosynthesis. When
treated with NE3, the concentrations of serum TC, TG, and
LDL-c in rats showed a significant dose-dependent decrease.
Expression level analysis indicated that both LXR targeting genes
including ABCA1, ABCG5, and ABCG8 and FXR targeting genes
including ApoC2 and a short heterodimer partner were significantly
induced by NE3 (Ji and Gong, 2007). In addition, CE combines with
ApoB to form lipoproteins, which are transported outside the cell by
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exocytosis. Curcuma longa L., resveratrol, and PTE could
significantly decrease the level of ApoB (Ramirez-Bosca et al.,
2000; Tome-Carneiro et al., 2012; Hu et al., 2017). Celastrol
was able to effectively suppress weight and attenuate high-
fat–mediated oxidative injury by improving ABCA1
expression, reducing the levels of TC, TG, LDL-c, and
ApoB in the plasma, and increasing antioxidant enzyme
activities and inhibiting nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity (Wang C. et al., 2014).

Furthermore, CYP7A1 regulates the balance between
cholesterol supply and metabolism by catalyzing the rate-
limiting step of bile acid biosynthesis. Scutellaria baicalensis
Georgi activated the Cyp7a1 gene in the liver (Han et al.,
2017). Crataegus pinnatifida Bunge could counteract the
downregulation of CYP7A1 and LDLR with the stimulation
effect of HFD (Hu et al., 2016). And NE3 significantly
decreased the expression level of the Cyp7a1 gene (Ji and
Gong, 2007). In contrast, the expression of Cyp7a1 was
markedly increased in the triptolide-treated group (Yang et al.,
2017).

Regulation of Lipid Synthesis
Excessive lipid synthesis is another cause of obesity and
hyperlipidemia. Lipids synthesized in the liver are packaged in
very low–density lipoproteins (VLDLs) and delivered to adipose
tissue for storage. Clearly, TCMs play important roles in lipid
synthesis, including FA and TAG synthesis as well as cholesterol
biosynthesis (Figure 3).

Regulation of Fatty Acid Synthesis
The DNL of FAs from acetyl-CoA to fatty acyl-CoA is mainly
regulated by acetyl-CoA carboxylase (ACC) and fatty acid
synthase (FAS) as the rate-limiting enzymes. Stearoyl-CoA
desaturase (SCD) is a central enzymatic node in the
conversion of saturated fatty acids (SFAs) into mono-
unsaturated fatty acids (MUFAs) (AM et al., 2017). MUFAs
represent the precursors of several lipids essential for plasma
membranes, such as TGs, CEs, diacylglycerols, and wax esters.
Transcriptional regulation of Acc and Fas is primarily through
SREBP1c and carbohydrate-responsive element–binding protein
(chREBP). SCD expression is regulated by diverse hormonal and

FIGURE 3 | Molecular mechanisms of TCMs in lipid synthesis. FA entering the hepatocyte is rapidly “activated” by acyl-CoA, and this is also termed the de novo
lipogenesis (DNL) of FA. DNL is mainly regulated via the rate-limiting enzymes such as ACC and FAS, while the expression and activation of ACC and FAS are regulated
by SREBP1c and chREBP. Transcription of the genes encoding SREBP1c and chREBP is stimulated by insulin via LXR and inhibited by FAs. The synthesis of MUFA
regulates by SCD. FAs are typically esterified to TG and subsequently packaged into VLDL for export or stored as intracellular LDs. HMGCR and SM as the rate-
limiting enzymes are key regulators of the synthesis process of cholesterol. Cholesterol can be converted to CE by ACAT for storage in LDs or for secretion as
lipoproteins. Meanwhile, SREBP2 can increase the level of HMGCR. ↑/⊥ depicts the positive or negative effect of TCMs in the cellular process, respectively.
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nutritional factors and is positively regulated by Srebp1c, chrebp,
and Lxr (Wang Y., et al., 2015). Both transcription factors are
activated by Lxr.

