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Estimating three-dimensional (3D) surface orientation
(slant and tilt) is an important first step toward
estimating 3D shape. Here, we examine how three local
image cues from the same location (disparity gradient,
luminance gradient, and dominant texture orientation)
should be combined to estimate 3D tilt in natural scenes.
We collected a database of natural stereoscopic images
with precisely co-registered range images that provide
the ground-truth distance at each pixel location. We then
analyzed the relationship between ground-truth tilt and
image cue values. Our analysis is free of assumptions
about the joint probability distributions and yields the
Bayes optimal estimates of tilt, given the cue values.
Rich results emerge: (a) typical tilt estimates are only
moderately accurate and strongly influenced by the
cardinal bias in the prior probability distribution; (b)
when cue values are similar, or when slant is greater
than 408, estimates are substantially more accurate; (c)
when luminance and texture cues agree, they often veto
the disparity cue, and when they disagree, they have
little effect; and (d) simplifying assumptions common in
the cue combination literature is often justified for
estimating tilt in natural scenes. The fact that tilt
estimates are typically not very accurate is consistent
with subjective impressions from viewing small patches
of natural scene. The fact that estimates are substantially
more accurate for a subset of image locations is also
consistent with subjective impressions and with the
hypothesis that perceived surface orientation, at more
global scales, is achieved by interpolation or
extrapolation from estimates at key locations.

Introduction

One of the most fundamental and difficult tasks for
the visual system is to estimate three-dimensional (3D)

surface shape from the pair of two-dimensional images
formed by the left and right eyes. To estimate surface
shape, the visual system makes use of many different
sources of information (cues), including binocular
disparity (Backus & Banks, 1999; Knill, 2007; Ogle,
1952), texture (Blake, Bulthoff, & Sheinberg, 1993;
Knill, 1998a, 1998b), shading and lighting (Fleming,
Torralba, & Adelson, 2004; Mamassian, Knill, &
Kersten, 1998), surface boundary shape (Burge,
Fowlkes, & Banks, 2010a; Palmer & Ghose, 2008;
Peterson & Gibson, 1993), and motion parallax
(Landy, Maloney, Johnston, & Young, 1995). Each of
these cues has received a great deal of attention in the
psychophysical, computational, and neuroscience lit-
erature. As a whole, these studies have demonstrated
that these cues provide useful information for estimat-
ing surface shape but also that none of the cues alone is
sufficient to approach human performance in natural
scenes. Thus, there has been much interest recently in
how the visual system combines different cues to obtain
more precise and more accurate estimates.

An effective paradigm has been to create synthetic
stimuli in which two different cues can be manipulated
independently. Human estimation or discrimination
performance is then measured for each cue separately
and in combination (Burge, Girshick, & Banks, 2010b;
Gepshtein, Burge, Ernst, & Banks, 2005; Hillis, Ernst,
Banks, & Landy, 2002; Hillis, Watt, Landy, & Banks,
2004; Knill, 1998b; Landy et al., 1995). In a number of
cases, it has been found that the visual system combines
cues in an optimal fashion, under the assumption that
estimates from the cues are uncorrelated and Gaussian
distributed (Burge et al., 2010b; Hillis et al., 2002,
2004). The optimal combined estimate (given uncorre-
lated Gaussian distributions) is the weighted sum of the
two estimates (linear cue combination) in which the
weight on each estimate is its relative reliability (inverse
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of the variance; Alais & Burr, 2004; Clark & Yuille,
1990; Ernst & Banks, 2002). For example, if the cues
are equally reliable, then the reliability of the estimate
would increase by a factor of two over that of each cue
individually. On the other hand, if one of the cues is
much less reliable than the other, there will be little
improvement in reliability, even if the cues are
combined optimally. Worse yet, if the cues are
combined under a mistaken assumption that they are
equally reliable, performance can easily be worse than
just using the better of the two cues. A particularly
important fact in this context is that the different cues
often vary in their relative reliability across different
locations in natural images. Thus, an effective cue
combination requires taking into account the local
relative reliability.

In the computational literature, there are many
proposed algorithms for estimating surface shape from
a single cue (‘‘shape from X’’; Malik & Rosenholtz,
1994; Watanabe & Nayar, 1998); however, there have
been few attempts to consider multiple cues (Saxena,
Schulte, & Ng, 2007) and few attempts to directly
analyze the statistics of different cues in natural scenes
(Potetz & Lee, 2003; Saxena, Chung, & Ng, 2008).

Making measurements in natural scenes is important
because (a) the estimates from different cues may not
be statistically independent and/or may not be Gauss-
ian distributed in natural scenes, (b) the relative
reliabilities of the different cues in natural scenes are
unknown, and (c) one would expect the cue combina-
tion rules used by the visual system to be optimized for
the statistical structure of natural scenes.

The most local measure of 3D surface shape is the
3D orientation of the tangent plane at a point on the
surface. Presumably, the visual system integrates the
local measurements of 3D surface orientation into a
representation of surface shape. The 3D surface
orientation can be decomposed into two parts: the
surface slant and the surface tilt (Figure 1). Slant is the
amount a surface is rotated out of the reference (e.g.,
frontoparallel) plane (Figure 1A). Tilt is the direction in
the reference plane that the distance to the surface is
changing most rapidly, the so-called ‘‘direction of
slant’’ (Stevens, 1983). Tilt is equivalently defined as the
orientation of the surface normal’s projection in the
reference plane (Figure 1B). Note that the tilt angle is
always orthogonal to the axis in the reference plane
about which the surface is rotated.

Here we describe a statistical analysis of cues to local
3D orientation in natural scenes. This article focuses on
tilt, although we also report some results for slant.
There are many potential cues to local tilt that could be
examined given our database of registered ground-
truth range images and stereo-camera images. We
consider three cues: the orientation of the local gradient
of binocular disparity, the orientation of the local
gradient of luminance, and the dominant orientation
(major axis) of the local texture. These were picked
primarily for their simplicity, historical precedence, and
their plausibility given known processing in the early
visual system. In a follow-up analysis, we also evaluate
the usefulness of several local auxiliary cues: mean
absolute disparity (vergence demand), mean luminance,

Figure 1. Definition of slant and tilt. (A) Slant is the angle of rotation out of the reference plane (e.g., fronto-parallel plane). (B) Tilt is

the orientation of the surface normal projected into the reference plane. It is always orthogonal to the axis about which the surface is

rotated. (C) Slant and tilt together define a unique 3D surface orientation. The joint slant-tilt vector defines a point on the surface of a

unit sphere. Different conventions exist for representing surface orientation. In this plot, we show tilts on [0 180) and slants on [�90
90). Other conventions represent tilt on [0 360) and slants on [0 90).
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and RMS contrast, which are also simple and plausible
given known processing in the early visual system.

We analyze how to estimate unsigned tilt (Figure 1)
given the measured cue values. This makes our analysis
equivalent to estimating the orientation of the axis
about which depth is changing most rapidly. Even
though 3D surface tilt contributes strongly to the
results presented here, our analysis does not distinguish
between the tilt of surfaces belonging to individual
objects and the tilt (i.e., orientation) of depth discon-
tinuities (object boundaries). We therefore emphasize
that our analysis is best thought of as 3D tilt rather
than 3D surface tilt estimation. To carry out the
analysis, we first obtained a database of high-resolution
stereo-camera images, along with co-registered high-
resolution range images. From the range images, we
obtained ground-truth measurements of the local tilt at
each scene location. From the pair of camera images,
we measured the local image cues at each location
where the ground-truth tilt was measured.

We analyze the range and image data in two ways: in
a conditional-means framework and in a linear-
summation framework. The conditional-means frame-
work has the advantage that it provides the Bayes
optimal estimates (given a squared error cost function)
for the individual cues, pairs of cues, or all three cues
together, without making assumptions about statistical
independence or about the form of the joint probability
distribution (which is four-dimensional: range, dispar-
ity, texture, and luminance). This assumption-free
analysis is useful because it can provide new insight
into how the visual system should combine these cues,
given the statistical structure of natural scenes, and
because the computations implicit in the optimal
estimates can suggest principled and testable hypoth-
eses for cue combination in the visual system. However,
its disadvantage is that the data requirements make it
impossible to consider more than three variables (cues)
at a time. The linear-summation framework has the
advantage that it is possible to analyze the potential
value/role of additional auxiliary cues on tilt estima-
tion. Its disadvantage is that it may be suboptimal for
two or more cues and may not exploit useful nonlinear
relationships that exist between the cues in natural
images.

