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Background. Cervical cancer is the fourth common cancer among women. Its prognosis needs our more attention. Our purpose
was to identity new prognostic gene sets to help other researchers develop more effective treatment for cervical cancer patients and
improve the prognosis of patients. Methods. We used gene set variation analysis (GSVA) to calculate the enrichment scores of
gene sets and identified three subtypes of cervical cancer through the Cox regression model, k-means clustering algorithm, and
nonnegative matrix factorization method (NMF). Chi-square test was utilized to test whether a certain clinical characteristic is
different among divided subtypes. We further screened the prognostic gene sets using differential analysis, univariate Cox
regression analysis, and least absolute shrinkage and selection operator (LASSO) regression. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to analyze which pathways and function the
genes from screened gene sets enriched. Search Tool for the Retrieval of Interacting Genes (STRING) was used to draw the
protein-protein interaction network, and Cytoscape was used to visualize the hub genes of protein-protein interaction network.
Results. We identified three novel subtypes of cervical cancer in The Cancer Genome Atlas (TCGA) samples and validated in
Gene Expression Omnibus (GEO) samples. There were significant variations between the three subtypes in histological type, T
stage, M stage, and N stage. T_GSE36888_UNTREATED_VS_IL2_TREATED_STAT5_AB_KNOCKIN_TCELL_2H_UP and
N_HALLMARK_ANGIOGENESIS were screened prognostic gene sets. The prognostic model was as follows: riskScore = T
GSE36888 UNTREATED VS IL2 TREATED STAT5 AB KNOCKIN TCELL 2H UP∗ 2:617 + N HALLMARK
ANGIOGENESIS∗ 4:860. Survival analysis presented that in these two gene sets, high enrichment scores were all significantly
related to worse overall survival. The hub genes from T gene set included CXCL1, CXCL2, CXCL8, ALDOA, TALDO1,
LDHA, CCL4, FCAR, FCER1G, SAMSN1, LILRB1, SH3PXD2B, PPM1N, PKM, and FKBP4. As for N gene sets, the hub genes
included ITGAV, PTK2, SPP1, THBD, and APOH. Conclusions. Three novel subtypes and two prognostic gene sets were
identified. 15 hub genes for T gene set and 5 hub genes for N gene set were discovered. Based on these findings, we can
develop more and more effective treatments for cervical cancer patients. Based on the gene enriched pathways, we can
development specific drugs targeting the pathways.

1. Introduction

Globally, cervical cancer recently has been ranked as the
fourth most common cancer against women, with estimated
570,000 cases and 311,000 deaths in 2018 [1]. Cervical can-

cer is a serious health-threatening female disease, especially
for those ages from 20 to 39, which remains to be the second
leading cause to their mortality resulted from cancer [2]. In
China, the incidence and mortality of cervical cancer in
young women continue rapidly increasing [3]. Early cervical
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cancer can be effectively treated with classic surgery, while
the outcome for metastatic cervical cancer is poor, for which
the 5-year survival rate is only 16.5% and the median sur-
vival time is only 8-13 months [4, 5]. Therefore, the efficient
approaches for the stratification and biomarker screening of
cervical cancer patients are urgently needed.

Fortunately, as it has been observed in many studies in
recent years, genetic factors can be closely related with the
susceptibility and tumorigenesis of cervical cancer [6, 7],
and increasing researches have been focused on the corre-
lation of cervical cancer prognosis and survival with
potential molecule indicators. Moreover, further discovery
and understanding of those factors can help to guide treat-
ment decision and determine the personalized therapeutic
targets, thus improving the treatment effects for longer
lifespan of patients.

The gene set variation analysis (GSVA) is a nonparamet-
ric and unsupervised gene set enrichment method, assaying
the variation of gene set enrichment over sample population,
thus condensing gene expression profiles into gene set or
pathway summary [8]. Using GSVA can integrate the prog-
nostic genes into a complex or pathways for advanced anal-
ysis, which can be more convenient for following statistics
calculation and pathogenesis inferences [9]. GSVA method
has been utilized in survival-associated gene mechanism
researches for breast cancer [10], colon cancer [11], bladder
cancer [12], and so on.

