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biosynthesis genes from Deinococcus 
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Abstract 

Deinococcus wulumuqiensis R12 is a red-pigmented extremophilic microorganism with powerful antioxidant proper-
ties that was isolated from radiation-contaminated soil in Xinjiang Uyghur Autonomous Region of China. The key 
carotenoid biosynthesis genes, crtE, crtB and crtI, which are related to the cells’ antioxidant defense, were identified 
in the sequenced genome of R12 and analyzed. In order to improve the carotenoid yield in engineered Escherichia 
coli, the origin of carotenoid biosynthesis genes was discussed, and a strain containing the R12 carotenoid bio-
synthesis genes was constructed to produce lycopene, an important intermediate in carotenoid metabolism. The 
gene order and fermentation conditions, including the culture medium, temperature, and light, were optimized to 
obtain a genetically engineered strain with a high lycopene production capacity. The highest lycopene content was 
688 mg L−1 in strain IEB, which corresponds to a 2.2-fold improvement over the original recombinant strain EBI.
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Introduction
Lycopene is a representative molecule from the carot-
enoid family, and is one of the strongest antioxidants 
known to date. Due to its physiological effects (e.g. 
immune enhancement, free radical scavenging), lyco-
pene is widely used in various fields, such as medicine, 
food and cosmetics (Moise et  al. 2013; Ciriminna et  al. 
2016). Lycopene production by microbial fermentation 
has attracted much attention in recent years because of 
the identification of biosynthetic genes and the discovery 
of new highly productive pigment-producing strains. The 
strains that are used to produce lycopene mainly include 
microbes that can synthesize lycopene naturally, such as 
Blakeslea trispora, Erwinia herbicola, Rhodotorula genus, 
or Dunaliella salina, and engineered microbes, such as 

Escherichia coli, Saccharomyces cerevisiae, Candida uti-
lis, or Yarrowia lipolytica (Hernández-Almanza et  al. 
2016; Mantzouridou and Tsimidou 2008; Miura et  al. 
1998). A new species with powerful antioxidant capacity, 
Deinococcus wulumuqiensis R12, was screened from an 
irradiated area in Xinjiang province (Wang et al. 2010). It 
appears red to the unaided eye because of its production 
of carotenoids, which is one of the major mechanisms 
of its radiation resistance. Due to this, the radiation-
resistant R12 strain can be used as a new platform for 
carotenoid synthesis, as well as a model for research on 
the biological adaptations of extremely radioresistant 
bacteria.

There are known two lycopene-synthesis pathways in 
microorganisms. One is the mevalonate (MVA) path-
way, which is present in all known eukaryotic cells 
and the cytoplasm and mitochondria of plants, and 
the other is the 2-C-methyl-d-erythritol-4-phosphate 
(MEP) pathway present in bacteria, other prokaryotes 
and the plastids of plants (Hernández-Almanza et  al. 
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2016). Lycopene is a typical product of a multi-enzyme 
catalytic pathway, in which isopentenyl pyrophos-
phate (IPP), dimethylallyl pyrophosphate (DMAPP) 
and farnesyl pyrophosphate (FPP) are synthesized 
by 8 sequential enzymes in the MEP pathway, after 
which they are converted to lycopene by the three key 
enzymes geranylgeranyl diphosphate synthase (encoded 
by crtE), phytoene synthase (encoded by crtB), and phy-
toene desaturase (encoded by crtI) (Fig.  1). Lycopene 
can then be converted into a variety of carotenoids and 
derivatives in different organisms through modification 
reactions such as cyclizations, oxygenations and dehy-
drogenations, which makes it one of the most impor-
tant intermediates in the carotenoid family. With the 
development of metabolic engineering and synthetic 
biology, lycopene production by microbial fermenta-
tion has gained increasing attention from researchers 
due to its advantages of lower potential cost and sim-
pler, safer processes. The lycopene biosynthesis genes 
from various microorganisms, such as Erwinia uredo-
vora, Erwinia herbicola, Pantoea ananatis, Pantoea 
agglomerans, and Brevibacterium linens, have been 
co-expressed in recombinant strains (Yan et  al. 2013; 

Alper et  al. 2005; Yoon et  al. 2007). Some strategies 
have improved lycopene production by regulating the 
expression of key genes, gene knockouts, changing the 
external conditions, and adding exogenous substances 
(Yan et al. 2013; Alper et al. 2005; Yoon et al. 2007; Kim 
et al. 2011; Bhosale 2004; Roukas 2015; Zhu et al. 2015; 
Matthäus et al. 2014; Arayagaray et al. 2012; Bahieldin 
et al. 2014). In these genetic engineering strategies, the 
co-expression of key lycopene synthesis genes in hosts 
constitutes the traditional approach, which may lead to 
an imbalance of metabolic fluxes that negatively affects 
the product yield. It is therefore imperative to preserve 
the balance of metabolic fluxes in these multi-gene 
expression systems, which requires intensive study.

