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Chemotherapeutic and targeted agents can
modulate the tumor microenvironment and
increase the efficacy of immune checkpoint
blockades
Jun-Yan Li, Yu-Pei Chen, Ying-Qin Li, Na Liu and Jun Ma*

Abstract

The development of immune checkpoint blockade (ICB)-based immunotherapy has dramatically changed methods
of cancer treatment. This approach triggers a durable treatment response and prolongs patients' survival; however,
not all patients can benefit. Accumulating evidence demonstrated that the efficacy of ICB is dependent on a robust
antitumor immune response that is usually damaged in most tumors. Conventional chemotherapy and targeted
therapy promote the antitumor immune response by increasing the immunogenicity of tumor cells, improving
CD8+ T cell infiltration, or inhibiting immunosuppressive cells in the tumor microenvironment. Such
immunomodulation provides a convincing rationale for the combination therapy of chemotherapeutics and ICBs,
and both preclinical and clinical investigations have shown encouraging results. However, the optimal drug
combinations, doses, timing, and sequence of administration, all of which affect the immunomodulatory effect of
chemotherapeutics, as well as the benefit of combination therapy, are not yet determined. Future studies should
focus on these issues and help to develop the optimal combination regimen for each cancer.
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targeted therapy, tumor microenvironment

Introduction
Immune checkpoint blockade (ICB)-based immunother-
apy has resulted in a revolutionary shift in cancer treat-
ment. Distinguished from conventional chemotherapy
and radiotherapy, which suppress tumors by directly kill-
ing malignant cells, ICBs rescue the antitumor activity of
T cells through targeted blockade of checkpoints, such
as cytotoxic T lymphocyte-associated protein 4 (CTLA-
4), programmed cell death 1 (PD-1), and its ligand PD-

L1 (also known as CD274), and are superior in establish-
ing immune memory and preventing recurrence [1]. In
the past decade, the clinical uses of ICBs have shown
promising results in the treatment of many different
kinds of malignancies [2–4]. To date, several distinct
ICBs, including (1) the CTLA-4 antibody ipilimumab
(Yervoy); (2) the PD-1 inhibitors: Cemiplimab (Libtayo),
nivolumab (Opdivo), and pembrolizumab (Keytruda);
and (3) the PD-L1 blockers: Atezolizumab (Tecentriq),
avelumab (Bavencio), and durvalumab (Imfinzi), have
been approved to treat a variety of advanced cancers, in-
cluding melanoma, non-small cell lung cancer (NSCLC),
hepatocellular carcinoma (HCC), head and neck squa-
mous cell carcinoma (HNSCC), and urothelial carcin-
oma. Furthermore, these and several other ICBs are
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under clinical test and are expected to expand the panel
of oncological indications.
Despite their increasing varieties and indications, ICBs

have been demonstrated to induce an effective and dur-
able antitumor immune response only in a small subset
of patients. The response rates to ICBs used as stand-
alone therapeutic interventions in unselected patients
are mostly less than 30% in a variety of tumor types [5],
which is unsatisfactory. Further improving the antitumor
efficacy of ICB-based immunotherapy has become one
of the main challenges in clinical oncology.
The clinical efficacy of ICBs depends on the pre-

existing antitumor immunity. Immune checkpoints are
the negative regulators of antitumor immunity. PD-1
and CTLA-4 are expressed on T cells during priming
and activation, while in the tumor microenvironment
(TME), local interferon-gamma (IFNγ), mainly derived
from effector lymphocytes, induces the expression of
PD-L1 on cancer cells and intra-tumoral immune cells.
Accumulating evidence suggests that tumors infiltrated
by CD8+ T cells that can recognize and kill cancer cells
are more likely to respond to ICB treatment [6].
Historically, conventional chemotherapy was consid-

ered as immunosuppressive because it broadly affects
immune cells, in addition to tumor cells, resulting in
myelosuppression and leukopenia. However, recent stud-
ies have demonstrated that chemotherapy can activate
an endogenous antitumor immune response, which
partly contributes to their therapeutic effects. Similar
immunomodulatory effects were also observed for tar-
geted agents, such as tyrosine kinase inhibitor (TKI),
which originally inhibited the proliferation of neoplastic
cells with cancer-specific alterations, likely because of
the shared signaling pathways between cancer and im-
mune cells. Following these findings, both conventional
chemotherapeutics and targeted agents have been sug-
gested to be combined with ICBs to enhance antitumor
efficacy. Previous treatment success of the combination
therapies confirmed their synergistic effect [7–10] and
encouraged further investigations. Given the clinical mo-
mentum in combining these two classes of therapies, it
is crucial to understand the actions of chemotherapeu-
tics on the antitumor immune response. Here, we
summarize the discovered immunomodulatory chemo-
therapeutics and targeted agents, discuss how they mod-
ify antitumor immunity, and review the possibility of
combining these medications with ICBs.

Antitumor CD8+ T-cell immunity – the basis for
ICB treatment efficacy
CD8+ cytotoxic T lymphocytes (CTLs)-mediated antitu-
mor immunity is the backbone of immune elimination
of cancer, as well as the basis for the effectiveness of the
ICB. This multistep event is also termed as the cancer-

immunity cycle. It starts with the release of neoantigens
created by oncogenesis (step 1). Next, antigen-
presenting cells (APCs), such as dendritic cells (DCs),
will capture these neoantigens and migrate to the
draining lymph nodes, where they present the proc-
essed peptide to naïve T cells (step 2); leading to the
priming and activation of tumor-specific T cells (step
3). During activation, T cells also acquire a chemotactic
ability toward the tumor via their expression of C-X-C
motif chemokine receptor 3 (CXCR3), a chemokine re-
ceptor that can bind to cancer-derived ligands (such as
C-X-C motif chemokine ligand, CXCL9, CXCL10, and
CXCL11). Then, under the chemokine-receptor inter-
action, the activated T cells traffic to (step 4) and infil-
trate into the tumor bed (step 5), where they
specifically recognize (step 6) and eventually kill their
target cancer cells (step 7) [11].
Immune escape from ICB-based immunotherapy has

been attributed to failures in the steps of the cancer-
immunity cycle, which varies in different tumor types
[12]. Various cellular and humoral factors in the TME
drive or reduce anticancer immunity to account for
these failures. They constitute different tumor immune
landscapes and have been demonstrated to be associated
with the tumor response to ICBs (Fig. 1).
Tumor immunogenicity plays a central role in initiat-

ing the antitumor immune response [13]. This depends
on two key factors: (1) tumor antigenicity, i.e., the tumor
neoantigens which can be recognized as non-self
compounds; and (2) immune adjuvanticity, i.e., the in-
flammatory signals that promote the recruitment, matur-
ation, and antigen presentation of immune cells such as
DCs. In other words, the tumor immunogenicity favors
the generation and recruitment of tumor-specific CTLs,
avoiding the immune-desert phenotype which indicates
a non-response to ICB treatment. Consistent with these
notions, highly-mutated malignancies with an abundance
of neoantigens, such as melanoma, NSCLC, and HNSC
C, are more sensitive to ICB treatment [14, 15]. Patients
with colorectal cancer (CRC) with high microsatellite in-
stability or defects in the mismatch repair system are
likely to have improved tumor control after treatment
with PD-1/CTLA-4 inhibitors [16, 17].
Another prerequisite for a successful ICB response is

the infiltration of activated tumor-specific CTLs. High
intra-tumoral CTL levels are recognized as a predictor
of improved response and treatment outcome of ICB
therapy, while immune-excluded tumors, with T cells
present at the invasive margin, usually respond less to
ICBs. Accumulating evidence suggests that the desmo-
plastic stroma and disorganized tumor vasculature of the
TME are the main reasons for the immune-excluded
phenotype. In line with this notion, single-agent ipilimu-
mab has been demonstrated to be ineffective to treat