Salvianolic acids, the major water-soluble ingredients of Salvia
miltiorrhiza Bunge, reduced ovariectomy-induced body weight
gain, attenuated the expressions of hepatic lipogenic genes, such
as Srebp1, Fas, and Scd, and decreased the TG and TC via
blocking signal transducer and activator of transcription
(STAT)-3/SREBP1 signaling (Chen et al., 2018). The hepatic
Fas and Srebp1c mRNA levels were reduced in mice fed on
the Crataegus pinnatifida Bunge diet compared to the
standard diet (Zhang et al., 2014). The levels of FAS and ACC
in the plasma were generally reduced after administration of
Polygonum multiflorum Thunb. (Xian et al., 2017). Alisma
plantago-aquatica L. inhibited adipocyte differentiation by
downregulating the expression of PPARc, CCAAT/enhancer-
binding protein β (C/EBPβ), and FAS (Park et al., 2014) and
blocked hepatic lipid production by regulating hepatic lipogenic
genes including Fas, Acc, and glycerol-3-phosphate
acyltransferase (GPAT) (Choi et al., 2019). Alisol B 23-acetate,
a natural triterpenoid isolated from Alisma plantago-aquatica L.,
decreased hepatic lipogenesis through decreasing hepatic levels of
SREBP1c, FAS, ACC, and SCD (Meng et al., 2017). Panax
notoginseng (Burkill) F.H. Chen could change the fat and
inflammation of liver tissue through decreasing expression
levels of SREBP1c, ACC, and FAS (Ji and Gong, 2007; Yan-
Xia et al., 2011; Zhang et al., 2020). The expression levels of
SREBP1c, ACC, and FAS were downregulated in the Curcuma
longa L. groups compared to the HFD groups (Ejaz et al., 2009;
Ahn et al., 2010; Zhao et al., 2011; Mun et al., 2019). Baicalin
treatment significantly attenuated methionine and
choline–deficient diet (MCD)–induced hepatic lipid
accumulation partly through regulating the expression of
SREBP1c, FAS, and ACC (Xi et al., 2015; Zhang J. et al.,
2018). Capsaicin inhibited the early adipogenic differentiation,
lipogenesis, and maturation of adipocytes with concomitant
repression of PPARγ and SCD (Ibrahim et al., 2015). The PTE
intake tended to decrease Srebp1c, Acc, and Fas mRNA
expressions in the liver of the mice (Shimamura et al., 2013),
and PTE also downregulated Scd and Srebp in Caenorhabditis
elegans to suppress fat accumulation (Ding et al., 2015; Hu
et al., 2017). On treatment with green tea, the expression of
lipogenesis-related genes Acc, Fas, and Scd was
downregulated in the liver (Kim et al., 2009; Friedrich
et al., 2012). The transcriptional activities of Srebp1c and
forkhead box protein O1 (FOXO1) were significantly
decreased by EGCG (Kim et al., 2010). Resveratrol exerted
anti-obesity effects via mechanisms involving
downregulation of ACC, FAS (Alberdi et al., 2011), and
SCD (Zhang et al., 2012) and upregulation of the key
adipogenic gene Srebp1c (Kim et al., 2011; Khaleel et al.,
2018) in an HFD model. Celastrol decreased hepatic SREBP1
expression (Zhang et al., 2017). However, triptolide
treatment increased the expression of LXR and its target
gene, Srebp1, in both male and female rats and increased
the expression of ACC only in the female rats (Jiang et al.,
2016).

Regulation of TAG Synthesis
TAG production can come from exogenous FAs in the circulation
or intracellular FAs generated by glycolysis and lipogenesis from
glucose supplied by excess dietary intake. TAG synthesis is
catalyzed by diacylglycerol acyltransferase (DGAT) in the last
biosynthesis step. Polygonum multiflorum Thunb.
supplementation significantly downregulated the expression of
Pparγ and Dgat2 genes in obese mice (Choi et al., 2018).

Regulation of Cholesterol Biosynthesis
An increased level of LDL-c and/or TC is a pronounced
phenotype of dyslipidemia. Ultimately, it is due to elevated
cholesterol. Cholesterol plays an important role in human
physiological functions. Almost all cells can synthesize
cholesterol, and in this process, three crucial players of the
cholesterol biosynthetic pathway are required, SREBP2, which
functions as a master transcriptional regulator of cholesterol
biosynthesis, and two rate-limiting enzymes of the biosynthetic
pathway: HMGCR and squalene monooxygenase (SM).

Regulation of HMGCR and ACAT
As the rate-limiting enzyme for cholesterol biosynthesis,
HMGCR is highly regulated at the transcriptional,
translational, and post-translational levels (Goldstein and
Brown, 1990). The formation of CE is another important
means of preventing the accumulation of free cholesterol in
cells, as this ACAT-mediated pathway directs the storage or
secretion of cholesterol.