In this study, we selected the sequencing data of cervical
cancer patients from several cohort in The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) data-
bases for prognostic analysis. The cervical cancer was auto-
matically classified into 3 subtypes, and they revealed
different features in some clinical traits like tumor T, N,
and M stages. Moreover, the data were screened to identify
the prognostic relevant pathways and gene sets in tumor
and nontumor tissues by differential analysis, univariate
Cox regression analysis, and the least absolute shrinkage
and selection operator (LASSO) regression. As a result, one
tumor (T gene set) and one nontumor (N gene set) gene sets
were found, and high enrichment scores of them were all
strongly associated with poor overall survival. Functional
enrichment analysis and protein-protein network analysis
for the hub genes were conducted to investigate the possible
regulatory mechanisms. The results indicated that the genes
in T gene set were connected with immune activity and met-
abolic process, while the genes in N gene set were related to
angiogenesis and protein regulation. Our findings may be
helpful for uncovering the biomarkers of effective prognosis
and potential therapeutic targets for precise treatment of
cervical cancer patients.

2. Methods

2.1. Data Source. The transcriptome data from TCGA-CESC
(HT-Sequence-FPKM) were downloaded from TCGA web-
site (http://portal.gdc.cancer.gov). The clinical data of cervi-
cal cancer in TCGA database [13] were downloaded from
UCSC Xena (http://xena.ucsc.edu/). The cervical cancer
datasets GSE44001 were downloaded from Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/) [14]. The data of gene expression in TCGA cohort
contained 3 adjacent nontumor samples and 306 tumor
samples, and GEO cohort contained 300 tumor samples.
The clinical data contained 308 samples in TCGA cohort
after removing duplicates. The following criteria were used
for exclusion: (1) the histological diagnosis was not standard
and (2) the specimens did not have complete clinical data
available. 4922 gene sets were downloaded from MSigDB
[15] for GSVA analysis.

2.2. Gene Set Variation Analysis (GSVA). GSVA can detect
the slight pathway activity changes within large number of
gene sets [8]. It transforms the expression matrix of genes
in different samples into the enrichment scores of gene sets
to evaluate the enrichment of gene sets [9]. In this study,
we used GSVA package in R to do gene set variation analy-
sis, and a gene set c7.immunesigdb_HALLMARK related to
immunity was used in GSVA. c7.immunesigdb_HALL-
MARK contains 4922 gene sets and the names of genes
which they contained.

2.3. The Identification of Cancer Subtypes and Differential
Analysis of Gene Sets. The CancerSubtypes package [16] in
R was used on the enrichment scores of tumor gene sets
and combined survival data from TCGA database and vali-
dated on GEO data (GSE44001) to identify cancer subtypes.

First of all, we used the Cox regression model to do the
biological feature selection through CancerSubtypes package
in R by “FSbyCox” function. Then, NbClust package was uti-
lized to discover the optimal number of clusters and visual-
ize it. The nonnegative matrix factorization (NMF) was used
to reduce the dimensions of complex data and provide a
powerful assistance for clustering [17]. Based on the optimal
number of clusters we found, we used k-means clustering
algorithm to conduct the clustering analysis and draw a clus-
ter diagram through NMF [18] and factoextra package. Sur-
vival analysis was applied to discover the difference among
the divided subtypes, and the Kaplan-Meier plot was plotted
at the same time.

The cluster heatmap was drawn on combined clinico-
pathological data and enrichment scores of gene sets
through pheatmap package. The cluster heatmap presented
the correlation between clinical characteristics and divided
subtypes. Chi-square test was utilized to test whether a cer-
tain clinical characteristic is different among divided
subtypes.

The differential analysis of gene sets was performed with
limma package and visualized through VennDiagram pack-
age. Then, based on the number of differential gene sets we
found, the heatmap of represented gene sets in divided sub-
types was drawn through pheatmap package in R.

2.4. Screening of Prognosis-Related Gene Sets. First of all, the
univariable Cox regression analysis and log-rank test were
exerted to screen potentially prognosis-related gene sets
(p < 0:05) within TCGA cohort. Then, combined with sur-
vival data in GEO cohort, we further explored central parts
of the screened prognosis-related gene sets using LASSO
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regression [19] through Glmnet package. The screened
prognostic gene sets were employed to construct the prog-
nostic model. In the prognostic model, risk score was the
dependent variable, and the enrichment scores of the
screened prognostic gene sets were the independent vari-
ables. The risk score was calculated according to the follow-
ing formula: ∑n

i=1Coef i ∗ xi. Coef is the coefficient of the Cox
regression analysis.