Li et al. Molecular Cancer           (2021) 20:27 Page 2 of 21



advanced pancreatic ductal adenocarcinoma (PDAC), a
tumor characterized by fibrotic stroma [18]. Further-
more, vascular endothelial growth factor A (VEGF-A),
which promotes the tumor vasculature, is associated
with treatment resistance to anti-CTLA-4 antibodies in
patients with melanoma [19], likely because it impairs
endothelial-T cell adhesion and subsequent T-cell infil-
tration by reducing levels of intercellular adhesion mol-
ecule–1 (ICAM-1), as well as vascular cell adhesion
molecule–1 (VCAM-1) [20], and triggers CD8+ T cell
apoptosis by inducing FASL on endothelial cells [21].
Immunosuppressive cells are the most important sup-

pressors for the antitumor immune response. Previous
studies have confirmed the immunosuppressive roles of
regulatory T cells and B cells (Tregs and Bregs), anti-
inflammatory tumor-associated macrophages (M2-

TAMs), tumor-associated neutrophils (TANs), and
myeloid-derived suppressor cells (MDSCs) in various
kinds of cancers. These populations are selectively
accumulated and activated in tumor sites by either
cancer-cell secreted chemokines or chronic inflamma-
tory signals. Cellular and humoral factors have been
exploited to suppress CTL-mediated antitumor re-
sponse, including (1) immunosuppressive cytokines,
such as interleukin (IL)-10, IL-35, and transforming
growth factor-beta (TGF-β), which inhibit DC matur-
ation and antigen presentation; T-cell activation; and the
priming and cytotoxicity of CTLs; (2) immunosuppres-
sive metabolites, including adenosine, kynurenine, react-
ive oxygen species, lactic acid, and nitric oxide are
generally derived from MDSCs, M2-TAMs, Tregs, and
tumor-associated neutrophils. These molecules not only

Fig. 1 Failure of cancer-immunity cycles in three different tumor-immune landscapes. a In the immune-desert tumor, the generation of tumor-
specific CD8+ T cells is impaired because of low immunogenicity. b In the immune-excluded tumor, CTL infiltration is impaired because the
arriving tumor-specific CD8+ T cells are shut out by the aberrant vasculature and stromal barriers. c In the immune-inflamed tumor, the
immunosuppressive cells directly impair the cytotoxicity of tumor-specific CD8+ T cells and indirectly inhibit T cell activation by suppressing DCs.
Arg1: argase1; Breg: regulatory B cell, CTLA-4: cytotoxic T lymphocyte-associated protein 4, DCs: dendritic cells, IDO1: indoleamine 2,3-dioxygenase
1, IL: interleukin, MHC: major histocompatibility complex, NETs: neutrophil extracellular traps, PD-1/PD-L1: programmed cell death 1 and its ligand
1, TAM: tumor-associated macrophage, TAN: tumor-associated neutrophils, TGFβ: transform grow factor-β, TMB: tumor mutation burden, Treg:
regulatory T cell, VEGF-A & VEGFR: vascular endothelial growth factor A and its receptor
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directly impaired CTL antitumor capacity by decreasing
effective molecules like IFNγ and perforin, and upregu-
lating co-inhibitory receptors such as PD-1 and TIM3,
but also positively increased the recruitment of suppres-
sor cells, thereby exacerbating immunosuppression; (3)
immunosuppressive ligands: M2-TAMs, TANs, Bregs,
and MDSCs usually have high levels of surface inhibi-
tors, such as PD-L1, while Tregs can also inactivate DCs
via the expression of CTLA-4, which binds to CD80/
CD86 on DCs and transduces suppressive signals to
interrupt DC activation [22]; (4) consumption of key nu-
trients and grow factors: Tregs competitively consume
IL-2, while M2-TAMs and MDSCs can reduce local L-
cysteine, L-arginine, and tryptophan, thereby restricting
the activation and proliferation of CTLs; (5)
vascularization and stroma promotion: both M2-TAMs
and MDSCs are important sources of VEGF-A and they
prevent CTL infiltration by promoting the proliferation
of cancer-associated fibroblasts [23, 24]; and (6) cancer
cell protection: Neutrophil extracellular traps wrap and
coat tumor cells and thus protect them from CTL-
mediated killing [25].
In addition to immunosuppression, these populations, es-

pecially M2-TAMs, play important roles in tumorigenesis.
Tissue chronic inflammation mediated by macrophages
was thought to be mutagenic and growth-promoting. With
the expression of pro-tumoral cytokines, such as EGF and
CCL18, M2-TAMs, MDSCs, and TANs directly activate
the migration of cancer cells [26–28]. M2-TAM and
MDSCs induce the rapid generation of immature vascular
networks providing the nutrients and oxygen for tumor
proliferation [29]. M2-TAMs can also enhance tumor inva-
sion directly [30], and induce the entrance of tumor cells
into circulation [31]. In the metastatic tumor microenviron-
ment, M2 macrophage assist tumor cell extravasation from
blood vessels [32] and supported the seeding, survival, and
prospering of tumor cells through the formation of a
nurturing niche [33, 34]. Consistent with their tumor
promotion and immune suppression effects, accumu-
lating evidence suggests that the high accumulation of
Tregs, Bregs, M2-TAMs, TAN, or MDSCs is associated
with a poor response to ICB treatment in a variety of
cancers [35, 36].
In contrast to suppressive immune populations, CTL-

promoting cells are also present in the TME and are
usually related to a better response to ICB therapy.
Natural killer (NK) cells and gamma/delta T cells (γ/δ T
cells) are the important lymphocytes in the innate
immune system. In an MHC-independent cytolytic
manner, these two populations can effectively deplete
tumor cells with antigen-presentation deficiency, and
thus serve as allies of antitumor CTLs. Besides, previous
studies have found that both NK and γ/δ T cells can
promote the generation of CTLs. NK cells can recruit

conventional DCs to the tumor bed via chemo-
attractants, such as XCL1, CCL5, and Fms-related tyro-
sine kinase 3 ligand (FLT3LG) [37, 38], while γ/δ T cells
can directly act as professional APCs [39]. B cells are
also key professional APCs in cancer. Recent studies
have demonstrated that they participate in the formation
of tertiary lymphoid structures (TLS), allowing the gen-
eration of tumor-specific CTLs, and eventually driving
the tumor response to ICB treatments [40–42].

Chemotherapeutics promote antitumor immunity
(Fig. 2)
Chemotherapeutics originally direct inhibited or killed
malignant cells to achieve their therapeutic effects. Re-
cently, some frontline drugs have been found to add-
itionally promote antitumor immunity by increasing
tumor immunogenicity, improving T cell infiltration, or
depleting the immunosuppressive populations. There-
fore, it is reasonable to hypothesize that chemotherapeu-
tics specifically remove the constraints of the antitumor
immune response in different TMEs, making them the
first-line option for these tumors. The immunomodula-
tory effects of some popular chemotherapeutics are
summarized in Table 1. Some of them have been well-
reviewed previously [85]; therefore, the current review
mainly focuses on recent findings and their role in com-
bination therapy with ICBs.