Crataegus pinnatifida Bunge could suppress the stimulation
effect of HFD on the transcription of Hmgcr, and the
transcriptional activity of the Hmgcr promoter was inhibited
by Crataegus pinnatifida Bunge in a dose-dependent manner
(Hu et al., 2016). HMGCR was generally reduced after
administration of Polygonum multiflorum Thunb. (Xian et al.,
2017). Alisma plantago-aquatica L. showed comparatively high
inhibition against ACAT and HMGCR activities in rat livers
(Choi et al., 2019). Panax notoginseng (Burkill) F.H. Chen also
reduced the levels of hepatic HMGCR in HFD rats (Xia et al.,
2011).

In addition, relative to the HFD control group, hamsters fed a
curcumin-supplemented HFD had lower hepatic cholesterol and
TG levels and HMGCR and ACAT activities, along with an
increased FA β-oxidation activity (Jang et al., 2008). Scutellaria
baicalensisGeorgi, pu-erh tea, or green tea intervention repressed
the expression of HMGCR in the liver (Yamashita et al., 2016;
Han et al., 2017). However, capsinoids significantly increased
HMGCR in the liver (Hong et al., 2015). Treatment with
theabrownin, one of the most active and abundant pigments
in pu-erh tea, increased two bile acid synthetic genes, Cyp7a1 and
Cyp7b1, in HFD-treated mice (Zeng et al., 2015; Huang et al.,
2019).

Regulation of Lipid Decomposition
Cytoplasmic lipid droplets (LDs) are multiprotein-coated
structures that serve as dynamic TAG storage pools and are
involved in several aspects of lipid metabolism. The LDs are
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mainly rich in TAGs and CEs. There are two pathways that are
known to break down TAGs in LDs: cytoplasmic lipolysis and
lysosomal-mediated autophagy (lipophagy). Adipose triglyceride
hydrolase (ATGL) plays a key role in the lipolysis pathway,
breaking down TAGs into diglycerides (DAGs) and FAs. FAs
further undergo oxidative decomposition in the mitochondria via
carnitine palmitoyl transferase 1 (CPT1) and provide energy
(Figure 4).

Regulation of LD Decomposition
ATGL initiates TAG hydrolysis to form diacylglycerol and FAs.
Hormone-sensitive lipase (HSL) (Lafontan and Langin, 2009;
Rodriguez et al., 2010) and monoacylglycerol lipase (MGL)
complete the process by consecutively hydrolyzing
diacylglycerols into MAGs and FAs and then hydrolyzing
MAGs into glycerol and FAs (Zechner et al., 2017).
Transcription of Atgl is controlled by sirtuin 1
(SIRT1)–mediated deacetylation of FOXO1 and by PPARγ co-
activator 1α (PGC1α) (Chakrabarti et al., 2011; Chen et al., 2021).
The PPAR–PGC1α axis also regulates the transcriptional
expression of Hsl (Albert et al., 2014; Farhan et al., 2014) and
Mgl (Rakhshandehroo et al., 2007).

Curcumin treatment upregulated the expression of ATGL and
resulted in acceleration of lipolysis (Valentine et al., 2019). Pu-erh

tea administration significantly lowered plasma TC and TG
concentrations and the LDL-c level but did not affect HDL-c
levels. Moreover, pu-erh tea significantly increased LPL, HL, and
HSL activities in epididymal fat tissue in rats with HFD-induced
obesity (Cao et al., 2011). Resveratrol acted mainly on ATGL to
regulate lipolytic activity in humans and murine adipocytes (Lasa
et al., 2012) and increased Sirt1, Foxo1, and adiponectin mRNA
expressions (Costa Cdos et al., 2011; Timmers et al., 2011; Lasa
et al., 2012).

Regulation of β-Oxidation of FAs
β-Oxidation in the mitochondria is the predominant oxidative
pathway for energy production in the liver. β-Oxidation consists
of a cycling process involving dehydrogenation, hydration,
dehydrogenation, and acylation that produces acetyl-CoA. In
this process, the most important enzyme is CPT1 (Houten
et al., 2016). The primary regulators of β-oxidation are the
transcription factors Pparα and Pgc1α, whose action is
upregulated by FAs and glucagon and suppressed via insulin
(Pawlak et al., 2015).