In this study, lycopene biosynthesis genes from the 
newly discovered species Deinococcus wulumuqien-
sis R12 were identified, analyzed, and integrated into a 
polycistronic plasmid for expression in Escherichia coli. 
Lycopene production of the recombinant strain was 
investigated in different culture media, and under differ-
ent temperature and light conditions. Finally, plasmids 
with the lycopene biosynthesis genes crtE, crtB, and crtI 
arranged in different order were constructed to study 

Fig. 1  The biosynthesis pathways of lycopene and other carotenoids. The MVA pathway is found in eukaryotic cells, the cytoplasm and 
mitochondria of plants. The MEP pathway is found in bacteria, other prokaryotes and plastids in plants. The carotenoid synthesis pathway in 
Deinococcus radiodurans R1 was marked with red arrows. G3P glyceraldehyde 3-phosphate, DXP 1-deoxy-d-xylulose-5-phosphate, MEP 2-C-methyl-d
-erythritol-4-phosphate, DMAPP dimethylallyl diphosphate, IPP isopentenyl diphosphate, HMG-CoA 3-hydroxy-3-methyl glutaryl coenzyme A, MVA 
mevalonate, FPP farnesyl diphosphate, GGPP geranylgeranyl diphosphate
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the effect of gene order, which is related to the individual 
genes’ translation efficiency, on the lycopene yield.

Materials and methods
Bacterial strains, plasmids, and growth conditions
All bacterial strains and plasmids used in this study are 
listed in Table 1. E. coli DH5α and E. coli BL21 (DE3) cells 
were used for cloning and gene expression, respectively. 
D. wulumuqiensis R12 (CGMCC 1.8884T) (Wang et  al. 
2010) was grown in TGY medium (10 g L−1 of tryptone, 
1 g L−1 of glucose, and 5 g L−1 of yeast extract) at 30 °C. 
Recombinant E. coli cells were grown at 37 °C in Luria–
Bertani (LB) medium (10  g  L−1 of tryptone, 5  g  L−1 
of yeast extract, and 10  g  L−1 of NaCl), 2×YT medium 
(16  g  L−1 of tryptone, 10  g  L−1 of yeast extract, and 
5  g  L−1 of NaCl), 2× YT + G medium (2× YT medium 
with 10, 20, 40, 60, 80, or 100 g L−1 glycerol), or synthetic 
medium (SM) [10 g L−1 of glycerol, 10 g L−1 of glucose, 
7.5 g L−1 of L-arabinose; 11.2 g L−1 of KH2PO4, 3 g L−1 of 
(NH4)2HPO4, 0.3 g L−1 of NaCl, 1 g L−1 of MgSO4∙7H2O, 
1.1 g L−1 of leucine, 0.7 g L−1 of isoleucine, 0.4 g L−1 of 
valine, 1.5 g L−1 of threonine, 2 g L−1 of lysine, 3.3 g L−1 
of phenylalanine, 2.2 g L−1 of glutamine, and 3.3 g L−1 of 
methionine] (Kim et al. 2011). For lycopene production, 
a single colony was used to inoculate 50 mL of medium 
in a 250 mL flask, which was then incubated at 37 °C and 
200 rpm for 16 h. Subsequently, 3 mL of the pre-culture 

was used to inoculate 50  mL of medium and incubated 
at 37 °C and 200 rpm for 3 h. The cultures were then fer-
mented with or without isopropyl-β-d-thiogalactoside 
(IPTG, 0–1  mM) under different conditions. Where 
appropriate, 100 mg L−1 of ampicillin was added to pro-
mote plasmid retention. Cultivation was conducted in 
the dark in biological triplicates. To determine the dry 
cell weight (DCW), 1 mL of the sample was centrifuged 
(13,000×g, 5  min), washed twice with double-distilled 
water, centrifuged again and dried at 100  °C until con-
stant weight.

Genome sequencing and bioinformatics analysis 
of carotenoid‑biosynthesis genes from D. wulumuqiensis 
R12
The genomic DNA of Deinococcus wulumuqiensis R12 
was isolated using a genomic DNA extraction kit (Takara, 
China). The draft genome sequence of strain R12 was 
obtained using the Illumina MiSeq platform, which 
was performed by BGI Tech Solutions Co., Ltd., China, 
using a paired-end library. This whole-genome shotgun 
sequence has been deposited with GenBank under the 
Accession No. APCS00000000 (http://www.ncbi.nlm.nih.
gov/nucco​re/APCS0​00000​00). The functional annota-
tion of proteins was conducted using different databases, 
including Gene Ontology (GO, Version:1.419) (Ash-
burner et  al. 2000), Cluster of Orthologous Groups of 

Table 1  Bacterial strains and plasmids used in this study

Plasmid Relevant properties Source

pET-22b AmpR, T7 promoter Invitrogen

pET-E AmpR, carrying the crtE gene from D. wulumuqiensis R12 This study

pET-EB AmpR, carrying the crtE and crtB genes from D. wulumuqiensis R12 This study

pET-EBI AmpR, carrying the crtE, crtB and crtI genes from D. wulumuqiensis R12 This study

pET-EIB AmpR, carrying the crtE, crtI and crtB genes from D. wulumuqiensis R12 This study

pET-BEI AmpR, carrying the crtB, crtE and crtI genes from D. wulumuqiensis R12 This study

pET-BIE AmpR, carrying the crtB, crtI and crtE genes from D. wulumuqiensis R12 This study

pET-IEB AmpR, carrying the crtI, crtE and crtB genes from D. wulumuqiensis R12 This study

pET-IBE AmpR, carrying the crtI, crtB and crtE genes from D. wulumuqiensis R12 This study

Strains

 Deinococcus wulu-
muqiensis R12

Aerobic, Gram-positive, non-spore-forming, nonmotile, tetrad-forming coccus; forming reddish-orange, circu-
lar, opaque colonies (approx. 1.8–3.8 mm in diameter) after incubation on TGY medium for 14 days at 37 °C

(Wang et al. 2010)