Chemotherapeutic and targeted agents activate
antitumor CD8+ T cell immunity
Decreased immunogenicity is one of the most important
characteristics of malignancies, leading to immune
ignorance. Besides, in most cases, chemotherapeutics
induce apoptosis and necrosis of cancer cells, which is
incapable of inducing adaptive immunity. By contrast,
immunogenic cell death (ICD) is characterized by its
potential to increase tumor immunogenicity and thus
establish long-lasting antitumor immunity. To date,
several kinds of chemotherapeutics that have been com-
monly used in clinical practice were found to mediate
their antineoplastic activity by inducing ICD of malig-
nant cells [86].
Anthracyclines, oxaliplatin, and paclitaxel are well-

recognized as ICD inducers. Preclinical and clinical
histological observations have demonstrated that these
agents significantly increase the abundance of intra-
tumoral CD8+ T cells, which favors their antineoplastic
efficacy and is associated with better patient outcomes
[85, 87]. The mechanisms through which they induce
ICD have been determined [13]. Traditionally, several
processes, such as the unfolded protein response, au-
tophagy, inflammasome signaling, Toll-like receptor 3
(TLR3) signaling, and type 1 interferon response are re-
lated to ICD. During these processes, damage-associated
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molecular patterns (DAMPs) including adenosine tri-
phosphate (ATP), the surface-exposure of calreticulin,
high-mobility group box1 (HMGB1) promoted DC-
mediated CTL activation; and chemokines such as
CXCL10 enhanced CTL recruitment. Moreover, recent
studies have found that ICD-inducing drugs can also
modulate antitumor CTL immunity through tumor-
infiltrating NK cells and B cells. In human ovarian can-
cer, platinum and taxane chemotherapy significantly
increase NK cell infiltration and local T cell oligoclonal
expansion [47]. While in human breast cancer, the neo-
adjuvant doxorubicin, cyclophosphamide, and paclitaxel
combination regimen switched the tumor-infiltrating B
cells to a new ICOSL+ phenotype. These newly emer-
ging B cells are involved in the formation of the TLS,
and significantly increased the numbers and the cytotox-
icity of tumor-specific CD8+T cells [52] (Fig. 1a).

Given their ability to activate the antitumor CTL re-
sponse, ICD-inducing chemotherapeutics are believed to
combine with and enhance the therapeutic efficacy of
ICBs. Doxorubicin plus PD-1 or PD-L1 antibodies
showed a significantly improved antitumor effect in vari-
ous murine cancers, such as melanoma and breast can-
cer [88, 89]. In human metastatic triple-negative breast
cancer (TNBC), short-term doxorubicin induction
sensitized the tumor to PD-1 blockade [90]. Similarly,
oxaliplatin was demonstrated to boost the efficacy of
anti-PD-L1 therapy in murine colorectal cancer [91].
Paclitaxel and ICB combination therapy elicited a super-
ior tumor-suppression effect in nonimmunogenic squa-
mous NSCLC [8].
In addition to anthracyclines, teniposide, another topo-

isomerase II inhibitor, was reported recently to induce
ICD; however, it acts via a different mechanism to that

Fig. 2 Chemotherapeutics drive cancer-immunity cycles. Chemotherapeutics induce immunogenic cell death (a), promote CD8+ T cell infiltration
(b), and inhibit immunosuppressive cells (c). ATP: adenosine-triphosphate, BRAF: B-Raf proto-oncogene, serine/threonine kinase, CTL: Cytotoxic T
lymphocytes, CXCL10: C-X-C motif chemokine ligand 10, DC: dendritic cells, HMGB1: high-mobility group box1, ICAM-1: intercellular adhesion
molecule, IFN-γ: interferon-gamma, MDSC: myeloid-derived suppressor cell, NK cells: natural killer cells, PARP: Poly (ADP-ribose) polymerase, TAM:
tumor-associated macrophage, TKI: tyrosine kinase inhibitor, TLS: Tertiary lymphoid structures, TNF: tumor necrosis factor, Treg: regulatory T cell,
VCAM: vascular cell adhesion molecule
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of anthracyclines. Topoisomerase II inhibitors induced
the proliferation-arrest or demise of neoplastic cells by
increasing DNA double-strand breaks [92]. It has been
suggested that damaged DNA fragments in the nucleus
could be actively exported to the cytoplasm, possibly to
prevent misincorporation into genomic DNA, and
trigger the innate immune response mediated by the
cGAS-STING (cyclic GMP–AMP synthase/stimulators
of interferon gene) pathway [93–95]. In line with this
notion, teniposide activated the tumor-cell intrinsic
type-I interferon (IFN) response and upregulated fea-
tures of ICD. Besides, teniposide strengthened the tumor
cell antigen presentation machinery, which augmented
T-cell recognition. Consequently, in rodent colon can-
cer, teniposide induced robust antitumor CD8+ T-cell
immunity and remarkable tumor suppression. Vaccin-
ation with teniposide-treated dead tumor cells effectively
prevented tumor redevelopment. Furthermore, the ad-
ministration of teniposide successfully reversed the in-
sensitivity to the PD-1 inhibitor of KRAS mutant CT26
colon cancer [62]. Despite its positive immunomodula-
tory effect in murine tumors, whether teniposide acts as
an ICD inducer in human cancers remains elusive.
Poly (ADP-ribose) polymerase inhibitors (PARPi), in-

cluding olaparib and niraparib, inhibit DNA repair in
homologous-recombination-deficient malignant cells,
leading to synthetic lethality [96]. Such retention and
accumulation of DNA damage can activate the cGAS-
STING pathway and the subsequent type-I IFN response,
as mentioned above. In line with this notion, the adminis-
tration of olaparib to murine BRCA (encoding breast can-
cer type 1 susceptibility protein) -deficient TNBCs
increased the CD8+ T cell abundance and activated anti-
tumor immunity [72]. Despite PARPis generally eliciting
antitumor efficacy in BRCA-mutant cancers, clinical inves-
tigations have demonstrated the unexpected treatment
benefits of niraparib in patients with BRCA-proficient
ovarian cancer [97, 98]. A recent preclinical study found
that in ovarian cancer, PARPi triggered the STING-
dependent immunogenic response, regardless of DNA re-
pair deficiency [74]. A similar observation was also found
in small cell lung cancer (SCLC) [73]. In addition to the
increased intra-tumoral CTLs, PARPi could upregulate
PD-L1 expression in malignant cells in breast cancer,
SCLC, and ovarian cancer, regardless of the BRCA muta-
tion status. Such increasing CTL abundance and intra-
tumoral PD-L1 level potentiate the combined therapy of
PARPi and ICBs [99]. As expected, a combination of nira-
parib plus pembrolizumab therapy showed promising syn-
ergistic antitumor activity in patients with TNBC or
ovarian cancer [100, 101], despite the best treatment effi-
cacy still being observed in patients with BRCA-mutant
[102]. Although the combination of a PARPi and an ICB
(olaparib plus durvalumab) did not show satisfactory

therapeutic efficacy in SCLC, it is worth noting that the
addition of olaparib might be capable of reversing the ICB
resistance of SCLC, because some tumors that progressed
in previous ICB treatment maintained stable disease under
the combined regimen [103].
Pyroptosis is a new pattern of cell death, which is me-