In this study, we consider how to optimally combine
image cues only at a single location. In other words, we
do not consider global cues or how best to integrate
image cues across space. Undoubtedly, the power the
human visual system to encode the 3D structure of the
environment depends in large part on effectively
exploiting global cues and constraints. Nonetheless, the
visual system starts with local measurements and then
combines those local measurements into the global
representations; the more accurate the local measure-
ments, the more accurate the global representation.

Thus, it is important to understand how cues at a single
location should be combined. Also, it is possible to
measure the performance of the visual system for
localized stimuli taken from natural scenes, where the
global cues and constraints are unavailable. Indeed,
one goal of our study was to determine how local cues
should be combined to estimate tilt in natural images,
in order to obtain principled, testable hypotheses and
predictions for human performance on localized
natural stimuli.

We find that tilt estimates based on an optimal
combination of cues at a single location are typically
not very accurate and tend to be strongly influenced by
the prior probability distribution. This result is
consistent with the subjective impression from viewing
small randomly selected patches of natural scenes (and
with psychophysical measurements; Kim & Burge,
2016). Nonetheless, there are large subsets of image
locations where the estimates are substantially more
accurate (e.g., locations where the values of the cues
approximately agree and locations having greater
slant). This is also consistent with subjective impression
and with the hypothesis that perceived surface orien-
tation, at more global scales, is often achieved by
interpolation and extrapolation from estimates at key
locations.

Methods

Registered camera and range images

High-resolution stereo-camera and range images
were obtained with a Nikon D700 digital camera
mounted on a Riegl VZ-400 3D laser range scanner.
The camera and laser scanner were mounted on a
custom portable robotic gantry having four degrees of
freedom: translation in x, y, and z and rotation about
the vertical (y) axis (Figure 2A). The robotic gantry
served an important function. Under normal circum-
stances, the fact that the camera is mounted above the
range finder means that the nodal points of two
instruments are not aligned, which results in missing
data because of half-occlusions. Specifically, a sub-
stantial number of pixels in the camera image will have
no corresponding range value, and another substantial
number of pixels in the range scan will have no
corresponding image value. To avoid this problem, the
robotic gantry was used to align the nodal points of the
camera and range scanner. The specific sequence for
image capture was as follows: (a) capture the first range
image, (b) translate parallel to earth vertical and
perpendicular to the line of sight by 6.5 cm and capture
the second range image, (c) translate vertically to align
the camera nodal point to that of the second range
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image and capture one of the camera images, (d)
translate back 6.5 cm and capture the other camera
image.

Each digital camera image was 4,284 3 2,844 pixels,
with a bit depth of 14 bits per RGB color channel. Each
pixel subtended about 0.028. The camera was calibrated
so that the images could be converted to eight-bit
luminance images (camera spectral sensitivities are
available at http://natural-scenes.cps.utexas.edu/db.
shtml). The range scanner provides accurate depth
measurements (65 mm) over the range of approxi-
mately 2 m to 200 m (beam width expands 30 mm per
100 m).

The Riegl software does not allow registration of
range images with the raw 14-bit camera images. We
developed custom software to register the images.
Inspection of various test cases shows that we obtained
very good registration (61 pixel). The precision is
illustrated in Figure 2B, which shows a 3D rendering of
a small part of a camera image of a stone structure
mapped onto the range image. Figure 3 shows
examples of the camera and range images.

For the present study, we obtained 96 high-quality
registered stereo-camera and range images from around
the University of Texas campus. Images were captured
from the typical eye height of a 6-ft-tall male, 66 in.
above the ground. Gaze was approximately earth
parallel. Fixation was at infinity. We then cropped the
images to 358 3 208 of visual angle (1,920 3 1,080,
yellow rectangles, Figure 3) to minimize the potential
effects of camera lens distortions (e.g., barrel distor-
tion). Thumbnails of the cropped regions from all 96
left-eye camera and range images are shown in Figure
4. This entire image set, and some additional details
about the measurement system, image calibration, and

registration are available at http://natural-scenes.cps.
utexas.edu/db.shtml.

Ground truth tilt and slant

The first step of the analysis was to measure the
ground-truth 3D orientation at each pixel location in
the range images, for which there was no missing data
in the neighborhood of the pixel. (The most common
cause of missing data was scene distance beyond the
limit of the range scanner, e.g., the white pixels in
Figure 3, bottom row.) To obtain the ground-truth 3D
orientation, we first filtered (blurred) the range image
with a Gaussian kernel having a standard deviation of
the 0.18 (;five camera pixels), took the derivative in
each direction, and then divided by the (local average)
range to obtain a normalized range gradient vector:

�r ¼ ð�xr;�yrÞ ¼
r0xðx; yÞ
rðx; yÞ ;

r0yðx; yÞ
rðx; yÞ

� �
ð1Þ

where r(x,y) is the average range in the neighborhood
of (x,y), with x and y in degrees of visual angle. The
average range is given by the convolution of the range
image with the Gaussian kernel, r(x,y) ¼ rng(x,y) *
g(x,y;rblur) , where g(x,y;rblur) is an isotropic two-
dimensional Gaussian with mean zero and standard
deviation rblur of 0.18. For notational convenience, we
leave implicit the (x,y) coordinates in the right side of
Equation 1. Note that blurring the range image with a
Gaussian and then taking derivatives in x and y is
equivalent to convolving the range image with Gauss-
ian derivative kernels in x and y (see Figure 5). Also
note that normalizing by the range in Equation 1 is

Figure 2. Registered range and camera images. (A) Camera and laser range scanner mounted on portable four-axis robotic gantry: (A)

natural scene, (B) Nikon D700 DSLR camera, (C) Riegl VZ-400 3D range scanner, (D) custom robotic gantry. (B) A 2003 200 pixel patch

of a camera image of stone structure mapped onto the range image. The registration is generally within plus or minus one pixel. Note

that the shadows in the camera image coincide with the mortared seams in the stone structure.
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Figure 3. Registered stereo pairs of camera images (top) and range scans (bottom). The gray scale in the bottom row indicates the

range; white pixels indicate no data. Cross-fuse the left two images, or divergently fuse the right two images to see the stereo-defined

depth. The yellow rectangle indicates the image regions that were used for analysis. The range data were collected with a cylindrical

projection surface. The missing bits of range data in the upper right and left corners of range scans result from the geometric

procedures that were required to co-register the camera image and range scans.
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necessary so that a planar surface will be assigned the
same slant independent of range; however, this
normalization has no effect on the definition of tilt
because the normalization term cancels out. Finally,
note that this definition of ground truth tilt means that
ground truth tilt depends in part on the size of the
analysis neighborhood (see Discussion).

The tilt [0,360) is the inverse tangent of the ratio of
the derivatives in the vertical and horizontal directions,

/r ¼ atan2ð�yr;�xrÞ ð2Þ
and the slant is the inverse tangent of the length of the
gradient vector,

hr ¼ atan
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�yrÞ2 þ ð�xrÞ2

q �
ð3Þ

Note that slant is defined on an open interval [0 90)
because a slant 908 surface (i.e., a depth discontinuity)
projects to an infinitesimal solid angle; all of our
measurements are over a solid angle with a ;0.258

diameter.

Local image cues

The next step of the analysis was to measure the
three image cues at those locations for which we were
able to measure the range gradient. The first cue is
based on the disparity gradient, which is defined
analogously to the range gradient:

�d ¼ ð�xd;�ydÞ ¼
d0
xðx; yÞ
dðx; yÞ ;

d0
yðx; yÞ
dðx; yÞ

 !
ð4Þ

where d(x,y) ¼ dsp(x,y) * g(x,y;rblur). Again, normal-
izing by the (local average) disparity is necessary so that
a planar surface will be assigned the same slant
independent of viewing distance (but has no effect on
the tilt estimate).

The disparity at each pixel location was taken to be
the horizontal offset that gave the maximum normal-
ized cross-correlation between the left and right images
computed over a region the size of the Gaussian kernel
(see the Appendix, Figure A2). We use local cross-
correlation because this is a popular model for disparity
estimation, for which there is substantial psychophys-
ical (Banks, Gepshtein, & Landy, 2004; Tyler & Julesz,
1978) and neurophysiological (Nienborg, Bridge,
Parker, & Cumming, 2004) evidence.