The expression of PPARαwas significantly downregulated in a
hyperlipidemia group with tanshinone IIA treatment in rats (Yi-
Xin et al., 2017). CPT1, PPARα, and its downstream targets were
activated with hawthorn leaf flavonoids in an HFD model (Kuo

FIGURE 4 |Molecular mechanisms of TCMs in lipid decomposition. TCMs stimulate lipolysis from fat stores in the liver, white adipose tissue, and dietary fat sources
(high-fat diets) to generate FAs that enter the hepatic cells via protein transporters. TG stored as lipid droplets can be hydrolyzed back to FAs via classic lipases (ATGL,
HSL, and MGL) and lipophagy (by regulating TFEB, SIRT1, and FOXO1), undergo mitochondrial β-oxidation by the activity of various co-activators or nuclear receptors
(such as PPARα, ERRα, and PGC1α), and target the transcription of gene Cpt1. Malonyl-CoA, an intermediate in DNL, inhibits CPT1 action and downregulates FA
oxidation. ↑/⊥ depicts the positive or negative effect of TCMs in the cellular process, respectively.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 69660310

Fan et al. Anti-Obesity Effect of TCM

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


et al., 2009; Li et al., 2015; Dong et al., 2017). Alisol B 23-acetate
administration increased lipid metabolism via inducing PPARα,
CPT1α, and LPL (Meng et al., 2017). Alisma plantago-aquatica L.
suppressed the mRNA levels of hepatic Pgc1α, estrogen-related
receptor (ERR)γ, and PGC1α-dependent enzyme (G6Pase) that
are involved in gluconeogenesis in liver tissue (Jeong Hyang Sook
%J Korea Journal of Herbology, 2013). Polygonum multiflorum
Thunb. supplementation significantly upregulated the Pparα,
Cpt1, Cpt2, Ucp1, and Hsl mRNA levels compared with the
HFD group (Choi et al., 2018). PNSs regulated lipid
metabolism by upregulating the expression of transcriptional
factors, such as Pparα, Pparc, and Pgc1α (Wang et al., 2016).
PPARα and CPT1 expressions were upregulated in the Curcuma
longa L.–treated groups (Mun et al., 2019). Finally, Curcuma
longa L. treatment in high-fructose diet (HFrD)-fed rats repressed
hepatic expression of PGC as compared to the rats fed an HFrD
alone, suggesting a protective effect of Curcuma longa L. by
modulating the expression of lipogenic genes in the liver
(Singh et al., 2015). Treatment with baicalin ameliorated diet-
induced obesity through directly activating hepatic CPT1 as well
as increasing the expression of PPARα (Zhang J. et al., 2018),
ERRα, and PGC1α (Takizawa et al., 2015; Dai et al., 2018).

Treatment with capsinoids significantly increased the
expression of CPT1, adiponectin, and Pparα and Pgc1α mRNA
in the liver (Kang et al., 2010; Lee et al., 2013; Hong et al., 2015;
Panchal et al., 2018). The expression of PPARαwas also increased

in the HFD/pu-erh tea groups (Sun et al., 2019). Green tea
increased the expression of CPT1 and PPARα and decreased
the expression of LXR (Chen et al., 2009; Kim et al., 2009; Axling
et al., 2012) while increasing HSL in mesenteric adipose tissue
concomitantly with the HFD (Cunha et al., 2013). Resveratrol
increased CPT1 activities (Gomez-Zorita et al., 2012), had a
higher agonistic activity of PPARα (Takizawa et al., 2015), and
significantly increased SIRT1 and PGC1α levels and citrate
synthase activity and improved muscle mitochondrial
respiration (Timmers et al., 2011). Finally, celastrol augmented
PGC1α expression in adipocytes and skeletal muscles (Fang et al.,
2019).

CONCLUSIONS AND PERSPECTIVES

Human obesity is quickly becoming widespread, and treatment of
it and its comorbidities is an important clinical challenge.
Targeting lipid metabolism as a potential treatment has
attracted a great deal of attention as a primary therapeutic
target. TCMs have been widely used as anti-obesity treatments
for a very long time. In this review, how TCMs modulate major
features of lipid metabolism was systematically summarized.
Collation and integration of these data has produced a
comprehensive register for the mechanisms of TCMs’ action
in anti-obesity (Table 2).

TABLE 2 | A summary of studies demonstrating the effects of TCM on lipid metabolism in animal models and humans.