 E. coli DH5α deoR endA1 gyrA96 hsdR17 (rK− -mK+) recA1 relA1 supE44 thi-1 Δ (lacZYA-argF) U169 Φ80lacZ ΔM15 F -λ- Vazyme

 E. coli BL21(DE3) F− ompThsdS (rB− mB−) gal dcm (DE3) Vazyme

 EDWe AmpR, E. coli BL21(DE3) containing the plasmid pET-22b This study

 EBI AmpR, E. coli BL21(DE3) containing the plasmid pET-EBI This study

 EIB AmpR,E. coli BL21(DE3) containing the plasmid pET-EIB This study

 BEI AmpR, E. coli BL21(DE3) containing the plasmid pET-BEI This study

 BIE AmpR, E. coli BL21(DE3) containing the plasmid pET-BIE This study

 IEB AmpR, E. coli BL21(DE3) containing the plasmid pET-IEB This study

 IBE AmpR, E. coli BL21(DE3) containing the plasmid pET-IBE This study

http://www.ncbi.nlm.nih.gov/nuccore/APCS00000000
http://www.ncbi.nlm.nih.gov/nuccore/APCS00000000
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proteins (COG, Version:20090331) (Tatusov et al. 2003), 
Kyoto Encyclopedia of Genes and Genomes (KEGG, Ver-
sion:59) (Kanehisa et  al. 2006), and the NR database in 
GenBank. The secondary metabolite gene clusters were 
predicted using the antiSMASH (Antibiotics and Sec-
ondary Metabolite Analysis Shell) online tool (http://
stoth​ard.afns.ualbe​rta.ca/cgvie​w_serve​r/) (Weber et  al. 
2015). The carotenoid biosynthesis genes from R12 was 
blasted with the type strain Deinococcus radiodurans 
R1 in GenBank. Multiple sequence alignment was con-
ducted by Vector NTI (Version: 11.5.1). The enzymes 
in carotenoid biosynthesis encoded by these genes were 
analyzed by bioinformatics. Theoretical isoelectric point 
and molecular weight was calculated by Compute pI/Mw 
tool (http://us.expas​y.org/tools​/pi_tool.html). SignalP 
(http://www.cbs.dtu.dk/servi​ces/Signa​lP-1.1/) was used 
to predict the signal peptide of these enzymes. Trans-
membrane prediction program TMHMM (http://www.
cbs.dtu.dk/servi​ces/TMHMM​-2.0/) was applied to iden-
tify transmembrane regions.

DNA manipulation and plasmid construction
Fragments encoding crtE, crtB, and crtI were individually 
amplified from the genomic DNA of D. wulumuqiensis 
R12 using the primers listed in Table 2. The termination 
codon TAA of crtB and crtI was removed using appro-
priately designed primers. The crtE PCR fragment was 
digested with NdeI and EcoRI, purified, and ligated into 
the plasmid pET-22b to construct pET-E. The plasmid 
pET-EB was constructed by digesting the crtB fragment 
with EcoRI and HindIII, purifying, and ligating into plas-
mid pET-E. The fragment crtI was digested with HindIII 
and XhoI, purified, and ligated into plasmid pET-EB to 
construct pET-EBI. The fragments crtE1, crtE2, crtE3, 
crtB1, crtB2, crtB3, crtI1, crtI2 and crtI3 with different 
restriction enzyme sites were amplified using the cor-
responding primers listed in Table  2, and cloned into 
pET22b to form five recombinant plasmids with a differ-
ent orders of the three genes, pET-EIB, pET-BEI, pET-
BIE, pET-IBE, pET-IEB, in a similar manner as pET-EBI 
(Fig. 2). Each plasmid was sequenced after each gene liga-
tion, and transferred into E. coli BL21 (DE3), resulting in 
the strains EBI, EIB, BEI, BIE, IBE, and IEB, respectively. 
pET-22b was introduce into E. coli BL21 (DE3) to form 
EDWe, which was used as the negative control.

Isolation of carotenoids and analytical methods
After cultivation, the cells from 10  mL of culture broth 
were harvested by centrifugation at 13,000×g and 4  °C 
for 5  min. The resulting cell pellets were collected, 
washed once with double-distilled water, resuspended in 
acetone and incubated at 55  °C for 15  min, followed by 
renewed centrifugation (13,000×g, 25  °C, 10  min). The 

supernatants were used for HPLC analysis. All extraction 
operations were conducted in the dark.

For HPLC analysis, 20 µL of each supernatant was ana-
lyzed using a Venusil XBP C18 column (4.6 × 150  mm, 
5 µm; Agela Technologies, USA), kept at 30 °C, and eluted 
with a mobile phase comprising 80% acetone, 15% meth-
anol, and 5% isopropanol at a flow rate of 1 mL min−1 for 
40 min. The absorption of the acetone-extracted pigment 
mixture was detected at 472  nm. Commercial lycopene 
(Sigma-Aldrich, USA) dissolved in acetone was used as a 
positive control. All results represent the means ± stand-
ard deviations of three independent experiments.

Nucleotide sequences
The nucleotide sequences of crtE, crtB and crtI from D. 
wulumuqiensis R12 were submitted to the GenBank data-
base with Accession Numbers KP319019, KP319020, and 
KP319021, respectively.