The disparity tilt cue is defined as the orientation of
the disparity gradient:

/d ¼ atan2ð�yd;�xdÞ ð5Þ
The second cue is based on the luminance gradient,

which is defined analogously:

�l ¼ ð�xl;�ylÞ ¼
l0xðx; yÞ
lðx; yÞ ;

l0yðx; yÞ
lðx; yÞ

� �
ð6Þ

where l(x,y)¼ lum(x,y) * g(x,y;rblur). Here we divide by
the (average local) luminance so that the luminance
gradient vector corresponds to the signed Weber
contrasts in the horizontal and vertical directions. The
luminance tilt cue is defined as the orientation of the
luminance gradient:

/l ¼ atan2ð�yl;�xlÞ ð7Þ
We use the orientation of the local luminance

gradient because it is a simple well-known feature

Figure 4. Thumbnails of the 96 images in the data set. (A) Camera images. (B) Co-registered range images. Only the left image of each

stereo-pair is shown.
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Figure 5. Range and photographic stereo images and range and image gradients for tilt estimation. (A) Range stereo images. Light

gray scales correspond to larger distances. Divergently fused the left to images, or cross-fuse the right two images. (B) Co-registered

photographic stereo images. (C) Ground-truth range data, x and y components of the range gradient, and ground-truth tilts. The small

yellow circle indicates the approximate size of the gradient operator (i.e., analysis window). (D) Luminance image data, and x and y

components of the disparity gradient (only left eye image shown), luminance gradient, and texture gradient.
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extracted early in the visual system (e.g., by simple cells
in primary visual cortex).

The third cue is the dominant orientation of the image
texture, which we define in the Fourier domain. First, we
subtract the mean luminance and multiply by (window
with) the Gaussian kernel above centered on (x,y). We
then take the Fourier transform of the windowed image
and compute the amplitude spectrum. Finally, we use
singular value decomposition to find the major (princi-
ple) axis of the amplitude spectrum (the orientation along
which there is the greatest variance around the origin).
We define the tilt cue as the orientation of the major axis
in the Fourier domain:

/t ¼ atan2ðuy; uxÞ ð8Þ
where (ux,uy) is the unit vector defining the principle axis.

Note that unlike the tilt measure for range, disparity,
and luminance, this tilt measure is ambiguous up to a
rotation of 61808; thus, the range of the tilt measure
for texture is [0,180). (The ambiguity of the tilt measure
is strictly true under orthogonal projection, but the
differences between orthogonal and perspective pro-
jection are negligible for the small patch sizes being
considered here.) We use the dominant orientation cue
because it is a simple measure likely to be computed in
the early visual system and because it is well known
that humans are able to make fine discriminations of
texture orientation (Knill & Saunders, 2003). It is a
principled measure of tilt for locally isotropic textures.
For example, textures composed of isotropic elements
become elongated in the direction perpendicular to the
direction of slant, creating a dominant orientation in
the direction perpendicular to the direction of slant
(Stevens, 1983). (Note that the major axis orientation in
the Fourier domain corresponds to the orientation
perpendicular to the dominant orientation in the space
domain.) We also considered standard measures (based
on local spatial frequency gradients) that do not
assume isotropy, but they performed poorly on our
natural images compared with the simpler dominant
orientation measure (see Discussion).

Conditional means

Biological systems evolve to exploit the statistical
relationships in natural scenes, and there has un-
doubtedly been great pressure for accurate 3D percep-
tion. Thus, it is sensible to consider how local image
cues should be combined to estimate 3D tilt. If the
evolutionary pressure is to make estimates that are as
accurate as possible on average (with the minimum
mean squared error), then it is straightforward to show
that the Bayes optimal estimate is simply the mean of
the posterior probability distribution conditional on
the available information:

/̂rj/ ¼ Eð/rj/Þ ð9Þ

where /r is the ground-truth tilt (the latent variable) and
/ is the observed vector of cue values [e.g., {/d,/l,/t}].

At first thought, it may seem impossible to determine
the optimal—minimum mean squared error
(MMSE)—estimate in the general case because of the
‘‘curse of dimensionality.’’ That is, the joint probability
distribution p(/r,/d,/l,/t) of image cue values and
ground-truth 3D tilt is four-dimensional (range,
disparity, luminance, texture), and estimating it accu-
rately would require far more data than our already
quite large data set contains. However, measuring
conditional means requires much less data and is
practical for our size data set. The direct way to
determine the conditional means is to (a) compute a
running count of the number of occurrences of each
unique vector of image cue values, (b) compute a
running sum of the variable of interest (the unit vector
in the ground truth tilt direction) for each unique
vector of image cue values, and (c) compute the
argument (arg) of the vector average:

Eð/rj/Þ ¼ arg
1

Nð/Þ
X

/r�Xð/Þ
ei/r

2
4

3
5 ð10Þ

where X(/) indicates the set of ground-truth values that
co-occur with a particular vector of cue values and
N(/) is the count of the number of occurrences of each
unique vector. The circular variance of the optimal
estimate (i.e., the inverse of reliability) is one minus the
complex absolute value of the vector average:

VARð/rj/Þ ¼ 1� 1

Nð/Þ
X

/r�Xð/Þ
ei/r

������
������ ð11Þ

These definitions of the conditional mean and
variance are used because tilt and tilt cues are circular
variables (see the Appendix).

The conditional means (and variances, if desired)
must be computed for all possible combinations of
conditioning cue values /¼ {/d,/l,/t}. For continuous
variables such as gradients, the number of possible
combinations is infinite. Therefore, it is necessary to
quantize the cue values. Here, we quantize each of the
cue values into 64 bins, each of which is 2.88 wide. (This
bin width appears to be sufficiently narrow given the
smoothness of the space.) With a triplet of cue values,
this quantization results in 643 total bins, which means
that ;260,000 total conditional means must be
computed. Estimating 260,000 conditional means
requires a substantial amount of data. Our data set
contains approximately 1 billion pixels. If the image cue
triplets were uniformly distributed, each bin would
have approximately 4,000 samples. In practice, we find
that the minimum number of samples is 618 and the
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maximum 86,838. This number of samples is sufficient
to reliably estimate the mean and variance for each bin.

Linear estimate combination

In the linear summation framework considered here,
the combined estimate is given by

/̂rj/ ¼ argðqrjde
i/̂rjd þ qrjle

i/̂rjl þ qrjte
i/̂rjt þ w0e

i/0Þ ð12Þ

where (/̂rjd,/̂rjl,/̂rjt) are the estimates from the individual
cues, (qrjd,qrjl,qrjt) are their relative reliabilities, and w0

and /0 are constants to correct for any overall bias
because the prior contributes to each of the individual
estimates. In the present case, the constants are equal to
zero because there is no overall bias. There are several
things to note about Equation 12. First, this vector
summation rule is appropriate for circular variables.
Mittelstaedt (1983, 1986) was the first to show that vector
summation weighted by reliability can account for human
performance in cue combination experiments (Mittel-
staedt, 1983, 1986). Murray and Morgenstern (2010)
showed that it is near optimal under some circumstances.
Second, for circular variables, using the reliabilities
instead of the relative reliabilities yields the same result.
Third, the linear estimate combination is different from
the linear cue combination. However, for standard (not
circular) variables, and the usual conditional indepen-
dence and Gaussian assumptions, the linear cue combi-
nation and linear estimate combination give the same
estimates (see Supplement). The advantage here of linear
estimate combination is that the individual estimates
(from the conditional means) are guaranteed to be
optimal, independent of the shape of the individual cue
posterior probability distributions and the prior proba-
bility distribution (see above). Fourth, even so, the
statistical properties that are known to guarantee
optimality of linear estimate combination do not hold
here. Nonetheless, one can still ask how well the linear
estimate combination approximates the optimal estimates.

The strength of the linear summation framework is
that it requires less data and hence allows incorpora-
tion of additional auxiliary cues. Auxiliary cues can be
incorporated into the individual cue estimates and their
relative reliabilities (see below). Here we consider three
local auxiliary cues: local mean disparity, local mean
luminance, and local RMS contrast.

Results

Conditional means: Accuracy of estimates

Figure 6 summarizes the overall accuracy of the
conditional-means estimates of tilt. Figure 6A shows

the ground-truth tilt at each pixel location for an
example image. Figure 6B shows the ground-truth slant
at each pixel. Figure 6C shows the tilt estimates. Figure
6D shows the (circular) difference between the ground
truth tilts and the estimates. Tilt is undefined when
slant equals zero, and hence we examined how tilt
estimation error changes as a function ground-truth
slant and tilt (Figure 6E). The black curve in Figure 6F
shows tilt error as a function of ground-truth slant. Tilt
error decreases steadily as a function of slant. At slants
greater than 458, the median absolute tilt error is less
than 208 (except for the very largest slants). Errors are
lowest when the range tilt is near 08 and 908 (Figure
6E), the peaks of the prior distribution (see later).