TCM Appetite Lipid
absorption

Lipid transportation Lipid synthesis Lipid decomposition

Crataegus pinnatifida Bunge CD36↓ LDLR↑ ApoA-Ⅰ↑ FAS↓ SREBP-1c↓
SREBP2↓

CPT1↑ PPARα↑

Salvia miltiorrhiza Bunge/tanshinone Ⅱ
A/salvianolic acid B

Leptin sensitivity↑
Ghrelin↓

CD36↓ LDLR↓
PCSK9↓

ABCA1↑CYP7A1↑ ApoA-Ⅰ↑ FAS↓ SCD↓ SREBP-1c↓ CPT1↑ PPARα↑

Polygonum multiflorum Thunb. Leptin↓ CYP7A1↑ ACC1↓ FAS↓ DGAT↓
SREBP-1c↑ HMGCR↓;

HSL↑ CPT1↑ PPARα↑

Alisma plantago-aquatica L. Leptin↓ ApoB↑ ACC1↓ FAS↓ DGAT↓
HMGCR↓ HMGCR↓
ACAT↓

CPT1↑ PPARα↑ PGC1α↑

Panax notoginseng (Burkill) F.H. Chen/
Panax notoginseng saponins/n-butanol
extract of Panax notoginseng

Leptin↓ LDLR↑ ABCA1↑ ABCG5/8↑
CYP7A1↑ LPL↑ LDL↓

FAS↓ SREBP-1c↓
HMGCR↓

PPARα↑ PGC1α↑

Curcuma longa L./curcumin Leptin↓ CD36↓ FATP↓
NPC1L1↓

ABCA1↑ ABCG5/8↑
CYP7A1↑ LPL↑ LDL↓ HDL↑
ApoB↓

ACC1↓ FAS↓; SCD↓
SREBP-1c↓ SREBP2↓
ACAT↓ HMGCR↓

CPT1↑ ATGL↑ HSL↑
PGC1α↓ PPARα↑

Scutellaria baicalensis Georgi/baicalin LDLR↑; CYP7A1↑ ACC1↓ FAS↓ SREBP-1c↓
HMGCR↓

CPT1↑ PPARα↑ ERRα↑
PGC1α↑

Pu-erh tea/theabrownin Leptin↓ ABCA1↑ ABCG11↑ LPL↑
ApoB↓

ACC1↓ FAS↓ SCD↓
DGAT↓ SREBP-1c↓
HMGCR↓ SM↓

HSL↑ PPARα↑

Green tea/green tea polyphenols/EGCG Leptin↓
Adiponectin↑

CD36↓ FATP↓ LPL↑ FAS↓ ACC1↓ SCD↓
HMGCR↓

HSL↑ FOXO1↓ CPT1↑
PPARα↑

Tripterygium wilfordii Hook. f./celastrol/
triptolide

Leptin sensitivity↑
Adiponectin↑

ABCA1↑ ApoB↓ CYP7A1↑ ACC1↓ SREBP-1c↓ CPT1↑; PPARα↑;
PGC1α↑; SIRT1↑;

Capsaicin Leptin↓
Adiponectin↑
ghrelin↓

CD36↑ SCD↓ HMGCR↓ HSL↑ CPT1↑ PPARα↑
PGC1α↑

Resveratrol Leptin↓ CD36↑ FATP↑ LPL↑ ApoB↓; FAS↓ SCD↓ SREBP-1c↓ ATGL↑ SIRT1↑ FOXO1↑
CPT1↑ PPARα↑ PGC1α↑

↑: increase; ↓: decrease.
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While TCMs clearly play roles in anti-obesity, the side effects
of TCMs should not be overlooked. Hepatotoxicity is the main
side effect of TCMs (Tarantino et al., 2009; Frenzel and Teschke,
2016). In many cases, the side effects are caused by incorrect
processing, usage, dosage, or compatibility. For example, the use
of the processed Polygonum multiflorum Thunb. caused less
damage to the liver than the unprocessed Polygonum
multiflorum Thunb. (Tu et al., 2015), while EGCG caused
dose-dependent hepatotoxicity in mice under dietary
restriction, but not in mice fed a normal diet (Shi et al., 2020).
In addition, Tripterygium wilfordii Hook. f. is normally
hepatotoxic, but the classical compatibility of Tripterygium
wilfordii Hook. f. and Lysimachia christinae Hance can
detoxify the poison of Tripterygium wilfordii Hook. f. (Wang
et al., 2018; Wang J., et al., 2015). Triptolide and celastrol are two
major components of Tripterygium wilfordii Hook. f..
Interestingly, triptolide is hepatotoxic, while celastrol showed
protection from liver injury (Hasnat et al., 2019; Xu et al., 2021).
These cases suggest that correct processing, usage, dosage, and
compatibility under the application guidance based on long
experience can greatly reduce side effects. Therefore, for the
use of TCMs in anti-obesity, following the doctor’s advice and
guidelines of the TCMs is essential to ensure the efficacy of the
TCMs and also avoid side effects as much as possible.