Results
Identification of a carotenoid biosynthetic gene cluster 
from the genome of D. wulumuqiensis R12
Deinococcus wulumuqiensis R12 was isolated from radi-
ation-contaminated soils found in Xinjiang Province, 
China, and the whole genome of R12 was sequenced 
and analyzed in a previous study (Xu et al. 2013). Func-
tional annotation was completed by blasting predicted 

Table 2  Primers used in this work

a  Restriction sites are underlined

Genes Primer sequencea Restriction 
enzyme 
site

crtE1 F: 5′- GATC​CAT​ATG​CGT​CCC​GAA​CTG​ -3′ NdeI

R: 5′- CTT​GAA​TTC​CTT​CTC​CCG​CGT​CGC -3′ EcoRI

crtB1 F: 5′- CCG​GAA​TTC​GTG​ACG​GAA​TTT​TCGCC -3′ EcoRI

R: 5′- CCC​AAG​CTT​GCC​GTG​GGC​GGC​GTC -3′ HindIII

crtI1 F: 5′-CCC​AAG​CTT​ATG​ACA​TCC​CCT​CTT​CCC​TG -3′ HindIII

R: 5′- CCG​CTC​GAG​TCA​GCG​CCG​GAT​GTCG -3′ XhoI

crtI2 F: 5′- CCG​GAA​TTC​ATG​ACA​TCC​CCT​CTT​CCC​TG -3′ EcoRI

R: 5′- CCC​AAG​CTT​GCG​CCG​GAT​GTC​G -3′ HindIII

crtB2 F: 5′-CCC​AAG​CTT​GTG​ACG​GAA​TTT​TCGCC -3′ HindIII

R: 5′- CCG​CTC​GAG​TCA​GCC​GTG​GGC​GGC​GTC​ -3′ XhoI

crtB3 F: 5′- GATC​CAT​ATG​GTG​ACG​GAA​TTT​TCGCC -3′ NdeI

R: 5′- CTT​GAA​TTC​GCC​GTG​GGC​GGC​GTC -3′ EcoRI

crtE2 F: 5′- CCG​GAA​TTC​ATG​CGT​CCC​GAA​CTG -3′ EcoRI

R: 5′- CCC​AAG​CTT​CTT​CTC​CCG​CGT​CGC -3′ HindIII

crtE3 F: 5′- CCC​AAG​CTT​ATG​CGT​CCC​GAA​CTG -3′ HindIII

R: 5′- CCG​CTC​GAG​TCA​CTT​CTC​CCG​CGT​CGC​ -3′ XhoI

crtI3 F: 5′- GATC​CAT​ATG​ATG​ACA​TCC​CCT​CTT​CCC​TG -3′ NdeI

R: 5′- CTT​GAA​TTC​GCG​CCG​GAT​GTC​G -3′ EcoRI

http://stothard.afns.ualberta.ca/cgview_server/
http://stothard.afns.ualberta.ca/cgview_server/
http://us.expasy.org/tools/pi_tool.html
http://www.cbs.dtu.dk/services/SignalP-1.1/
http://www.cbs.dtu.dk/services/TMHMM-2.0/
http://www.cbs.dtu.dk/services/TMHMM-2.0/
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genes against the GO, COG and KEGG databases (Addi-
tional file 1: Figure S1). During the annotation, we found 
a number of genes related to metabolic pathways of 
secondary metabolites and terpenoids. There were 56 
genes related to the secondary metabolites biosynthesis, 
transport and catabolism according to the gene func-
tion annotation of the COG database. According to the 
KEGG database annotation results, 63 genes were found 
to be related to the metabolism of terpenoids and pol-
yketides (Additional file  1: Figure S1). In addition, the 
terpenoid pathway, carotenoid biosynthesis pathway, 
and related genes in the R12 genome were annotated via 
the KEGG pathway database. Using antiSMASH, 19 sec-
ondary metabolic gene clusters were predicted, of which 
cluster 2 and cluster 13 were associated with the terpene 
pathway. The similarity of these two gene clusters, which 
were closest to that of Deinococcus radiodurans R1, the 
type strain of radiation resistant microorganisms, was 31 
and 26%, respectively (Additional file 1: Figure S2). These 
results indicated that the R12 genome indeed contains 
genes related to the synthesis of terpenes. However, the 
orientation and distributions of these homologous genes 
were distinctly different from those of Deinococcus radio-
durans R1.

There were seven key genes involved in the produc-
tion of carotenoids in Deinococcus radiodurans R1, and 
the key genes and carotenoid synthesis pathway were 

marked with red in Fig.  1. The key genes for the syn-
thesis of carotenoids in R12 were identified by BLAST 
comparison against the genome of R1 (Anderson et  al. 
1956). The results of bioinformatic analysis of these genes 
and enzymes were shown in Additional file  1: Table  S1. 
Seven corresponding ORFs in the R12 genome, orf01490, 
orf00123, orf00124, orf01641, orf02322, orf03006, and 
orf02323, showed 85.5, 86.3, 86.8, 82.2, 78.7, 81.0 and 
90.3% sequence identity to DR1395 (crtE, encoding gera-
nylgeranyl diphosphate synthase), DR0862 (crtB, encod-
ing phytoene synthase), DR0861 (crtI, encoding phytoene 
desaturase), DR0801 (crtLm, encoding lycopene cyclase), 
DR0091 (cruF, encoding carotenoid 1′2′-hydratase), 
DR2250 (crtD, encoding C-3′4′ desaturase) and DR0093 
(crtO, encoding carotene ketolase) of R1, respectively. 
Alignment of amino acid sequences showed 85.2, 81.9, 
90.9, 81.0, 77.0, 83.7, and 93.9% sequence identity to the 
corresponding proteins of R1. The isoelectric points of 
the proteins were between 5 and 10. The C-3′4′ desatu-
rase encoded by orf03006 had a signal peptide, and carot-
enoid 1′2′-hydratase encoded by orf02322 had seven 
transmembrane domains. The other corresponding pro-
teins had no signal peptide or transmembrane domains, 
suggesting that they were intracellular enzymes. The ori-
entation and distribution of the carotenoid biosynthesis 
genes in the R12 draft genome sequence was illustrated 
by arrows, compared to those in the whole-genome 