diated by gasdermin (GSDM) proteins. GSDMs, mainly
GSDMD and GSDME, are activated after the cleavage of
their autoinhibitory N domains by caspases. They trans-
locate to, and form pores on, the cytomembrane, result-
ing in cell swelling, membrane rupture, and the release
of cytosolic contents including DAMPs, such as HMGB1
and ATP [104, 105]. Some conventional chemotherapeu-
tic agents, like cisplatin and etoposide, can induce pyr-
optosis. However, GSDME is silenced in most cancer
cells, but is expressed in many normal cells, including
lymphocytes; therefore, these medications were trad-
itionally supposed to impair, rather than promote, anti-
tumor immunity [106, 107]. Intriguingly, a recent study
showed that GSDME-mediated pyroptosis acts as a form
of ICD and effectively activated antitumor CD8+ T-cell
immunity in murine melanoma [108]. The combination
of B-Raf proto-oncogene, serine/threonine kinase
(BRAF) and MAPK/ERK kinase (MEK) inhibitors, the
frontline care for BRAFV600E-mutant melanoma, was
found to induce the pyroptosis of melanoma cells by
blocking extracellular regulated kinase (ERK)1/2 signal-
ing and subsequently activating the GSDME cleaver,
caspase-3. These dual inhibitions significantly increased
the intra-tumoral abundance of DCs, as well as CTLs,
contributing to durable tumor regression [65]. Besides,
BRAF inhibition alone has been demonstrated to in-
crease CD8+ T cells, while MEK inhibitors potentiated
anti-tumor T cells by preventing T-cell receptor (TCR)-
driven apoptosis [70]. The potential of BRAF and MEK
inhibitors to synergize the effects of anti-PD-1 antibodies
has been observed in mouse melanoma [109]. In human
BRAFV600E-mutant melanoma, such a triplet therapy fa-
cilitated a remarkable antitumor response and prolonged
the progression-free survival of patients [110, 111]. Simi-
lar to BRAF and MEK inhibitors, crizotinib, which is
used to treat NSCLC carrying activated anaplastic
lymphoma kinase (ALK) and ROS proto-oncogene 1, re-
ceptor tyrosine kinase (ROS1), favored the ICD, likely
because it triggered the pyroptosis of lung cancer cells in
which GSDME is expressed ubiquitously [112]. The ad-
ministration of crizotinib increased CTL accumulation
in murine NSCLC and remarkably sensitized the tumor
to PD-1 blockade [69].

Chemotherapeutic and targeted agents enhance CD8+ T-
cell infiltration
In addition to promoting the generation of CTLs, che-
motherapeutics can enhance their entry into the tumor
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center. Antiangiogenic molecules that target the VEGF/
VEGFR axis are expected to starve the tumor, thus sup-
pressing tumor progression and improving patient sur-
vival. However, recent research has found that, instead
of simply starving tumor cells to death, antiangiogenic
agents also promote immune attack by markedly in-
creasing the infiltration of tumor-specific CTLs after
normalizing the immature vessels (Fig. 1b).
In a variety of rodent and human malignancies, both

anti-VEGF-A and anti-VEGFR2 agents have been dem-
onstrated to increase T cell infiltration [64, 113], and
dual inhibition of the VEGF/VEGFR axis, and other anti-
angiogenic factors, such as angiopoietin-2 (ANGPT2)
and prostaglandin E2 (PGE2), further improved this in-
crement [21, 114]. After infiltration, CTLs recognize the
tumor cells and secrete many cytotoxic cytokines, such
as IFN-γ, resulting in the induction of PD-L1 expression
by tumor cells. Thus, it provides a convincing rationale
for the development of the combination of antiangio-
genic therapy and immunotherapy. As expected, differ-
ent combinatorial treatments of antiangiogenic agents
and ICBs have shown a higher synergistic effect in
tumor control compared with that achieved by mono-
therapy in various rodent cancers, including breast can-
cer, pancreatic neuroendocrine tumor, and HCC [84,
113]. Histological examinations showed that the combin-
ation of ICB and antiangiogenic agents further promoted
vessel normalization, even toward high endothelial ve-
nules [84]. Such normalized vessels permitted not only
CTLs, but also DCs and B cells, infiltration and accumu-
lation [114], which implied the formation of TLSs allow-
ing local generation and expansion of tumor-destroying
CTLs [84]. In human HCC, CD8+ T cells are usually
presented at the peritumoral, rather than intra-tumoral,
areas [115]. The combination of the anti-VEGF-A anti-
body bevacizumab with the anti-PD-L1 antibody atezoli-
zumab showed an unexpectedly high overall response
rate, prolonged patient survival, and became a potential
first-line treatment option for HCC [116]. Similar treat-
ment success has been seen in metastatic renal cell car-
cinoma (RCC) [117].
After extravasation from tumor vessels, CTLs are likely

to infiltrate into the tumor parenchyma in most malig-
nancies. However, they can also be retained in the tumor
margins because some solid tumors, such as PDAC, can
establish another physical barrier, the robust stroma.
Disruption of the massy stroma might promote CTL
penetration and facilitate the antitumor immune re-
sponse. Focal adhesion kinase (FAK) was identified as a
significant contributor to the fibrotic TME and corre-
lated negatively with CD8+ CTL infiltration in human
and murine PDACs. By reducing the fibrotic stroma and
subsequently enhancing CTL entry, FAK inhibition not
only slowed tumor progression but also rendered the

previously unresponsive rodent PDAC responsive to PD-
1 antagonists [118]. However, whether the additional
FAK inhibitor improves tumor sensitivity to ICBs in hu-
man PDAC remains elusive. Although FAK inhibitors
have been proven as safe and promising [119], to date,
few clinical studies have investigated the antitumor ef-
fect of combined FAK inhibitors and ICBs in human
cancers.

Chemotherapeutic and targeted agents restrain
immunosuppressive cells
The depletion of immunosuppressive cells is involved in
the antitumor effect of several agents. Gemcitabine, a
nucleoside analog that is commonly used to treat PDAC,
depletes circulating, or intra-tumoral MDSCs in multiple
cancers. Such depletion favors the restoration of CTL in-
filtration and cytotoxic activity in both rodent and hu-
man cancers [85].
Cyclophosphamide is a nitrogen mustard derivative

that is activated intracellularly by phosphoramides or
phosphatase, becoming cytotoxic. Tregs were considered
to be susceptible to the toxic effects of cyclophospha-
mide, likely because of their low levels of intracellular
antidotes, like glutathione, and their lack of ATP-
binding cassette transports, which help to exclude the
active metabolite of cyclophosphamide [120, 121]. A low
dose of cyclophosphamide has been noted to not only
decrease the number but also inhibited the function, of
Tregs in rodent tumors [122]. A recent study found that
cyclophosphamide preferentially targeted CCR2+ Tregs
in a highly active and proliferating state, i.e., the effector
Tregs [48]. In humans, metronomic (a repetitive low
dose administration) cyclophosphamide treatment ef-
fectively reduced both peripheral naïve and activated
Tregs, thereby favoring effector T cell subsets in patients
with mesothelioma [123]. A clinical trial has also dem-
onstrated that in patients with end-stage metastatic
CRC, repetitive low doses of cyclophosphamide induced
Treg-deletion and boosted antitumor immunity, which
eventually contributed to prolonged progressive-free sur-
vival [49]. Similar to cyclophosphamide, camptothecin, a
topoisomerase I inhibitor, can also restrain the gener-
ation and function of Tregs. It inactivated the transcrip-
tional activity of the NR4A (nuclear receptor subfamily 4
group A) family of nuclear orphan receptors, which
inhibited the expression of Forkhead box P3 (FOXP3)
and eventually reduced Tregs generation. By removing
the suppression by Tregs, irinotecan, a prodrug of camp-
tothecin, promoted the priming and proliferation of
CD8+ T cells in the draining lymph nodes and sup-
pressed the growth of murine lung and colon cancer in a
CD8+ T cell-dependent manner [50]. Similarly, the che-
motherapeutic regimen containing irinotecan, FOLFIRI,
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was reported to decrease the suppressive activity of per-
ipheral Tregs in patients with CRC [56].
Multi-targeted TKIs, such as sunitinib, inhibit the