The tilt error is large at tilt 458 and 1358 because of
two factors. First, the cues do not provide particularly
good information at those tilts; that is, even though the
conditional measurement distributions are centered at
those range tilts (Supplementary Figure S2), the
distributions are very broad (Supplementary Figure
S3). Second, the prior has a large influence on the
broad likelihood functions that result from the poor
measurements. The combination of these two factors
significantly reduces performance at tilts well off the
cardinal axes. However, it is important to note that
even off the cardinal axes, there are cue conditions in
which the estimates of tilt are substantially more
accurate (see below).

The figures in this article are primarily based on
estimates obtained for a local analysis area having a
diameter of 0.258 (Gaussian window with a standard
deviation of 0.18). However, we ran the same analysis
for areas with diameters 1.5 and 2.0 times as large
(Figure 6F). The results are very similar—nearly all the
plots look the same. The primary difference is that
larger analysis areas produce somewhat less variable
results. This fact indicates that the observed pattern of
results is not an accident of the size of the analysis area.

Conditional means: Properties of estimates

In this subsection, we look in more detail at the
properties of the conditional-means estimates. First, we
show the prior distribution of 3D tilts in natural scenes
(Figure 7A; see later in Results for more detail) and the
distribution of optimal three-cue tilt estimates in
natural scenes (Figure 7B). Both have prominent peaks
at the cardinal tilts but have substantial probability
mass at all tilts. Next, we examine the tilt estimates
given each image cue value alone. Figure 7C shows the
estimate of 3D tilt given the measured value of
luminance alone, texture alone, and disparity alone;
that is, E(/rj/l), E(/rj/t), and E(/rj/d). For image cue
tilt measurements near 00 and 908, the estimates are
equal to the measured cue value. However, for image

Journal of Vision (2016) 16(13):2, 1–25 Burge, McCann, & Geisler 9



cue measurements near 458 and 1358, estimates are
shifted toward 08 and 908. This shift is largely due to the
effect of the prior. The prior distribution exhibits a
strong cardinal bias. Surfaces slanted around horizon-
tal axes (tilt¼ 908) or vertical axes (tilt ¼ 08) are much
more likely than other tilts. When only one image cue is
measured, the information it provides is not highly
reliable (Figure 7D). However, if all three cues are
measured and agree, the influence of the prior on the
conditional means E(/rj/l ¼ /t ¼ /d) is nearly
eliminated (Figure 7C, black curve), and the estimate
reliability increases substantially (Figure 7D, black
curve).

Figure 7E and 7F show how the accuracy and the
bias of the tilt estimates vary as function of the image
cue value for each of the individual cues (colored
curves) and for the case in which the three cue values
agree (black curve). When the cue values agree,
estimation accuracy is considerably better (in agree-
ment with the reduced bias and variance of the
estimates shown in Figure 7C, D). This fact could be
exploited by the visual system because the cue values

are available to the observer (see Discussion) Next, we
examine tilt estimates given both the disparity and
luminance cue values. The estimates for all combina-
tions of luminance and disparity cue values,
E(/rj/l,/d), are shown in Figure 8A. The pattern of
results is intuitive but complex. Depending on the
particular values of the disparity and luminance cues,
we see several different types of behavior: disparity
dominance, cue averaging, and cue switching. For
example, when disparity equals 908, E(/rj/l,/d¼ 90),
we observe disparity dominance; that is, the luminance
cue exerts almost zero influence on the estimate
(vertical midline of Figure 8A; see Figure 8B inset). On
the other hand, when luminance equals 908, E(/rj/l ¼
90,/d), the disparity cue exerts a strong influence on the
estimate (horizontal midline of Figure 8A). When
luminance and disparity agree, E(/rj/l¼/d), the single-
cue estimates are approximately averaged (positive
oblique of Figure 8A). When luminance and disparity
disagree by 908, E(/rjj/l� /dj ¼ 90), the best estimates
switch from 08 to 908 abruptly when the disparity cue
approaches ;658 and then switches abruptly back from

Figure 6. Tilt estimation errors. (A) Ground-truth tilt for an example image (cf. Figure 5). (B) Ground-truth slant. Note that the gradient

operators used to obtain estimates of ground-truth 3D orientations tend to overestimate slant of pixels near depth boundaries. This

effect can be seen in the image regions abutting the foreground tree. (C) Optimal (MMSE) tilt estimates when all three cues are

present. (D) Errors in tilt estimates. Tilt errors increase in magnitude as the slant approaches zero. (E) Median absolute tilt estimation

errors as a function of ground-truth tilt and slant. For slants near zero, where tilt is undefined, tilt errors are large. Beyond

approximately 208, the pattern of tilt errors becomes nearly invariant to slant. (F) Tilt error as a function of ground-truth slant. As

slant increases, tilt estimation error decreases systematically. The solid curve is for an analysis area with a diameter of 0.258, the

analysis area used throughout the rest of the article. At slants greater than 408, the median tilt estimation error drops to

approximately 158.
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908 to 08 when the disparity cue approaches ;1158. All
of these effects can be seen more readily by examining
the value of the estimate as a function of the disparity
cue for different luminance cue values (Figure 8B) and
as a function of the luminance cue for different
disparity cue values (Figure 8C).

A complex pattern of estimate reliability emerges as
well (Figure 8D). Estimates are most reliable when
luminance and disparity agree with each other and have
values near 08 or 908. Interestingly, in some regions of
the space, estimates are more reliable if the cues
disagree than if they agree. For instance, if disparity¼
67.58 and luminance¼ 908, the tilt estimate is more
reliable than if both disparity and luminance agree and

have values of 67.58. Estimates are most unreliable
when they differ by 908.

Finally, we examine optimal tilt estimates given all
three image-cue values. The three-cue results are even
more complicated, but they are richer and more
interesting to work through (Figure 9). Consider the
optimal estimates given all possible combinations of the
luminance and texture cues and one particular value of
the disparity cue. The particular combination of
luminance and texture values strongly influences the 3D
tilt estimates. If the luminance and texture cues
significantly differ from each other, the disparity cue
dominates (i.e., the optimal estimate very nearly equals
the tilt specified by disparity). However, if luminance

Figure 7. Tilt prior in natural scenes and optimal single-cue tilt estimates, variance, error, and bias. Three-cue performance is also

shown for when all three cues agree. (A) Unsigned tilt prior in natural scenes. The tilt prior exhibits a strong cardinal bias. Slants about

horizontal axes (tilt¼ 908) are most probable (e.g., the ground plane straight ahead). Slants about vertical axes (tilt¼ 08 and 1808) are

the next most probable. All other tilts are much less probable. (B) Distribution of optimal tilt estimates. Its shape is similar to the

shape of the tilt prior. (C) Tilt estimates conditioned on individual image cue values and estimates conditioned on cases when all three

cues agree. Specifically, blue indicates tilt given disparity alone E(/rj/d), green indicates tilt given luminance alone E(/rj/l), red

indicates tilt given texture alone E(/rj/t), and black indicates the expected tilt value when all three cues agree. (D) The precision of

the optimal estimates. Disparity alone yields the most reliable estimates for most, but not all, image cue values.When all three image

cues agree, the precision of the optimal estimate is significantly increased (see Methods). (E, F) Median absolute error (magnitude)

and bias of estimates as a function of image cue value. When all three image cues agree, there is a substantial increase in precision

and a decrease in bias.
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and texture cues agree, they override the disparity cue.
Consider the case in which disparity equals 458 and
luminance and texture take on arbitrary values (Figure
9A). When both luminance and texture equal ;1358,
the estimate is very near to 1358, even though the
disparity estimate specifies 458. Now consider the case
in which disparity equals 908 (Figure 9B). In this case,
estimates from disparity are modified very little by the
luminance and texture cues, no matter what their
values are. For nearly all combinations of luminance
and texture, the best estimate of 3D tilt is approxi-
mately 908. The one exception is when luminance and
texture equal each other and also equal 08 (thereby
differing from disparity by 908). When disparity is 1358

(Figure 9C) or 1808 (Figure 9D), the story is broadly
similar to the cases in which disparity equals 458

(Figure 9A) or 908 (Figure 9B), respectively. (See
Supplementary Figure S1 for all possible combinations

of disparity and luminance cues for each of several
particular texture cue values.)