Fig. 2  Construction of recombinant plasmids with different gene order of crtE, crtB and crtI. The fragments crtE1, crtE2, crtE3, crtB1, crtB2, crtB3, crtI1, 
crtI2 and crtI3 with different restriction enzyme sites were amplified and cloned into pET22b to form six recombinant plasmids with different gene 
orders of crtE, crtB and crtI. The termination codon TAA of the first and second genes was removed
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sequence of R1 (GenBank No. NC001263) (Additional 
file 1: Figure S3). The carotenoid biosynthesis genes did 
not constitute a gene cluster in the genomes of these two 
strains, and were distributed in different loci. Although 
the genes from R12 were distributed to different scaffolds 
of the genome, their orientation and order were the same 
as in the genome of R1.

However, when BLAST analysis of these carotenoids 
genes was carried out in the NCBI nucleotide database 
(BLASTN 2.8.0+), there were fewer genes similar to 
those in the genome of R12. Firstly, there were less than 
20 genes similar to the key carotenoid synthesis genes 
of R12, with a low gene similarity in more than 30% of 
the cases. In addition, most of these sequences only had 
sequence-based genomic annotations without experi-
mental verification of gene function. Secondly, the strains 
with genes similar to those from R12 were grouped in the 
genera Deinococcus and Thermus, as well as new genera 
discovered in recent years. There were obvious differ-
ences between these 7 carotenoid biosynthesis genes and 
similar key genes in other Deinococcus species, owing to 
low identities (36.4–81.6%) and small numbers of similar 
sequences (Table  3). The protein sequences encoded by 
these carotenoid biosynthesis genes were also compared 
between R12 and other Deinococcus species (Additional 
file  1: Table  S2). The sequence identities were very low 
(27.8–88.5%), and some proteins could not be found in 
some species (especially lycopene cyclase), which was 
similar to the result of gene alignment. The carotenoid 
biosynthesis genes and proteins of R12 were obviously 
different from those of other Deinococcus species due 
to the low sequence identities and low number of avail-
able strains for alignment. These carotenoid genes and 
the corresponding proteins from R12 are therefore worth 
further study.

Lycopene production in E. coli using carotenoid genes 
from D. wulumuqiensis R12
In carotenoid synthesis, lycopene is formed from FPP 
by three key enzymes, which are encoded by crtE, 
crtB and crtI (Fig. 1). These three genes from D. wulu-
muqiensis R12 were assembled to form pET-EBI, and 
introduced into Escherichia coli BL21 (DE3). Protein 
expression was induced using IPTG. The acetone super-
natants from the EBI strain were separated for 30 min 
by HPLC, and no lycopene was found in the control 
strain EDWe carrying the empty vector pET-22b. Col-
onies of the EBI strain appeared red and the specific 
peak of lycopene was identified by comparing it with 
a commercially available authentic lycopene standard. 
The strain produced a lycopene content of 312 mg L−1, 
proving that crtE, crtB and crtI are indeed the lycopene 
synthesis genes of D. wulumuqiensis R12. The effect 
of different IPTG concentrations was investigated in 
the recombinant strain EBI (Fig. 3). The lycopene yield 
reached the highest value at 42  h, while the biomass 
reached the maximum at 30–36  h. With the increase 
of IPTG concentration (0.2 to 1 mM), the biomass and 
lycopene production both decreased. The highest yield 
of 418  mg  L−1 lycopene was achieved at 42  h with no 
IPTG induction. After 42  h of fermentation, the bio-
mass and lycopene concentration decreased. This 
decrease may be caused by the consumption of nutri-
ents, the accumulation of harmful metabolites and the 
pressure on strain growth by the highly hydrophobic 
lycopene stored in the cell membrane (McNerney and 
Styczynski 2017). At the same time, cell lysis and the 
instability of lycopene after long-term fermentation can 
also lead to a decrease of lycopene yield.

Table 3  Percentages of  sequence identity of  carotenoid biosynthesis gene sequences between  D. wulumuqiensis R12 
and other Deinococcus spp.

crtE (%) crtB (%) crtI (%) crtLm (%) cruF (%) crtD (%) crtO (%)

D. radiodurans R1 85.50 86.30 86.80 82.20 78.70 81.00 90.30

D. gobiensis I-0 78.06 67.70 77.90 72.50 68.70 70.40 80.70

D. actinosclerus BM2 73.20 66.00 74.00 67.40 56.60 71.00 81.60

D. swuensis DY59 75.80 68.90 75.40 62.90 67.00 69.70 81.60

D. soli N5 72.90 67.90 74.90 65.30 63.30 72.10 81.00

D. deserti VCD115 75.10 59.00 75.00 / 38.10 64.60 75.60

D. geothermalis DSM 11300 74.90 65.30 75.00 61.50 61.30 69.40 75.80

D. puniceus DY1 74.90 65.70 73.30 60.00 52.50 64.20 80.50

D. ficus CC-FR2-10 66.30 62.30 74.50 / 36.80 62.30 75.70

D. maricopensis DSM 21211 70.40 62.40 73.10 63.50 59.10 69.30 71.50

D. proteolyticus MRP 61.10 55.80 75.00 / 51.80 63.70 74.50

D. peraridilitoris DSM 19664 51.20 59.20 68.00 / 36.40 62.20 71.80
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Optimization of the culture medium for lycopene 
accumulation
To determine the optimal culture medium, LB, 2× YT, 
and SM medium were tested. The lycopene produc-
tion of the EBI strain reached 452.49 mg L−1 in 2× YT 
medium and 418  mg  L−1 in LB medium. By contrast, 
the yield in SM medium was only 20  mg  L−1 (Fig.  4). 
The effects of additional carbon sources on lycopene 
production were investigated by adding different 
concentrations of carbon sources to 2× YT medium 
(Table  4). The production of lycopene was inhibited 
by the addition of starch, lactose, and sucrose, while it 