downstream signaling of receptors, including VEGFR,
platelet-derived growth factor receptor (PDGFR), stem
cell factor receptor (c-Kit), and colony-stimulating factor
-1 (CSF-1) receptor, preventing neoplastic proliferation
and tumor angiogenesis [124]. However, these tumor-
promoting pathways also play a crucial role in the gener-
ation of MDSCs and Tregs. For example, c-Kit receptor
signaling and the VEGFA-VEGFR2 pathway are required
to generate MDSCs and Tregs [125, 126]. The adminis-
tration of sunitinib significantly diminished the levels of
circulating and intra-tumoral MDSCs, thereby expand-
ing the number of activated tumor-specific CD8+ T cells
in murine tumors [127]. Such a relief of MDSC-
mediated immunosuppression was also observed in pa-
tients with RCC or other metastatic diseases [80, 128].
Similar to MDSCs, Tregs are vulnerable to sunitinib. Re-
cent observations of rodent HCC showed that sunitinib
significantly reduced the frequency and function of
tumor-infiltrating Tregs, which recovered the cytotox-
icity of tumor-specific CD8+ T cells [81]. A combination
of sunitinib and anti-PD1 antibodies powerfully activated
the antitumor immune response and suppressed tumor
growth [82].
The plasticity of macrophages provides an alternative

approach to recover antitumor immunity. This com-
prises repolarizing M2-TAMs toward the pro-
inflammatory state (M1 phenotype) in which they act as
APCs that facilitate the antitumor immune response.
Such a functional transformation has been observed in
human PDAC after GEM-based neoadjuvant chemother-
apy [55]. Similarly, paclitaxel, one of the most effective
cytotoxic agents, which is considered as the standard of
care for breast cancer and ovarian cancer, can also repo-
larize M2-TAMs. Whereas previous studies have shown
that TAMs were recruited by cancer cells after paclitaxel
treatment and blocked the CD8+ T cell-dependent
chemotherapy response [129], paclitaxel was newly
identified as an agonist of TLR4 on TAMs and directly
polarized this anti-inflammation population into a pro-
inflammatory phenotype [59, 60]. The upregulated
antigen-presenting ability in this phenotype reversion re-
leased CTL-dependent tumor regression [59]. Along this
line, patients with breast cancer treated with paclitaxel
showed a peripheral pro-inflammatory profile [130]. In
addition, an enrichment of genes linked to the inflam-
matory macrophage phenotype in the TME was reported
in patients with ovarian cancer after paclitaxel treatment
[59]. Furthermore, TAM repolarization by paclitaxel
provides a rationale for combination therapy with ICBs
in the treatment of TNBC, in which a high infiltration of
immunosuppressive TAMs is associated with a lower

response to ICBs [131]. As expected, the combination of
atezolizumab and nab-paclitaxel prolonged progression-
free survival of patients with metastatic TNBC [132].

Combination therapies
Numerous clinical trials have been carried out to investi-
gate the combination therapy of immune-modulatory
agents and ICBs. An overview of the key studies with
their reported results is presented in Table 2.
Currently, the majority of combination therapies com-

prise adding concurrent ICBs to existing chemotherapy or
targeted regimens. The chemo-immunotherapy usually
consists of several cycles of induction concurrent therapy
and subsequent maintenance ICB monotherapy, while
targeted-immunotherapy is a continuous concurrent regi-
men. In most combinations, compounds are given in a full
dose. The synergistic antitumor effects of these combin-
ation therapies have been demonstrated in various can-
cers, as mentioned before. Several regimens have been
suggested as new first-line treatments [133, 152, 155].
Although encouraging progress has been made, the

therapeutic efficacy of the current combination therapy
remains unsatisfactory. Besides, increased toxicity is an-
other critical issue that should not be overlooked. The
incidence of high-grade treatment-related adverse effects
(TRAEs) resulting from combination therapy is usually
higher than 50%. Unacceptable hepatic toxicity has been
seen in the combination of ipilimumab and the BRAF
inhibitor vemurafenib during the treatment of melanoma
and has resulted in the interruption of this trial [159]. A
similar failure happened in the combination of nivolu-
mab and crizotinib in NSCLC [149]. Furthermore, even
though in most cases, TRAEs can be managed through
the reduction or interruption of drugs, this impairs
therapeutic efficacy [146].
Few trials have investigated how the sequence of ad-

ministration affects the benefit. However, preclinical
studies have demonstrated the relationship. Pretreat-
ment with the MEK inhibitor selumetinib significantly
augmented the antitumor efficacy of subsequent anti-
CTLA4 monotherapy, while the concurrent regimen did
not [71]. Similarly, cyclophosphamide administered 1
day before could enhance the antitumor effect of anti-
CTLA4 antibody, whereas, treatment with the reversed-
sequence regimen led to the apoptosis of proliferating
tumor-specific CD8+ T cells and then attenuated tumor
control [160]. These observations indicated that induc-
tion of chemotherapy or targeted therapy might
optimize the TME, thereby supporting the efficacy of
subsequent ICBs, at least in ipilimumab-based combin-
ation therapies. A previous clinical trial demonstrated
that a phased regimen (inductive chemotherapy alone,
before concurrent ipilimumab) but not a concurrent
regimen (initiating concurrent chemo-ipilimumab)
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Table 2 Key clinical combination trials

Immune
checkpoint
blockade

Anticancer
agents

Tumor types Regimen Result Reference

Atezolizumab Carboplatin and
etoposide

Extensive-stage
NSCLC

Induction: carboplatin AUC 5 +
etoposide 100 mg/m2 Day 1-3 + ate-
zolizumab or placebo 1200 mg Q3W
for 4 cycles;
Maintenance: atezolizumab or
placebo 1200 mg Q3W

The atezolizumab and
chemotherapy combination
resulted in significantly longer OS
and PFS and became the first-line
option for extensive-stage NSCLC.

Horn et al
[133]

Carboplatin and
nab-paclitaxel

Stage IV squamous
NSCLC

Induction: carboplatin AUC = 6 Day 1
+ nab-paclitaxel 100 mg/m2 Day 1, 8
and 15 ± atezolizumab 1200 mg Day
1; Q3W for 4 or 6 cycles;
Maintenance: atezolizumab 1200 mg
Q3W in the triplet therapy group

The combination of atezolizumab
and platinum-based chemotherapy
significantly improved PFS in pa-
tients with squamous NSCLC; OS
was similar between arms.

Jotte et al
[134]

Carboplatin and
nab-paclitaxel

Metastatic non-
squamous NSCLC

Induction: carboplatin AUC = 6 Day 1
+ nab-paclitaxel 100 mg/m2 Day 1, 8
and 15 ± atezolizumab 1200 mg
Day1; Q3W for 4 or 6 cycles;
Maintenance: atezolizumab 1200 mg
Q3W in the triplet therapy group

The combination of atezolizumab
and platinum-based chemotherapy
significantly improved PFS and OS
in patients with metastatic non-
squamous NSCLC.

West et al
[135]

Carboplatin,
paclitaxel,
bevacizumab

Metastatic non-
squamous NSCLC

Induction: carboplatin AUC 6 +
paclitaxel 200 mg/m2 + bevacizumab
15 mg/kg ± atezolizumab 1200 mg,
Q3W for 4 or 6 cycles;
Maintenance: bevacizumab 15 mg/kg
± atezolizumab 1200 mg, Q3W

The atezolizumab, bevacizumab,
and chemotherapy combination
significantly improved PFS and OS
among patients with metastatic
non-squamous NSCLC

Socinski
et al [136]

Nab- paclitaxel untreated
metastatic TNBC

Nab- paclitaxel 100 mg/m2 Day 1, 8
and 15 of every 28-day cycle + atazo-
lizumab or placebo 840 mg Q2W

Atezolizumab plus nab-paclitaxel
prolonged PFS among patients
with metastatic TNBC, especially
those with PD-L1 positive tumors.

Schmid
et al [132]

recurrent or
metastatic TNBC

Nab- paclitaxel 125 mg/m2 day 1, 8
and 15 of every 28-day cycle + atazo-
lizumab 800 mg Q2W

The combination therapy increased
antitumor activity (ORR and PFS)
and showed manageable toxicity.