Figure 9 also expands on the finding in Figure 7 that
when all three cues agree, estimate precision increases.
For example, in the panels in which the disparity cue is
458 and 1358, the precision is seen to be substantially
higher whenever both the luminance and texture cues
are within a neighborhood of 458 and 1358, respectively.

Figure 10 shows slices through the three-cue estimate
and precision plots. Interestingly, when disparity equals
908, the most reliable (lowest variance) estimates occur
when the image cues are in conflict (Figure 10B);
specifically, when disparity equals 908, luminance
equals 908, and texture equals 458, the circular variance
of the estimate is approximately 20% lower (0.19 vs.
0.24) than when disparity, luminance, and texture all
equal 908 and agree with each other. The same holds
true for all texture values between 308 and 808 (when

Figure 8. Two cue optimal estimates and precision. (A) Optimal tilt estimates given disparity and luminance cue values: E(/rj/d,/l).

Each line segment indicates the optimal tilt estimate (i.e., the expected tilt value). (B) Expected tilt (replotted from A) as a function of

the disparity cue for different luminance cue values (see upper left inset). Specifically, when luminance and disparity cues always

agree with each other E(/rj/d¼/l), when luminance always equals 908 E(/rj/d,/l¼90), and when luminance and disparity cues differ

by 908 E(/rjj/d,� /lj¼ 90). (C) Expected tilt (also replotted from A) but as a function of the luminance cue (see lower right inset in B)

for different disparity cue values. When the disparity cue equals 908, luminance has almost no influence on the optimal estimate

(disparity dominance). (D) Estimate precision (circular variance) based on measured disparity and luminance cue values. (Inset: Von

mises distributions spanning the range of depicted circular variances.) (E, F) Circular variances for the same conditions as in B, C.
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disparity and luminance equal 908). Can this effect be
accounted for by the precision of the single cue
estimates? It appears not. The estimate of the precision
of the texture alone at 458 is lower than that at 908. And
yet, the precision of the three-cue estimate when texture
equals 458 (and luminance and disparity equal 908) is
higher than when texture equals 908. This behavior is
not predicted by standard (linear) models of cue
combination and would make an interesting case to test
in future psychophysical experiments.

The detailed manner in which luminance and texture
modify the optimal estimate from disparity alone is
plotted directly in Figure 11. We show the two most
extreme cases: (a) when luminance and texture agree
with each other but not necessarily with disparity and
(b) when luminance and texture differ by 908. To
highlight the modifying influence of luminance and
texture, we plot the difference between the estimate
from disparity alone and the estimate from all three
cues, for the two cases just mentioned.

Figure 9. Three cue optimal estimates and precision, for all values of luminance and texture when A disparity equals 458, B disparity

equals 908, C disparity equals 1358, and D disparity equals 1808. Top row: The cue cube indicates the plane from which the optimal

estimates are shown. Middle row: Line segment orientation indicates the tilt estimate given each particular combination of cue

values. Bottom row: Circular variance of optimal estimates. The color bar is the same as in Figure 8D (i.e., circular variance on [0.1

1.0]).
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Figure 11A shows that when luminance and texture
agree with each other, they strongly affect the optimal
estimate from disparity alone, E(/rj/d,/l ¼ /t)�
E(/rj/d). When luminance and texture agree, they
override disparity unless disparity equals 908 (or unless
luminance and texture approximately agree with
disparity). Figure 11B, D shows that luminance and
texture have progressively less effect as the difference
between them increases. Figure 11E shows that when
luminance and texture differ by 908, they have virtually
no effect on the optimal estimate (disparity domi-
nance). That is, the difference E(/rj/d,j/l� /tj ¼ 908)�
E(/rj/d) is near zero for virtually all values of disparity,
luminance, and texture. Thus, in general, luminance
and texture override disparity when they agree and
have little effect when they disagree.

Luminance and texture may override disparity
because estimates of tilt from disparity can be
misleading or inaccurate. For example, disparity
estimates near depth boundaries are unreliable because
disparity signals are undefined for half-occluded
regions of the scene. On the other hand, luminance and

texture cues frequently agree with each other at or near
depth boundaries and are immune to the half-occlusion
problem. Thus, many of the cases in which disparity is
overridden by luminance and texture occur near depth
boundaries. Note that at depth boundaries, gradient-
based slant and tilt estimates will not correspond to
individual surfaces. The measure of tilt will therefore
provide information about the orientation of a depth
boundary and/or the tilt of surfaces. Differentiating
between highly slanted surfaces and depth discontinu-
ities in natural scenes is an important research question
in its own right.

Linear estimate combination

The Bayes optimal estimates given by the conditional
means are the best (in mean squared error) perfor-
mance possible (for our natural scenes), given the three
specific cues defined above. Of course, there are other
local and global cues available to the visual system. As
noted earlier, it is beyond the scope of this article to

Figure 10. Three cue estimates (replotted from Figure 9) for specific combinations of luminance and texture when (A) disparity equals

458, (B) disparity equals 908, (C) disparity equals 1358, (D) disparity equals 1808 (similar to Figure 9). Top row: Surface tilt estimates, for

each disparity cue value, when luminance equals texture (black), luminance disagrees with texture by 908 (middle gray), and

luminance equals 908 (light gray). For reference, light blue indicates the optimal estimate for conditioned on disparity alone (see

above), while light green indicates the optimal estimate conditioned on luminance alone when luminance equals 908, E(/rj/l¼ 908).

Bottom row: Circular variance for the same conditions.
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consider global cues. However, within a linear sum-
mation framework, it is possible to consider additional
local cues. The starting point is to compare the
conditional-means method with linear estimate combi-
nation (Equation 12) for the same three main cues
considered above.

The solid and dashed black curves in Figure 12 plot
the overall performance of the two methods. Figure
12A plots the overall distribution of tilt errors. Figure
12B plots the median absolute tilt error of the two
methods as a function of tilt and Figure 12C the
median absolute tilt error as a function of slant.
Although Figure 12B may give the impression that the
optimal estimator assigns each patch to only one of the
cardinal tilts, this is not the case. The probability
distribution of tilt estimates has mass at all tilt values
(see Figure 7B) and significantly outperforms a model
that assigns only cardinal tilts. Figures 12D and 12E
show similar plots for the median signed error.
Although the linear estimate combination performs
worse overall, its performance is very close to the
optimal across all tilts and slants. This result shows that
the simpler linear estimate combination can capture
most of the information captured by the optimal
method and provides some justification for using the
linear estimation combination to evaluate human
performance with natural stimuli. This result also
provides some justification for using the linear-cue
combination framework to evaluate the effect of
additional cues.

The simplicity of the linear estimate combination
allows one to examine the potential impact of
additional local cues. We chose to examine three simple
local auxiliary cues available to the early visual system:
the mean disparity (i.e., vergence demand) d̄, the mean
luminance l̄, and the RMS contrast c̄. Each of these is a
weighted average computed over the same analysis area

as the three main cues and can take on an arbitrary
value v. To evaluate the information provided by each
of these auxiliary cues, we computed the single-cue
estimates and their variances (and hence reliabilities),
conditional on the value of the tilt cue and the value v
of the auxiliary cue: /̂rjd,v ¼ E(/rj/d,v), r2

rjd;v ¼
VAR(/rj/d,v), /̂rjl,v¼ E(/rj/l,v), r2

rjl;v ¼ VAR(/rj/l,v),
/̂rjt,v¼E(/rj/t,v), r2

rjt;v¼VAR(/rj/t,v). To illustrate the
broad effects of these cues, Figures 13A-C plot the
average relative reliability for the three main cues as a
function of each of the auxiliary variables. As can be
seen, the average relative reliability of tilt estimates
from disparity decreases with absolute disparity and
rms contrast, but the average relative reliability of the
other estimators is largely unaffected by these auxiliary
cues. Note that for very large distances, disparity can
play no role because then changes in depth will create
changes in disparity below the disparity detection
threshold. Luminance has very little effect on any of the
estimators. This result is intuitive. In general, the
disparity gradient information should decrease with
distance because of the inverse square relationship
between disparity and distance. We suspect that the
disparity reliability decreases with RMS contrast in
natural scenes because high-contrast regions are
correlated with depth discontinuities and because
disparity information is generally poor at depth
discontinuities (i.e., high-disparity gradients). Figure
13D shows how the variability of the individual cue
values (across tilt) changes with the disparity-defined
distance in meters.