was increased by the addition of glycerol. Since glyc-
erol had already been proved to increase the yield of 
lycopene in previous studies (Kim et  al. 2011), dif-
ferent concentrations of glycerol (0–100  g  L−1) were 
added to 2× YT medium (2× YT + G). As shown in 
Fig. 5, the biomass reached the maximum of 6.45 g L−1 
after 30  h, and the lycopene production reached the 
maximum of 555  mg  L−1 after 42  h when 20  g  L−1 
glycerol was added. However, the content of lycopene 
gradually decreased when the initial glycerol concen-
tration was greater than 20  g  L−1, indicating that the 
accumulation of lycopene did not require excessive 
addition of glycerol. Furthermore, cell growth declined 
rapidly with the increase of initial glycerol concentra-
tion, and low levels of biomass limited the lycopene 
production. These results demonstrated that among 
the culture media tested in this work, the 2× YT + G 
medium (20  g  L−1) was most suitable for the produc-
tion of lycopene.

The effects of temperature on cell growth and lycopene 
production
Temperature is considered the main physical element 
that directly influences the bacterial growth rate and 
thus plays an important role in the biosynthesis of carot-
enoids. Three temperatures (25, 30, and 37  °C) were 
assessed according to previous studies (Kim et al. 2009). 
As shown in Fig. 6, 37 °C was the best temperature for the 
growth of the EBI strain according to the DCW results. 
The highest DCW was 7.3 g L−1 at 37 °C after cultivation 
for 30 h. Moreover, the total lycopene content was much 
higher at 37 °C than at 30 or 25 °C. The highest lycopene 
content was 564 mg L−1 at 37 °C after cultivation for 42 h. 
The DCW and lycopene content were the lowest at 25 °C, 
and the lycopene yield was also especially markedly lower 
at this temperature. The high biomass obtained at 37 °C 
may explain the high lycopene content in the cultures. 
The lycopene content decreased after 42 h of cultivation, 
suggesting that cultivation at 37 °C for 42 h is optimal for 
biomass accumulation and lycopene production.

The effect of light on cell growth and lycopene production
Light affects many biological activities such as microbial 
growth, morphogenesis, and biosynthesis of reduced 
hydrogen equivalents in living organisms (Chen and 
Chang 2006; Bohne and Linden 2002). In addition, lyco-
pene is a light-sensitive product. Therefore, the influ-
ence of light on lycopene biosynthesis was evaluated. The 
shake flasks were wrapped in silver paper to protect lyco-
pene in our system. As shown in Fig. 7, the shake flasks 
were exposed to 40 W of LEDs to assess the influence of 
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Fig. 3  Cell dry weight and lycopene yield of strain EBI induced with 
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with the addition of 0–1 mM IPTG at 30 °C for 48 h. b Lycopene 
production of EBI in LB medium with the addition of 0 to 1 mM IPTG 
at 30 °C for 48 h. The data represent the means of three independent 
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light. The strain produced the highest lycopene content 
(581.2  mg  L−1) after 42  h of fermentation in the dark, 
while the biomass was higher under the influence of light. 
The maximum biomass reached 7.23  g  L−1 under LED 
lights at 30 h. These results indicate that light has a non-
negligible effect on lycopene accumulation.

Optimal conditions for lycopene production in shake flasks
Based on the results of fermentation optimization, the 
temperature was fixed at 37  °C during the entire cultiva-
tion process, and 2× YT medium was used for seed culti-
vation for 12 h. The preculture was then used to inoculate 
50 mL of fresh 2× YT + G medium (with 20 g L−1 glycerol) 
in 250-mL shake flasks. Cultivation was conducted in the 
dark. As shown in Fig.  8, the biomass increased quickly 
during the first 18 h of cultivation, then increased slowly, 
and reached a maximum of 7.35 g L−1 at 30 h. The lyco-
pene content increased at the beginning, reaching a maxi-
mum at 42 h (618 mg L−1), and then gradually decreased. 
Compared with the original conditions, the biomass of EBI 
increased 1.99 times and the yield of lycopene improved 
1.98-fold after optimization.

Construction of recombinant plasmids with different crt 
gene order
The DNA fragments encoding crtE, crtB and crtI were 
amplified and assembled to from the plasmids pET-EIB, 
pET-BEI, pET-BIE, pET-IBE, and pET-IEB (Fig. 2), which 
were transferred into E. coli BL21(DE3), resulting in the 
recombinant strains EIB, BEI, BIE, IBE, and IEB, respec-
tively. Acetone extracts from these strains were analyzed 
for lycopene content by HPLC (Table  5). The strain BEI 
had the lowest lycopene content of 228  mg  L−1. By con-
trast, the lycopene production of the IEB strain reached up 
to 688 mg L−1, which was the highest of all six strains and 
more than three times higher than that of the lowest strain.