Moreover, the capacity of TCMs to inhibit obesity is attracting
increasing attention. TCMs are being advocated as another major
breakthrough for therapeutic intervention for obesity-related
diseases. However, only a fraction of the medically active

substances available in TCMs have been identified, and the
unidentified natural products have great potential. Modern
technologies enable the detailed analysis of TCM extracts to
identify active substances. These phytochemicals, in the form
of the TCMs themselves, extracts, or purified components, can be
combined with existing treatments to reduce the prevalence of
obesity and its complications. Taking advantage of TCM effects
on therapeutic interventions for the treatment of obesity-related
diseases may be another breakthrough for integrated medicine.
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GLOSSARY

ABCA ATP-binding cassette transporter A

ABCG ATP-binding cassette transporter G

ACAT acyl coenzyme A–cholesterol acyltransferase

ACC acetyl-CoA carboxylase

ApoA apolipoprotein A

ARH arcuate hypothalamus

AS atherosclerosis

ATGL adipose triglyceride hydrolase

BMI body mass index

BSH bile-salt hydrolase

C/EBPβ CCAAT/enhancer-binding protein β

CD36 cluster of differentiation 36

chREBP carbohydrate-responsive element–binding protein

ChP Pharmacopoeia of the People’s Republic of China

CNS central nervous system

CPT1 carnitine palmitoyl transferase 1

CEs cholesterol esters

CVD cardiovascular disease

CYP7A1 cholesterol 7α-hydroxylase

DGAT diacylglycerol acyltransferase

DNL de novo lipogenesis

EGCG epigallocatechin gallate

ERR estrogen-related receptor

FA fatty acid

FAS fatty acid synthase

FATP fatty acid transport protein

FGF15 fibroblast growth factor 15

FOXO1 forkhead box protein O1

FXR farnesoid X receptor

GLP1 glucagon-like peptide 1

GPAT glycerol-3-phosphate acyltransferase

G6Pase PGC1α-dependent enzyme

HDL high-density lipoprotein

HFD high-fat diet

HFrD high-fructose diet

HL hepatic lipase

HMGCR 3-hydroxy-3-methylglutaryl coenzyme A reductase

HNF4α hepatocyte nuclear receptor 4α

HSL hormone-sensitive lipase

IDL intermediate-density lipoprotein

IR insulin resistance

LDL low-density lipoprotein

LDL-c LDL particles

LDLR LDL receptor

LD lipid droplet

LOX-1 lectin-like oxidized LDL receptor-1

LPL lipoprotein lipase

LXR liver X receptor

MAG monoacylglycerol

MCD MCD methionine and choline–deficient diet

MGL monoacylglycerol lipase

MUFA mono-unsaturated fatty acid

NADPH nicotinamide adenine dinucleotide phosphate

NAFLD non-alcoholic fatty liver disease

NE3 n-butanol extract of Panax notoginseng (Burkill) F.H. Chen

NPC1L1 Niemann–Pick C1-like 1

oxLDL oxidized low-density lipoprotein

PCSK9 proprotein convertase subtilisin/kexin type 9

PGC1α PPARγ co-activator 1α

PL phospholipid

PNSs Panax notoginseng (Burkill) F.H. Chen saponins

PPAR peroxisome proliferator–activated receptor

PTE pu-erh tea extract

SCD stearoyl-CoA desaturase

SM squalene monooxygenase

SR-BI scavenger receptor class B type I

SREBP sterol regulatory element–binding protein

T2D type 2 diabetes

TAG triacylglycerol

TC total cholesterol

TCM traditional Chinese medicine

TG triglyceride

TrpV1 transient receptor potential cation channel subfamily V member 1

VLDL very low–density lipoprotein

WHO World Health Organization

WT wild type
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