The dashed colored curves in Figure 12 show the
performance of the linear estimate combination when
the auxiliary cues of absolute disparity (dashed light
blue) and RMS contrast (dashed red) are included.
There is a small improvement in tilt estimation
accuracy when these local auxiliary cues are used.

Figure 11. The influence of luminance and texture on tilt estimates from disparity. The difference between the all-cues estimates and

disparity-alone estimates is plotted as a heat map. (A) Dramatic departures from the disparity alone estimate occur when luminance

and texture agree and differ from disparity (except when disparity equals 908). (B–E) As the difference between luminance and

texture increases from (B) 22.58, (C) 45.08, (D) 67.58, and (E) 90.08, the influence of luminance and texture progressively decreases.

When luminance and texture are in maximal disagreement, j/l � /tj ¼ 908, they have little or no effect; that is, the three-cue

estimates are almost the identical to the disparity-alone estimate.
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The properties of the estimates produced by the
linear estimate combination are very similar in most
respects to the properties of the conditional-means
estimates shown in Figures 8 to 11. However, there are
some subtle differences that could be compared with
human tilt judgments on the same stimuli. The clearest
example concerns the distinction between cue vetoing
and cue averaging. One of the interesting properties of
the conditional-means estimates is that in some cases,
they correspond to something like the average of the
estimates from the three cues alone, but in other cases,
one or more of the single-cue estimates is effectively
vetoed by the other estimate or estimates. This
behavior is sensible. For example, if the estimates from
the three cues are similar, then it is sensible to average
them. However, if one cue gives an estimate that is far
from the other two, then averaging it in will pull the
estimate to a value that is not close to the estimate of
from any of the cues. In this case, it makes intuitive
sense to ignore the outlier (Knill, 2007). This vetoing
effect is illustrated in Figure 14. The black curve shows
the optimal estimate when the luminance and texture
cues agree and the disparity cue is fixed at 458. If the
disparity cue were being completely ignored, the
estimates would fall on the diagonal (dashed line).

Thus, the plot shows that the disparity cue is essentially
vetoed for most of the luminance/texture cue values.
This occurs even though the reliability of the disparity
cue at a tilt of 458 is usually greater than the reliability
of either of the other two cues (see Figure 7C). Linear
estimate combination, on the other hand, does only
weighted averaging. If one cue has sufficiently low
reliability compared with the other cues, it is effectively
vetoed; however, as the dashed curve in Figure 14
shows, it does not have the same vetoing power as the
conditional-means estimator. For luminance/texture
tilts in the range of 708 to 1308, the disparity cue pulls
the estimate toward 458. It should be possible in
psychophysical experiments, using these same natural
stimulus patches, to determine whether the human tilt
estimates are more like those of linear estimate
combination or conditional means.

Prior distribution of slant and tilt in natural
scenes

The distribution of local 3D orientations in natural
scenes can be represented by a joint prior over slant and
tilt. Slant and tilt are spherical coordinates (i.e., a

Figure 12. Comparison of the optimal conditional-means method and other estimators. (A) Grand histogram of errors for the optimal

(black), luminance gradient cue only (green), texture gradient cue only (red), disparity gradient cue only (blue), linear reliability–based

cue combination (dashed black), linear reliability–based cue combination with local disparity-specified distance as the auxiliary cue

(dashed cyan), and linear reliability–based cue combination with local RMS contrast as the auxiliary cue (dashed cyan). (B) Mean

absolute error as a function of ground-truth tilt. (C) Mean absolute error as a function of range slant (cf. Figure 6F). (D) Median tilt

bias as a function of range tilt. (E) Median tilt bias as a function of range slant. To reduce clutter, the single-cue results are not shown

in B and E.
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surface normal is a vector on the unit sphere); a
uniform distribution of slant and tilt, therefore,
corresponds to a flat distribution on the surface of the
unit hemisphere. Most high-level programming lan-
guages do not have off-the-shelf methods for comput-
ing histograms on equal area bins on the surface of a
sphere. Thus, to accurately measure the distribution of
slant and tilt with widely available tools, it is necessary
to perform an area-preserving cylindrical projection of
the measured joint slant-tilt values (Rosenberg, Cowan,
& Angelaki, 2013). In the projection, tilt is represented
directly /r � /*

r and slant is represented by the cosine
of the slant cos hr � h*

r , where * indicates the
representation of the coordinate in the projection. The
projection is area preserving in that the uniformity of
surface orientations on the sphere (cf. Figure 1) implies
uniformity in the projection and vice versa.

The joint prior distribution pðh*
r ;/*

r Þ is shown in
Figure 15A. The marginal prior distributions over tilt
pð/*

r Þ ¼
P

hr
pðh*

r ;/*
r Þ and over slant pðh*

r Þ ¼
P

/r
pðh*

r ;
/*
r Þ are shown in Figure 15B, C. Consistent with

previous findings, we find a strong cardinal bias in the
marginal tilt distribution. Specifically, tilts that are
consistent with the ground plane straight ahead (908)
are most probable; tilts that are consistent with surfaces
slanted about vertical axes (08 and 1808), such as tree

Figure 13. Relative reliability of each individual gradient cue, averaged across tilt, as a function of different local auxiliary cues. (A)

Disparity-specified distance. (B) RMS contrast. (C) Luminance. The averages across tilt are simply for purposes of illustrating broad

trends. (D) Variance of each individual gradient cue estimator across tilt for different disparity-specified distances. The average

relative reliability in A is obtained by computing the average inverse variance across tilt at a given disparity-specified distance.

Figure 14. Tilt estimates when the luminance and texture cues

are equal and the disparity cue signals a tilt of 458. If the

disparity cue is vetoed (ignored), the estimates should fall on

the dashed line. The black curve shows the MMSE optimal

estimates, which largely veto disparity when luminance and

texture agree. The dashed black curve shows the estimates

based on linear cue combination (the LR estimator). For the LR

estimator, disparity pulls the estimates in the direction of 458

when luminance/texture cue is in the range of 708 to 1308.
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trunks, signposts, and buildings, are next most
probable.

As has been previously reported, the prior slant
distribution is highly nonuniform (Yang & Purves,
2003). However, previous studies have reported that
surfaces near 08 of slant are exceedingly rare in natural
scenes (Yang & Purves, 2003), whereas we find
significant probability mass near 08 of slant. That is, we
find—consistent with intuition—that it is not uncom-
mon to observe surfaces that have zero or near-zero
slant in natural scenes (e.g., frontoparallel surfaces
straight ahead). Further, we find that for slants less
than 67.58, the prior is well approximated by a mixture
of two Gaussian distributions (see the Appendix for
best-fit parameters).

What accounts for the differences between our
results and those previously reported? The primary
difference appears to be due to how the 3D orientation
is projected. If one does not perform a projection that
preserves area on the unit sphere (i.e., if one bins on hr
rather than on cos (hr)), the estimated marginal slant
distribution is dramatically different. The slant prior
distribution computed without an area-preserving
projection has effectively zero probability mass near
zero. Taken at face value, such a result would lead to
the erroneous conclusion that surfaces with slants near
zero almost never occur in natural scenes (Figure 15C,
gray curves).

Note that the gradient operator method used to
obtain estimates of ground-truth 3D orientations tends

Figure 15. Slant-tilt prior in natural scenes, for two equivalent parameterizations of slant and tilt. Upper row: tilt¼ [0 180), slant¼
[�90 90); lower row: tilt¼ [0 360), slant¼ [0 90). A joint prior distribution of slant-tilt in natural scenes. The color bar indicates the

count in log10 (e.g., 5 indicates a count of 105); some slant-tilt combinations are ;1003more likely than others. High slants at tilt¼
908 (e.g., ground plane straight ahead) are most probable. Slant zero surfaces are also quite probable (where tilt is undefined). (B) The

marginal tilt prior distribution. (The upper plot is exactly the same data as Figure 7B). (C) The marginal slant prior distribution. The

dashed black curve is a mixture of Gaussians fit to the slant prior (see Appendix for parameters). The gray curve is the marginal slant

distribution computed without an area-preserving projection. The shaded areas (jslantj . 67.58) indicate results that may be due to

depth discontinuities rather than the surfaces of individual objects.
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to overestimate surface slant near depth boundaries (cf.
Figure 6B). We strongly suspect that this effect
accounts for the rapid increase in probability mass near
908. This is why the plots in Figure 15C have been
shaded. However, this inaccuracy is unlikely to
substantially affect the primary conclusions of this
article because the tilts near depth edges are typically
orthogonal to the depth boundary. Nevertheless, a
more sophisticated method for estimating local surface
orientation from databases with ground-truth distance
data is clearly an important subject for future research.