Discussion
Many efforts have been made to improve the yield 
of lycopene by engineering bacteria, mostly via the 
expression of exogenous crtE, crtB and crtI genes for 
lycopene synthesis from Erwinia to Pantoea species. 
Yoon et  al. constructed engineered E. coli strains har-
boring lycopene genes from Pantoea agglomerans and 
Pantoea ananatis, which produced 60 and 35  mg  L−1 
of lycopene, respectively (Yoon et  al. 2007). When the 
genes crtE, crtB and crtI from Erwinia uredovora were 
integrated into Candida utilis, it produced a lycopene 
yield of 758  μg  g−1 DCW (Miura et  al. 1998). Mat-
thaus et  al. constructed a plasmid harboring crtB and 
crtI from Pantoea ananatis and transformed Yarrowia 
lipolytica, which produced 16  mg  g−1 DCW of lyco-
pene (Matthäus et al. 2014). When the lycopene synthe-
sis genes from different bacteria were cloned into the 
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Fig. 4  Dry cell weight and lycopene yield of strain EBI in different 
media. a Cell dry weight from strain EBI in LB medium (black squares), 
2× YT medium (red circles), and SM medium (blue triangles) with 
no IPTG, after growth at 30 °C for 48 h. b Lycopene content of strain 
EBI in LB medium (black squares), 2× YT + G medium (red circles), 
and SM medium (blue triangles) with no IPTG, after growth at 
30 °C for 48 h. The data represent the means of three independent 
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Table 4  Effects of different auxiliary carbon sources (10 g/L in 2× YT medium) on the lycopene yield of the strain EBI

Auxiliary carbon source Glucose Glycerol Fructose Starch Lactose Sucrose

Lycopene content (mg L−1) 371 ± 9.1 481 ± 8.9 449 ± 12.3 295 ± 3.6 183 ± 7.7 214 ± 10.9

DCW 6.2 ± 0.28 5.8 ± 0.12 5 ± 0.3 4.5 ± 0.28 3.3 ± 0.11 4.1 ± 0.17
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pGAPZB plasmid and introduced into Pichia pastoris 
X33, the recombinant strain showed a lycopene pro-
duction of 73.9 mg L−1 (Bhataya et al. 2009). Bahieldin 
et  al. constructed a plasmid harboring the crt genes 
from Pantoea ananatis under the control of the ADH2 
promoter and introduced it into Saccharomyces cer-
evisiae, which produced a yield of 3.3 mg lycopene g−1 
DCW (Bahieldin et  al. 2014). Thus, diverse sources of 
lycopene synthesis genes expressed in different hosts 
resulted in different lycopene yields. However, the 

lycopene synthesis genes from extremophilic radia-
tion-resistant microorganisms were rarely investigated. 
In this work, the lycopene synthesis genes from the 
recently isolated extremophilic microorganism Deino-
coccus wulumuqiensis R12 were analyzed and cloned in 
E. coli. The transgenic E. coli strain EBI produced a high 
content of lycopene after twin optimization of fermen-
tation conditions and gene expressing levels (Fig.  9), 
and thus provides a new microbial gene source for lyco-
pene synthesis and lays a good foundation for improv-
ing lycopene production in engineered Escherichia coli.

In prokaryotic expression systems, the strong inducer 
IPTG exacerbates the toxicity of haloalkane substrates, 
causing damage to the E. coli host, which often bears a 
metabolic burden due to the recombinant plasmid it con-
tains. Excess IPTG can result in non-trivial economic 
losses and toxic effects, including reduced cell growth 
and lower recombinant protein concentration (Papaneo-
phytou and Kontopidis 2014). In our study, when IPTG 
was not added at all, the lycopene content and cell growth 
were close to the highest. With the increase of IPTG con-
centration, the lycopene content and cell growth gradu-
ally decreased. Under high levels of protein production, 
the E. coli cells bear a negative pressure known as the 
metabolic burden or metabolic load, which is attributed 
to the overconsumption of metabolic precursors (e.g., 
amino acids, adenosine triphosphate, FPP) to form non-
essential foreign proteins, as well as the maintenance and 
replication of recombinant plasmid vectors (Dvorak et al. 
2015; Mairhofer et  al. 2013). Low IPTG concentrations 
can result in efficient induction, and leaky expression 
sometimes occurs even when IPTG is not added, which 
allows for sufficient expression of genes within the path-
way to achieve a good yield. Similar inducer concentra-
tions that allow full gene expression have been reported 
(Kim et  al. 2011; Bahieldin et  al. 2014; Kim et  al. 2009; 
Zhang et al. 2015b). In some cases, tuning the IPTG con-
centration by reducing it dramatically or even not adding 
any inducer can improve the host’s fitness, although the 
mechanism driving the induction of T7 RNAP expression 
in the absence of IPTG is not clear. Here, we showed that 
culturing E. coli cells in LB medium in the absence of the 
inducer IPTG could provide a cost-effective, simple and 
competitive alternative for the production of lycopene.

Optimization of the culture medium is a useful method 
to enhance lycopene production. In this study, the use of 
glycerol as an auxiliary carbon source greatly improved 
lycopene production, which may be due to a higher ace-
tate concentration in the cultures grown on glucose than 
in the ones grown on glycerol. At high concentrations, 
acetate acts as an inhibitory metabolite, lowering carote-
noid production. Moreover, glucose has been reported to 
catabolically repress the T7 promoter in the recombinant 
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system we used for lycopene synthesis (Yang and Guo 
2014; Guzman et al. 1995).