Adams et al
[137]

Bevacizumab,
sunitinib

Untreated
metastatic RCC

Atezolizumab 1200 mg +
bevacizumab 15 mg/kg Q3W vs.
sunitinib monotherapy 50 mg QD for
4 weeks on, 2 weeks off

Atezolizumab plus bevacizumab
prolonged PFS versus sunitinib in
patients with metastatic RCC
(median PFS: 11.2 vs. 8.4 months)
and showed a favorable safety
profile.

Rini et al
[117]

Bevacizumab,
sorafenib

Unresectable
hepatocellular
carcinoma

Atezolizumab 1200 mg +
bevacizumab 15 mg/kg day 1 Q3W vs.
sorafenib 400 mg twice per day Q3W

Atezolizumab plus bevacizumab
resulted in better OS and PFS than
sorafenib in patients with
unresectable hepatocellular
carcinoma

Finn et al
[116]

Vemurafenib and
cobimetinib

BRAFV600- mutated
metastatic
melanoma

Run-in period (28 days): vemurafenib
960 mg/d BID for 21 days, then 720
mg/d BID for 7 days + cobimetinib 60
mg QD, 1-21 days;
Combination period: atezolizumab
800 mg Q2W + vemurafenib 720 mg/
d BID and cobimetinib 60 mg QD 1–
21 days in 28 days cycle

The triple combination therapy
demonstrated promising PFS. The
run-in period of vemurafenib and
cobimetinib might result in better
tolerance and the antitumor re-
sponse of atezolizumab.

Sullivan
et al [138]

BRAFV600- mutated
Unresectable
locally advanced
or metastatic
melanoma

Run-In Period (28 days): vemurafenib
960 mg/d BID + cobimetinib 60 mg
QD on Days 1 to 21 followed by
vemurafenib 720 mg/d BID on Days
22 to 28;
Combination Period (Cycle 1
onwards): atezolizumab or placebo
840 mg Day 1 and 15 + cobimetinib
60 mg QD on Days 1 to 21 +
vemurafenib 720 mg/d BID on Days 1
to 28 of each 28-day cycle.

The triple combination therapy
demonstrated promising PFS vs.
dual vemurafenib and cobimetinib
(median PFS: 15.1 vs. 10.6 months).
Severe treatment-related adverse
events were comparable between
the two groups (33.5% vs. 28.8%).

McArthur
et al [139]
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Table 2 Key clinical combination trials (Continued)

Immune
checkpoint
blockade

Anticancer
agents

Tumor types Regimen Result Reference

Avelumab Axitinib or
sunitinib

Advanced RCC Avelumab 10 mg/kg Q2W + axitinib 5
mg BID vs. sunitinib monotherapy 50
mg QD for 4 weeks on, 2 weeks off

Avelumab plus axitinib prolonged
PFS versus sunitinib in patients with
advanced RCC (median PFS: 13.8 vs.
8.4 months). Grade ≥ 3 treatment-
related adverse events were com-
parable between the two groups.

Motzer et al
[10]

Camrelizumab Decitabine Relapsed or
refractory classic
Hodgkin
Lymphoma

Camrelizumab 200 mg monotherapy
Q3W or decitabine 10 mg/d, days 1
to 5 plus camrelizumab 200 mg, day
8 Q3W

The addition of decitabine to
camrelizumab significantly
improved the tumor response in
patients who were clinically naïve
to the PD-1 blockade.

Nie et al
[140]

Gemcitabine and
cisplatin

Recurrent or
metastatic
nasopharyngeal
carcinoma

Camrelizumab 200 mg (day 1),
gemcitabine 1 g/m2 (days 1 and 8),
and cisplatin 80 mg/m2 (day 1) every
3 weeks followed by camrelizumab
200 mg maintenance once every 3
weeks

The combination of camrelizumab
plus gemcitabine and cisplatin has
a manageable toxicity profile and
promising preliminary antitumor
activity in treatment-naive patients.

Fang et al
[141]

Durvalumab Platinum and
etoposide

Extensive-stage
SCLC

Etoposide 80–100 mg/m2 on days 1
to 3 + carboplatin AUC=5/6 or 75–80
mg/m2 + durvalumab 1500 mg, Q3W
for 4 cycles + maintenance
durvalumab 1500 mg Q4W vs.
platinum and etoposide for 6 cycles

Durvalumab plus platinum-
etoposide significantly improved
OS in patients with ES-SCLC vs.
chemotherapy alone (median OS:
13.0 vs. 10.3 months). The safety of
the two regimens was similar.

Paz-Ares
et al [142]

Ipilimumab Carboplatin and
etoposide

Extensive-stage
SCLC

Carboplatin AUC=6 + etoposide 120
mg/m2 day 1 and 100 mg day 2 and
3, Q3W up to 6 cycles + ipilimumab
10 mg/kg day 1 of chemotherapy
cycles 3-6 and then once every 12-
weeks from week 30

The combination therapy showed a
beneficial effect in extensive-stage
SCLC; however, the toxicity was
also significant. Sequential im-
munotherapy after chemotherapy
might be a more feasible approach.

Arriola et al
[143]

Platinum and
etoposide

Extensive-stage
SCLC

Induction: etoposide 100 mg/m2 on
days 1 to 3 + carboplatin AUC=5 or
cisplatin 75 mg/m2 day 1 Q3W for 4
cycles + 4 cycles of ipilimumab or
placebo 10 mg/kg Q3W from cycle 3
of chemotherapy;
Maintenance: ipilimumab or placebo
10 mg/kg Q12W

The combination of ipilimumab
and chemotherapy did not prolong
the OS of patients with extensive-
stage SCLC.

Reck et al
[144]

Paclitaxel and
carboplatin

extensive-disease
SCLC

Induction (Q3W for a maximum of 18
weeks): carboplatin AUC=6 +
paclitaxel 175 mg/m2 vs. concurrent
ipilimumab (4 cycles of ipilimumab 10
mg/kg + paclitaxel + carboplatin
followed by 2 cycles of placebo +
paclitaxel + carboplatin) vs. phased
ipilimumab (4 cycles of placebo +
paclitaxel + carboplatin followed by 2
cycles of ipilimumab + paclitaxel +
carboplatin);
Maintenance: ipilimumab for phased-
and concurrent-ipilimumab arms) or
placebo (control arm) Q12W

Phased ipilimumab, but not
concurrent ipilimumab, significantly
prolonged immune-related PFS vs.
chemotherapy alone. A numerical,
but not significant, improvement of
OS was also observed.

Reck et al
[145]

Advanced
squamous NSCLC

Induction: carboplatin AUC = 6 +
paclitaxel 175 mg/m2 Q3W for 6
cycles + 4 doses of ipilimumab or
placebo 10 mg/kg started at cycle 3
of chemotherapy;
Maintenance: ipilimumab or placebo
once every 12 weeks

The combination of ipilimumab,
paclitaxel, and carboplatin did not
prolong the OS of patients with
advanced squamous NSCLC vs.
chemotherapy alone.

Govindan
et al [146]

Nivolumab Cisplatin and
gemcitabine or
pemetrexed;
paclitaxel and

Advanced NSCLC Nivolumab 10 mg/kg plus
gemcitabine-cisplatin (squamous) or
pemetrexed-cisplatin (nonsquamous)
or nivolumab 5 or 10 mg/kg plus

The combination regimen,
especially the paclitaxel-carboplatin
plus nivolumab 5 mg/kg, showed
encouraging activity (2-year OS

Rizvi et al
[147]
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Table 2 Key clinical combination trials (Continued)

Immune
checkpoint
blockade

Anticancer
agents

Tumor types Regimen Result Reference

carboplatin paclitaxel-carboplatin (all histologies)
Q3W for 4 cycles, followed by nivolu-
mab monotherapy every 3 weeks

rate: 62%). However, the treatment-
related adverse events led to
greater treatment discontinuation
in combination therapies.