Discussion

Estimating the local 3D orientation is a precursor to
estimating 3D shape. Local 3D orientation is param-
eterized by slant and tilt. Our primary aim was to
determine the optimal estimates of local tilt given the
measured values of several simple image cues, where
the goal is to minimize the squared error with the
ground-truth 3D tilt.

We accomplished this aim by first collecting a large
database of calibrated stereo-images of natural scenes
with co-registered range data. Next, we measured three
image cues (orientation of disparity gradient, orientation
of luminance gradient, and dominant texture orienta-
tion) as well as the ground-truth slant and tilt in the
range images for every pixel in the database (ground
truth is defined as the local gradient of the range image).
Then, we computed the optimal (MMSE) estimate of tilt
for all possible combinations of the disparity, luminance,
and texture cues using the conditional means method. A
rich set of results emerged. The results show that very
local (0.258), very simple image cues can be used to
obtain moderately accurate estimates of tilt. More
specifically, we find that (a) the optimal estimates for
each single cue are somewhat biased, because of the
peaks in the prior distribution at horizontal and vertical
tilts; (b) the precision of tilt estimates generally increases
with slant; (c) binocular disparity is the most reliable of
the tested cues; but (d) if the estimates from luminance
and texture cues agree and are different from the
estimate from the disparity cue, then the luminance and
texture cues override the disparity cue; and, more
generally, (e) when the values of the three cues are
approximately the same, the tilt estimates are more
accurate, and the precise (f) optimal cue combination in
natural scenes often appears to involve complex
nonlinear interactions.

We then compared estimates from the conditional
means (Bayes optimal) method with those of the linear
estimate combination. We found that the overall
performance of the linear estimate combination is only
slightly below that of the conditional means, although

it displays weaker cue-vetoing behavior under some
circumstances. An advantage of the linear estimation
combination is that it allows analysis of a larger
number cues for the same amount of data. This allowed
us to measure the usefulness of several other auxiliary
cues (measured at the same location as the three main
cues): mean absolute disparity, mean luminance, and
RMS contrast. In agreement with intuition, we found
that the absolute disparity was the most useful auxiliary
cue—as the absolute disparity decreases (i.e., distance
increases) the weight given to the disparity gradient
orientation cue is reduced.

Cost function

In determining the optimal estimates, we assumed
that the goal is to minimize the squared error between
the estimated tilt and the ground-truth tilt. We chose
this goal (cost function) for two reasons. First, with this
goal, the cost grows smoothly with the magnitude of
the error, in agreement with the intuition that survival
costs in the real world are less on average if the
behavior is close to what was intended. Second, this
optimal estimation rule can be learned by directly
measuring the conditional mean for each combination
of cue values, without making any assumptions about
the underlying joint four-dimensional distribution.
Requiring only the conditional means made it practical
to learn the optimal estimation rule directly from our
set of registered range and camera images.

Another simple cost function is one that treats all
errors as equally bad. This cost function, which produces
maximum a posteriori (MAP) estimates, is less appro-
priate for many estimation tasks because it does not give
credit for being close to the correct estimate. Another
limitation of this cost function is that it requires
characterizing the posterior distributions sufficiently to
determine the mode, which, because of data limitations,
would be impossible without strong assumptions about
the form of the joint distribution. However, MAP
estimates are appropriate for other tasks such as
recognition of specific objects or faces, in which close
does not count. Also, if the likelihood distributions are
symmetrical about the peak (e.g., Gaussian), the MAP
and MMSE estimates are the same. Finally, for certain
strong assumptions (e.g., statistical independence of the
cue distributions), it is widely believed that MAP
estimators are more biologically plausible.

Linear estimate combination

Although minimizing the squared error is a sensible
cost function, it seems unlikely that the visual system
learns a separate specific conditional mean for every
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possible triplet of cue values. Thus, it is important to
consider whether there are simpler computations that
could closely approximate the Bayes optimal estimate.
Psychophysical (Burge et al., 2010b; Hillis et al., 2004;
Knill & Saunders, 2003) and neurophysiological studies
(Murphy, Ban, & Welchman, 2013; Rosenberg &
Angelaki, 2014; Sanada, Nguyenkim, & DeAngelis,
2012; Tsutsui, Jiang, Yara, Sakata, & Taira, 2001;
Welchman, Deubelius, Conrad, Bülthoff, & Kourtzi,
2005) have investigated how cues are combined in
estimating surface orientation. Some of these studies
have demonstrated that behavioral and neural re-
sponses are consistent with linear summation with
weights given by relative reliability (Burge et al., 2010b;
Hillis et al., 2004; Knill & Saunders, 2003; Sanada et
al., 2012). However, these studies used artificial
laboratory stimuli. The present analysis of cue combi-
nation in natural images shows that linear summation
using relative reliability is near optimal in our natural
images (Figure 12), at least for the specific cues and
local analysis areas (0.258–0.508 diameter areas) exam-
ined here. This finding would seem to help explain why
biological systems have evolved cue combination
mechanisms consistent with this simple rule.

Limitations and directions

The present study focused exclusively on how to
combine cues measured at the same location in static
stereo natural images. Although much of the power of
the human visual system must derive from more global
cues and integration mechanisms, the visual system
starts with local measurements. The better the initial
local estimates of tilt, the more effective will be global
cues and integration mechanisms that build on them.
Thus, there has undoubtedly been evolutionary pres-
sure to optimize local cue combination at single
locations in natural scenes, and hence it is sensible to
consider how to combine cues at single locations in
natural scenes. Also, it is possible to compare human
and optimal performance under conditions in which
only local cues are available.

The main cues and auxiliary cues considered here
were picked because they are simple and likely to reflect
computations in the early levels of the visual system.
We might expect evolution (or learning over the life
span) to select local cues that provide the best
information for tilt estimation in natural scenes. This
raises the question of whether there are substantially
better local cues than the ones we chose.

The texture cue that we used (the major axis of the
amplitude spectrum) is nonstandard (but see Fleming,
Holtmann-Rice, & Bulthoff, 2011); it is formally
appropriate only for locally isotropic textures (statisti-
cally the same in all directions). It is therefore fair to

question whether tilt estimation from texture alone
could be improved with a more traditional texture cue.
We evaluated a more standard cue based on the local
gradient in spatial frequency (Clerc & Mallat, 2002;
Galasso & Lasenby, 2007; Malik & Rosenholtz, 1997).
This cue is appropriate for locally anisotropic (but
statistically stationary) textures. The particular version
we used is similar to Massot and Hérault (2008). At
each pixel location, the amplitude spectrum is com-
puted in the same way as for the major-axis cue (see
Methods). The amplitude spectrum is then filtered to
reduce low spatial frequencies (e.g., luminance gradi-
ents) and enhance mid and high frequencies. Next, the
centroid spatial frequency f̄ is computed. The result of
this computation at each pixel location is a centroid-
frequency image. Finally, we compute the gradient of
the centroid-frequency image and define the tilt cue as
the orientation of the centroid gradient:

/l ¼ atan2ð�y f̄ ;�x f̄ Þ ð7Þ
Figure 16A–F shows a comparison of the tilt estimates

for the major-axis cue and the centroid cue for a
synthesized surface textured with noise. The noise texture
(Figure 16A, B) consisted of 200 random frequency and
phase components having amplitudes that fall inversely
with frequency (similar to the amplitude spectra of
natural images). For this (and other) isotropic noise
textures, the major axis cue is much more reliable than
the centroid cue (compare Figures 16C, E and 16D, F).
We also considered a more sophisticated texture gradient
cue similar to that of Malik and Rosenholtz (1997). It
performed slightly better than the centroid cue but still
much worse than the major-axis cue. This is not
surprising given that the centroid cue involves computing
the derivatives of noisy data.

Interestingly, the major-axis cue is also more reliable
for our natural images (see example in Figure 16G–I),
even though natural-image textures are generally not
isotropic. The most likely explanation is that outdoor
images such as those in our data set are sufficiently
isotropic for the major-axis cue to outperform the
noisier centroid cue. We speculate that for images like
those in our data set, there is unlikely to be a local
texture cue much better than the major axis cue.