Temperature is one of the most important environ-
mental factors affecting the growth and development of 
E. coli. In protein expression systems based on E. coli, 
temperature affects both induction and protein expres-
sion. Although it was found that lower temperatures 
favor more lycopene formation (Kim et  al. 2009; Vadali 
et  al. 2005; Lee et  al. 2004), when the strain EBI was 
grown at 37  °C the lycopene content and DCW were 
both higher than at either 30 or 25  °C. Low tempera-
tures decrease the rate of nutrient consumption, and 
thus some metabolic processes, such as protein synthesis, 

slow down. Conversely, appropriately high temperatures 
can promote cell growth, balance enzyme expression 
and increase the activities of enzymes. It is well-known 
that carotenoids are important for the protection against 
photo-oxidative damage in non-photosynthetic organ-
isms. Many non-phototrophic bacteria and fungi rely on 
carotenoids for protection when growing exposed to light 
and air (Marova et al. 2012). As with other carotenoids, 
the stability of lycopene is affected by light. Under illu-
mination, lycopene decomposes via isomerization and 
oxidation, which protects the cells from oxidative dam-
age caused by exposure to strong light, but also decreases 
the concentration of lycopene in the cells (Hernández-
Almanza et al. 2016).
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The efficiency of multi-gene expression systems is 
mainly affected by promoters, transcription factors, and 
translation levels. Nevertheless, the gene order is also 
important. Within an operon, the transcription efficiency 
of a gene decreases as its position moves away from the 
promoter. The expression of a gene at the first position 
is therefore higher than that of an identical gene at the 
second position, which should be higher than that of an 
identical gene at the third position, and so on (Han et al. 
2011). A novel approach for metabolic pathway optimi-
zation, oligo-linker mediated assembly (OLMA), was 
applied in the lycopene synthetic pathway to swap the 
order of crtE, crtB and crtI, which led to selection of the 
best strain EBI, the lycopene yield of which was 36 times 
higher than that of the least productive strain IEB (Zhang 
et al. 2015a). In our study, the productivity of strain IEB 
was 3 times higher than that of the least productive strain 
BEI, which suggested that the order of genes had a great 
influence on lycopene synthesis. An improper gene order 
can result in a severe imbalance in the pathway, which in 
turn affects the product yield. Through sequential con-
trol of the downstream, upstream, and competing path-
ways of farnesyl diphosphate (FPP) via a predetermined 
order of key genes in the crucial metabolic node in the 
biosynthesis of terpenoids, a carotenoid production of 
1156  mg  L−1 (20.79  mg  g−1 DCW) was achieved (Xie 
et  al. 2015). These strategies indicate that multi-gene 

expression requires the orderly arrangement of genes to 
balance their translation levels. Combined with the size 
and expression of enzymes, a high level of synergy is 
needed to achieve higher yields.

Phytoene desaturase (PDS, encoded by crtI), the first 
enzyme involved in phytoene conversion to colored 
carotenoids, catalyzes a rate-limiting step in carotenoid 
biosynthesis (Chamovitz et al. 1993). The catalytic func-
tions of bacterial phytoene desaturases are diverse, which 
can lead to low lycopene concentrations because of its 
poor catalytic specificity. Stickforth et  al. demonstrated 
that high phytoene desaturase concentrations or a low 
phytoene supply favor the formation of lycopene (Stick-
forth and Sandmann 2007). Ostrov et al. introduced the 
lycopene production pathway into a modular biosensor 
and found that after adding two copies of lycopene syn-
thase (encoding by crtI), lycopene production increased 
more than three times (Ostrov et  al. 2017). Among the 
six strains in our study, the lycopene yield of IEB was the 
highest. This is probably due to the fact that the crtI gene 
was closest to the promoter, which increased its transla-
tion efficiency and the final substrate conversion rate to 
lycopene. At the same time, lycopene is only synthesized 
from FPP after successful multi-gene expression of crtE, 
crtB and crtI, which means that balanced gene expression 
is needed to avoid excessive accumulation of intermedi-
ate products that can inhibit cell growth.

In conclusion, a recombinant strain with a new source 
of lycopene synthesis genes from the radiation resistant 
microorganism Deinococcus wulumuqiensis R12 was con-
structed. We found some important differences between 
these lycopene synthesis genes and other homologous 
microbial genes, which merits further study. After opti-
mization of culture media, temperature and illumination, 
the lycopene content of strain EBI reached 618 mg L−1 in 
2× YT + G medium (with 20 g L−1 glycerol), after 42 h of 
fermentation in the dark at 37 °C. Finally, six recombinant 
strains with different crt gene orders were constructed, 
and the highest lycopene content was 688  mg  L−1 in 
strain IEB, which was about three times higher than that 
of the lowest strain BEI, underscoring the effect of gene 
regulation on lycopene synthesis. Taken together, the 
strain IEB was improved 2.2-fold compared to the origi-
nal recombinant strain EBI. Our results will provide new 
guidance for the synthesis, regulation and industrial pro-
duction of lycopene and other carotenoids.

Table 5  Lycopene production of the six recombinant strains with different crt gene order

The strains are named according to the gene order of E: crtE, B: crtB, and I: crtI

Strain EBI EIB BEI BIE IEB IBE

Lycopene content (mg L−1) 605 ± 12 583 ± 15 228 ± 9 373 ± 16 688 ± 10 529 ± 18

Fig. 9  Lycopene production was improved by the combined 
optimization of culture conditions and gene order. The E. coli strain 
EBI produced a high content of lycopene after twin optimization of 
fermentation conditions and gene expressing levels
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