Erlotinib Advanced EGFR-
mutant NSCLC

Nivolumab 3 mg/kg every 2 weeks
and erlotinib 150 mg/d

The concomitant nivolumab and
erlotinib was tolerable and resulted
in durable responses in patients
with EGFR-mutant, TKI-treated NSCL
C.

Gettinger
et al [148]

Cizotinib ALK-positive NSCL
C.

Nivolumab 240 mg every 2 weeks
and crizotinib 250 mg twice daily

Such a concomitant regimen of
nivolumab and crizotinib resulted
in severe, even fatal, hepatic
toxicities.

Spigel et al
[149]

Oxaliplatin and S-1
or capecitabine

advanced gastric/
gastroesophageal
junction cancer

Nivolumab 360 mg day 1+ oxaliplatin
130 mg/m2 day 1 + S-1 40 mg/m2 or
capecitabine 1000 mg/m2 twice daily
for 14 days followed by 7 days off,
Q3W

Nivolumab combined with
chemotherapy was well tolerated
and demonstrated a higher
objective response rate and longer
PFS.

Boku et al
[150]

Sunitinib or
pazopanib

Advanced or
metastatic RCC

Sunitinib (50 mg/day, 4 weeks on/2
weeks off) or pazopanib (800 mg/day)
+ nivolumab starting dose was 2 mg/
kg every 3 weeks, with planned
escalation to 5 mg/kg every 3 weeks

The combination therapy resulted
in a high incidence of high-grade
toxicities (grade 3/4 treatment-
related adverse events: 70% – 82%).

Amin et al
[151]

Pembrolizumab Carboplatin and
pemetrexed

Non-squamous
NSCLC

Carboplatin AUC 5 and pemetrexed
500 mg/m2 Q3W for 4 cycles optional
pemetrexed 500 mg/m2 ±
pembrolizumab 200 mg Q3W for 2
years

The triplet therapy could be an
effective and tolerable first-line
treatment option for patients with
advanced non-squamous NSCLC

Langer et al
[152]

Pemetrexed and
platinum

Non-squamous
NSCLC

Pemetrexed 500 mg/m2 + cisplatin 75
mg/m2 or carboplatin AUC=5 plus
pembrolizumab or placebo 200 mg
for 4 cycles, followed by pemetrexed
+ pembrolizumab or placebo for 35
cycles

The triplet therapy resulted in
significantly longer survival (1-year
OS rates: 69.2% vs. 49.4%, median
PFS: 8.8 vs. 4.9 months).

Gandhi et al
[7]

Carboplatin and
paclitaxel

Squamous NSCLC Pembrolizumab or placebo 200 mg
Q3W for up to 35 cycles + carboplatin
AUC6 Q3W and either paclitaxel 200
mg/m2 Q3W or (nab)-paclitaxel at 100
mg/m2 QW for the first four cycles

The combination therapy resulted
in a longer median OS (15.9 vs. 11.3
months) and PFS (6.4 vs. 4.8
months). This regimen became the
first-line treatment.

Paz-Ares
et al [8]

Cyclophosphamide Sarcoma Cyclophosphamide 50 mg BID (1
week on and 1 week off), and
pembrolizumab 200 mg Q3W

Limited antitumor efficacy might
be caused by an
immunosuppressive TME.

Toulmonde
et al [153]

Paclitaxel,
carboplatin,
doxorubicin or
epirubicin, and
cyclophosphamide

TNBC Pembrolizumab or placebo 200 mg
Q3W + paclitaxel 80 mg/m2 QW +
carboplatin (QW or Q3W) for 4 cycles,
followed by (doxorubicin 60 mg/m2

or epirubicin 90 mg/m2) +
cyclophosphamide 600 mg/m2 Q3W
+ pembrolizumab or placebo 200 mg
Q3W for 4 cycles before surgery;
followed by 9 cycles of
pembrolizumab or placebo 200 mg
Q3W post-surgery

The neoadjuvant pembrolizumab -
chemotherapy treatment resulted
in a significantly higher
pathological complete response
(64.8% vs. 51.2%).

Schmid
et al [154]

5-fluorouracil and
cisplatin or
carboplatin

HNSCC Pembrolizumab 200 mg Q3W up for
35 cycles, carboplatin AUC=5 or
cisplatin 100 mg/m2 + 5-fluorouracil
1000 mg/m2 per day for 4 consecu-
tive days, Q3W for 6 cycles

The triple-therapy was recom-
mended as an appropriate first-line
treatment for recurrent or meta-
static head and neck squamous
cancer.

Barbara
et al [155]
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improved the PFS of patients with extensive-disease
SCLC [145]. Another regimen comprising phased ipili-
mumab started at the third cycles of carboplatin and
etoposide also showed benefit [143].
The dose of compounds is another important factor

for combination therapy. Continuous full dose dual
MAPK inhibitors might be inappropriate for combin-
ation therapy with ICBs because the increment in intra-
tumoral T cells mediated by the inhibitors occurs in the
early phase after treatment initiation and become less
frequent beyond 2 weeks [161]. Besides, the toxicity of
concomitant full-dose of triplet BRAF, MEK, and anti-
PD1/PD-L1 inhibitors significantly limited their efficacy
[110, 111]. A phase II study has investigated different
doses of BRAF and MEK inhibitors in combination ther-
apy with pembrolizumab in BRAFV600-mutant melanoma.
Lower rates of high-grade TRAEs and higher objective re-
sponse rates (ORR) were found in patients treated with
short-term intermittent dual MAPK inhibitions, rather
than pembrolizumab plus continuous targeted treatment
[162]. However, because the high ORR did not mean a
better survival outcome in all cases, whether the intermit-
tent regimen would be the more efficient and safe ap-
proach should be tested in a larger cohort and with longer
follow-up. However, these findings did suggest exploring
the optimal dose in future combination trials.

Perspective and conclusion
ICB-based cancer immunotherapy removes the check-
point constraints on adaptive antitumor immunity,
thereby releasing the cytotoxicity of tumor-specific CD8+
T cells. It can induce tumor shrinkage, durable disease

control, and prolonged survival, but only in a minority of
patients, likely because the CD8+ T cell-mediated antitu-
mor immune response is impaired in most cancers. Anti-
tumor immunity is mainly driven or suppressed by
cellular factors in the TME; therefore, treatment strategies
that can specifically modify the TME toward an inflamed
phenotype are expected to be combined with ICBs to aug-
ment their therapeutic efficacy.
The therapeutic effects of chemotherapy and targeted

therapy are traditionally considered to rely on tumor cell-
intrinsic sensitivity or cancer-specific alterations. How-
ever, the empirical selection of clinically efficient
therapeutic regimens might also imply enhanced antican-
cer immunosurveillance. For example, anthracyclines-
based regimens are commonly used to treat breast cancers
which are usually considered as nonimmunogenic with
rare CD8+ T cell infiltration. Gemcitabine is the frontline
treatment option for PDAC, which is characterized by
abundant MDSCs and TAMs. These “coincidences” sug-
gest that the TME or cancer-immunity cycles might in-
sensibly affect the selections of standard chemotherapy.
Furthermore, it indicates that chemotherapy and targeted
therapy are promising candidates to sensitize tumors to
ICB therapy because they can target the impaired steps of
the cancer-immunity cycle in certain tumors. Indeed,
most of the current combination regimens comprise the
concurrent administration of ICBs and the existing che-
motherapeutic regimen and are currently the best choice
to improve patient survival.
Optimization of the drug combination, dose, and se-

quence is still needed to achieve maximum therapeutic
efficacy. Although the existing clinically efficient

Table 2 Key clinical combination trials (Continued)

Immune
checkpoint
blockade

Anticancer
agents

Tumor types Regimen Result Reference

Axitinib RCC Axitinib 5 mg BID and
pembrolizumab 200 mg Q3W

The treatment combination led to
significantly longer survival (1-year
OS rates: 89.9% vs. 78.3%, median
PFS: 15.1 vs. 11.1 months) as well as
a higher objective response rate
(59.3% vs. 35.7%).