For purely local measures, there are no obvious
alternatives to the disparity and luminance gradient
cues. It may be possible to use other techniques to find
the most useful local image features for tilt estimation
(Burge & Geisler, 2011, 2012, 2014, 2015; Geisler,
Najemnik, & Ing, 2009); however, it seems likely (given
our past experience) that any improvements in perfor-
mance would be modest.

One slightly puzzling fact is that the luminance cue is
as good as (or better than) the texture cue (note the bias
and reliability in Figure 7), even though luminance
gradients are not typically considered to be cues for tilt.
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One contributing factor may be that at surface
boundaries, the tilt of the foreground object tends to be
orthogonal to the boundary. This would be true for
cylinders and would seem likely to be more generally
true (e.g., wherever surface boundaries are locally
conic, as they are for foliage branches). This would
create a correlation between the luminance edge created
by the boundary and the tilt of the foreground surface
at and near the boundary. However, the usefulness of
luminance cannot entirely be due to surface boundaries
because the luminance cue still provides information
about tilt for ground-truth slants much smaller than 908

(e.g., Figure 12C).
The relatively poor overall performance of the

optimal and linear estimate combination for the tilt and
auxiliary cues considered here (e.g., Figure 12) is
consistent with the subjective impression of viewing
natural scenes through a small aperture (and with
psychophysical measurements; Kim & Burge, 2016).

Nonetheless, the set of properties and the performance
of the optimal and linear cue combination computa-
tions discovered here provide a rich set of predictions
and hypotheses that can be tested in experiments in
which only local image patches are presented to
observers. An obvious next step is to test these
predictions and hypotheses in psychophysical studies.

Although tilt estimates based on either optimal or
linear combination of cues at a single location are
typically not very accurate, there are large subsets of
locations where the estimates are substantially more
accurate. We have not fully explored the cases in which
the estimates are more accurate, but they include the case
in which values of the three main cues are similar
(Figures 7 and 9). Image cue values are (of course)
available to a visual system. Hence, a visual system could
identify those locations where the estimates are likely to
be more accurate. Thus, a plausible hypothesis is that
these locations are given more weight in the spatial

Figure 16. Comparison of texture cues for tilt estimation. (A, B) Synthesized image of a planar textured surface with a slant of 608 and

a tilt of 908. (C) Map of the tilt estimated at each pixel location in B for the major axis cue used here. The map is all white because the

major axis of the spectrum is 908 at all locations. (D) Map of the tilt estimated at each pixel location in B for the frequency centroid

gradient cue. (E, F) Histograms of the tilt estimates for the two cues. (G) Map of ground-truth tilt at each pixel location of an example

natural image. (H) Map of estimated tilts for example natural image using major axis cue. (I) Map of estimated tilts for example image

using frequency centroid gradient cue.
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integration mechanisms that incorporate smoothness
and other constraints to estimate surface shape. We
conclude that the results and database presented here
also provide a useful starting point for investigating the
global cues and spatial integration mechanisms under-
lying the perception of 3D surface orientation.

Conclusion

We collected a database of 96 high-resolution
calibrated stereo-images together with precise range
(distance) measurements at each pixel location and then
used this database to evaluate the usefulness of local
image cues (disparity, luminance, and texture) for
estimating 3D tilt. An assumption-free conditional-
means approach was used to determine the optimal
(i.e., MMSE) estimates from the three cue values at the
same single location. We also evaluated a less optimal,
but more plausible, linear cue combination approach.
These analyses of natural scene statistics revealed a
number of principled and testable hypotheses for the
mechanisms underlying 3D orientation perception in
natural scenes.

Keywords: tilt, slant, natural scene statistics, cue
combination, surface orientation
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Appendix

Circular statistics: Means, variances, and the
Von Mises function

Circular variables can be expressed as complex
numbers of unit magnitude (i.e., vectors on the unit
circle). The conditional mean for a circular variable is

E ei/r j/
� 	

¼

X
/r�Xð/Þ

ei/r

Nð/Þ ¼

X
/r�Xð/Þ

cos/r þ isin/r

Nð/Þ ¼ Āre
i/̄r

ðA1Þ
where / is a vector of cue values, /̄r is the mean angle,
and Ār is the length of the mean vector. The mean angle
is given by the argument of the vector sum

/̄r ¼ argðĀre
i/̄rÞ ðA2Þ

and the length of the mean vector is given by the
complex absolute value of the mean vector

Ār ¼ jĀre
i/̄r j ðA3Þ

The circular variance is a statistic that measures the
dispersion (i.e., the spread of the distribution) of a
circular variable and is given by

r2 ¼ 1� Ā ðA4Þ
The geometric interpretation of these equations is

shown in Figure A1. As the circular variance increases,
the length of the mean resultant vector decreases. If the
samples of a circular variable are distributed uniformly
on the unit circle, the mean resultant vector would be of
length zero and the circular variance would equal its
maximum value (1.0).

The Von Mises distribution (Gaussian on the circle)
is given by

vð/j/̄;jÞ ¼
exp
�
jcosð/� /̄Þ

�
2pI0ðjÞ

ðA5Þ

where /̄ is the mean, j determines the circular variance,
r2 ¼ 1 � I1(j)/I0(j), and I0(j) and I1(j) are modified
Bessel functions of orders zero and one. Note that
given an estimate of r2, we can obtain an estimate of j
by solving the equation I1(ĵ)/I0(ĵ)¼ 1� r̂2.

Slant prior in natural scenes

The slant prior in natural scenes is presented in
Figure 15 in the main text. For slants less than ;658,
the slant prior is well approximated by a mixture of
Gaussian distributions
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pðhrÞ’ aexp �0:5
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� �2
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" #

ðA6Þ
where r1 is the standard deviation of the first Gaussian,
r2 is the standard deviation of the second Gaussian,
and a is a mixing parameter, which is constrained to lie
on [0 1]. The best-fit values are r1¼ 108, r2¼ 428, and a
¼ 0.5. (Note that a mixture of Von Mises distributions
also provides a good approximation to the slant prior
pðhrÞ’ aexp j1cosð2hrÞ½ � þ ð1� aÞexp j2cosð2hrÞ½ � where
j1 and j2 are the concentration parameters of the two
distributions. The best-fit values are j1 ¼ 8, j2¼ 0.8,
and a ¼ 0.5.)

Disparity estimation

Disparity was estimated from the left and right eye
luminance images via windowed normalized cross-
correlation. Both left and right images were used as
reference images, so disparity estimates were obtained

for each image:

d̂L ¼ argmax
dL

X
x;y�gðx;yÞ

gðx; yÞLðx; yÞ � L̄½ � gðx� dL; yÞRðx� dL; yÞ � R̄½ �

jjgðx; yÞLðx; yÞ � L̄jjjjgðx� dL; yÞRðx� dL; yÞ � R̄jj

d̂R ¼ arg max
dR

X
x;y�gðx;yÞ

gðxþ dR; yÞLðxþ dR; yÞ � L̄½ � gðx; yÞRðx; yÞ � R̄½ �

jjgðxþ dR; yÞLðxþ dR; yÞ � L̄jjjjgðx; yÞRðx; yÞ � R̄jj
ðA7Þ

where L̄ is the local mean of the left image, R̄ was the
local mean of the right image, and g(x,y) is a Gaussian
window. Negative disparities indicate uncrossed dis-
parities; positive disparities crossed disparities. The
estimated disparity was the offset that maximized the
correlation between the left and right eye patches.

We verified the accuracy of these disparity estimates
against the ground-truth range data by computing the
range from the disparity estimates via triangulation
based on the geometry of image capture. Figure A2
shows a histogram of range estimates from disparity as
a function of the true range. The histogram shows that
disparity estimates are accurate out to a distance of at
least 50 m.

Figure A1. Geometry of circular variables. To compute the

average from samples of a circular variable, the (four-quadrant)

arc tangent is computed from the average cosine and the

average sine of the sample angles. The angle of the average

resultant vector is the mean angle and one minus the

magnitude of the resultant vector is the circular variance.

Plotted are samples from two distributions with different

means and circular variances (black and gray symbols).

Figure A2. Range estimates from disparity. (A) Histogram of

range from disparity estimates against ground-truth range. The

color bar indicates the log-base-10 number of samples in each

bin. The fact that nearly all the samples are on the positive

oblique indicates that the disparity estimation routine (Equation

A7) is largely accurate. (B) Mean (solid black curve) and median

(black dashed curve) range estimates from disparity as a

function of distance. Error bars show 68% confidence intervals

of the mean.
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