Atkins et al
[156]
Rini et al
[157]

Dabrafenib and
trametinib

BRAFV600-mutated
melanoma

Concomitant dabrafenib 150 mg/day
in divided dose (BID) + trametinib 2
mg QD + pembrolizumab 2 mg/kg
Q3W up to 2 years

The triple-therapy was feasible for
patients with BRAFV600-mutated
melanoma, especially those with
poor prognostic factors. However, it
also significantly increased the
grade ≥ 3 treatment-related ad-
verse events.

Ribas et al
[110]
Ascierto
et al [111]

Toripalimab Axitinib Metastatic mucosal
melanoma

Toripalimab 1 or 3 mg/kg Q2W +
axitinib 5 mg BID

The combination of toripalimab
plus axitinib was tolerable and
showed promising antitumor
activity (ORR 48.3%).

Sheng et al
[158]

ALK: ALK receptor tyrosine kinase; AUC: area under the curve; BID: twice daily; BRAF: B-Raf proto-oncogene, serine/threonine kinase; EGFR: epidermal growth
factor receptor; NSCLC: non-small cell lung cancer; HCC: hepatocellular carcinoma; HNSCC: head and neck squamous cancer; ORR: objective response rate; OS:
overall survival; PFS: progression-free survival; QW/Q2W/Q3W: every 1/2/3 weeks; QD: once daily; RCC: renal cell cancer; SCLC: small-cell lung cancer; TME: tumor
microenvironment; TNBC: triple-negative breast cancer
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chemotherapeutic regimens might have specifically en-
hanced anticancer immunosurveillance for each cancer,
whether these empirical regimens are optimal for
combination therapy with ICBs remains unknown. A
comprehensive understanding of the composition and
immune situation of the TME and a careful examin-
ation of the immunological characteristics of the cur-
rently used chemotherapeutics would be conducive to
selecting the most ideal drugs for combination ther-
apy of cancer. In addition to drug combinations, the
dose and sequence of administration of chemothera-
peutics and ICBs can also affect the therapeutic effect.
The long-term and full-dose administration of chemo-
therapeutics might be unnecessary in the combination
regimen because it not only results in more serious
toxicity but also damages, rather than enhances, anti-
tumor immunity. These findings suggest that there is
a need to investigate the optimal doses of chemother-
apeutics in combination therapy. Besides, chemother-
apy induction before ICB administration seems to be
beneficial. In such induction phases, chemotherapeu-
tics promote the generation and infiltration of CTLs
or delete the immunosuppressive cells, thereby opti-
mizing the TME for subsequent ICB therapy. Serial
histological examination during chemotherapy can re-
veal the dynamic changes of the cancer immune con-
text, thus favoring the selection of the best
combination treatment time and sequence.
Similar to chemotherapeutics, radiotherapy has pro-

found immunomodulatory effects. Through inducing
DNA damage, radiotherapy can expand the spectrum of
neoantigens and upregulate the antigen-presenting ma-
chinery in tumor cells [163]. Besides, radiation has been
proved as an ICD-inducer and can promote the
recruitment of DCs and CTLs through DAMPs and che-
mokines [164]. However, the radiotherapy-mediated
immuno-stimulations are usually blunted by the cancer
cell-intrinsic DNA damage response (DDR) and im-
munosuppressive cells, including MDSCs and TAMs.
DDR inhibitors have been shown to further potentialize
the radiation-induced inflammation in TME [165]. Fur-
thermore, as chemotherapeutics like paclitaxel can de-
plete or convert the suppressor cells, the combinations
of radiotherapy with chemo-/targeted therapy might fur-
ther enhance the antitumor immune response and ICB
therapy. However, few studies have investigated whether
the triplet of chemo-radio-immunotherapy actually
works.
In summary, the immunomodulatory effect of che-

motherapeutics provides a strong cancer biology ra-
tionale for their combination with ICBs. Such
combinations will not only directly inhibit malignant
cells but also augment the immune recognition and
elimination of tumor cells. Furthermore, it establishes

long-term antitumor memory and thus might repre-
sent a curative treatment. The synergistic antitumor
efficacy of combination therapy has been demon-
strated in various cancers; however, the maximum
benefit has not yet been achieved. Future studies that
evaluate the therapeutic efficacy of regimens with dif-
ferent drug combinations, doses, and sequences will
help to develop the optimal combination therapy for
each cancer.

Abbreviations
ALK: Anaplastic lymphoma kinase; ANGPT2: Angiopoietin-2; APC: Antigen-
presenting cells; ATP: Adenosine-triphosphate; AUC: Area under the curve;
BID: Twice daily; BRAF: B-Raf proto-oncogene, serine/threonine kinase;
BRCA: Breast cancer susceptibility gene; Breg: Regulatory B cell;
CCR2: Chemokine (C-C motif) receptor 2; cGAS-STING: Cyclic GMP–AMP
synthase/stimulators of interferon gene; CRC: Colorectal cancer; CSF-
1: Colony-stimulating factor -1; CTL: Cytotoxic T lymphocytes; CTLA-
4: Cytotoxic T lymphocyte-associated protein 4; CXCL9/10/11: C-X-C motif
chemokine ligand 9/10/11; CXCR3: C-X-C motif chemokine receptor 3;
DAMP: Damage-associated molecular pattern; DC: Dendritic cells; DDR: DNA
damage response; EGFR: Epidermal growth factor receptor; ERK: Extracellular
regulated kinase; FAK: Focal adhesion kinase; FOLFIRI: Eolinic acid, 5-
fluorouracil; FOXP3: Forkhead Box P3; γ/δ T cell: Gamma/delta T cell;
GSDM: Gasdermin; HCC: Hepatocellular carcinoma; HMGB1: High-mobility
group box1; HNSCC: Head and neck squamous cell carcinoma; ICAM-
1: Intercellular adhesion molecule–1; ICB: Immune checkpoint blockade;
ICD: Immunogenic cell death; IFN-γ: Interferon-gamma; MDSC: Myeloid-
derived suppressor cell; NK cells: Natural killer cells; NR4A: Nuclear receptor
subfamily 4 group A; NSCLC: Non-small cell lung cancer; ORR: Objective
response rate; OS: Overall survival; PARPi: Poly (ADP-ribose) polymerase
inhibitor; PD-1: Programmed cell death 1; PDAC: Pancreatic ductal
adenocarcinoma; PDGFR: Platelet-derived growth factor receptor; PD-
L1: Programmed death-ligand 1; PFS: Progression-free survival;
PGE2: Prostaglandin E2; QD: Once daily; QW/Q2W/Q3W: Every 1/2/3 weeks;
RCC: Renal cell carcinoma; ROS1: ROS proto-oncogene 1, receptor tyrosine
kinase; SCLC: Small cell lung cancer; TAM: Tumor-associated macrophage;
TAN: Tumor-associated neutrophils; TCR: T-cell receptor; TGF-β: Transforming
growth factor-beta; TKI: Tyrosine kinase inhibitor; TLR: Toll-like receptor;
TLS: Tertiary lymphoid structures; TMB: Tumor mutation burden; TME: Tumor
microenvironment; TNBC: Triple-negative breast cancer; TRAE: Treatment-
related adverse effect; Treg: Regulatory T cell; VCAM-1: Vascular cell adhesion
molecule–1; VEGF-A: Vascular endothelial growth factor A
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