For those prognosis-related gene sets in the model, we
employed survival analysis to figure out their association
with overall survival.

2.5. GO and KEGG Enrichment Analyses. Functional enrich-
ment analysis was performed to investigate the possible
mechanism of the genes extracted from the screened gene
sets and which function or pathways the genes participate
in. Gene Ontology (GO) enrichment analysis [20] was used
to identify biological functions of the genes, including bio-

logical processes (BP), cellular components (CC), and
molecular functions (MF). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis [21] was
used to explore the enriched pathways. Therefore,
“enrichGO” and “enrichKEGG” were the functions from R
package “clusterProfiler” for GO and KEGG analyses,
respectively. The results were then visualized using packages
“pheatmap” and “ggplot2.”

2.6. Construct Protein-Protein Interaction Network and
Identify the Hub Genes. We applied the Search Tool for the
Retrieval of Interacting Genes (STRING) database to help
us construct the protein-protein interaction (PPI) networks
for genes from the specific gene sets in obtained risk model
[22]. Genes for each gene set were put into STRING to visu-
alize PPI networks, and the results were further imported
into Cytoscape software for the search of significant module
[23]. We used the Molecular Complex Detection (MCODE)

Te protein-protein interaction analysis and identifcation of hub genes

GO and KEGG enrichment analysis on the genes extracted from two prognostic-related gene sets

Survival analysis of the screened gene sets

Use diferential analysis of gene sets, univariate Cox regression analysis and LASSO
regression to fnd prognostic gene sets among subtypes

Construct the prognostic model based on the identifed prognostic gene sets and calculate risk
scores of each sample

Analyze the correlation between divided subtypes and clinical characteristics

Identify and validate clinically relevant subtypes

Calculate enrichment scores of genes sets
through GSVA

Calculate enrichment scores of genes sets
through GSVA

Cervical cancer datasets from GEO
database: GSE44001

Data from TCGA database (3 nomal
samples; 306 tumor samples)

Figure 1: Flowchart of this study.
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to discover the modules and determine the hub genes in
each cluster. The hub genes were marked in red.

2.7. Statistical Analysis. All the analyses were conducted
using R (version 4.1.2). The classified data were summarized
in the form of counts (percentage). The results were consid-
ered to be significant when p is lower 0.05.

3. Results

3.1. The Activity Changes of Gene Sets in Cervical Cancer and
Adjacent Normal Samples. Figure 1 is the flowchart of our
study.

We first downloaded the transcriptome data (N = 3 and
T = 306) of cervical cancer from TCGA website (http://
portal.gdc.cancer.gov) and then got 4299 gene set expression
data. The enrichment scores of 4299 immune-related gene
sets were calculated by GSVA and were shown in the follow-
ing heatmap (Figure 2). In normal samples, most part of the
gene sets were upregulated and some part of them were
downregulated. As shown in Figure 2, these gene sets can
be classified into different categories with high probability.

3.2. The Identification of Clinically Relevant Subtypes of
Cervical Cancer Patients. Therefore, we paid attention to
classify cervical cancer patients into different subtypes.
There is one patient who was removed for lack of prognostic
information in clinical data (307 remained). Through “aver-
eps” function in limma package, a microarray data object
was condensed, and there were 304 gene set expression sam-
ples left. Based on the enrichment scores calculated by
GSVA and the prognostic information, we used the Cox
regression to do the feature selection through CancerSub-
types package. We got the optimal number of clusters
(k = 3), and the result is exhibited in Figure 3(a). Then,

Figure 3(b) visualizes the three divided subtypes. As pre-
sented in Figure 3(c), cervical cancer patients with subtypes
1 and 3 have better overall survival than patients with sub-
type 2. As exhibited in Figure 3(d), one subtype had little
relationship with other subtypes, illustrating a great perfor-
mance for clustering cervical cancer patients into three sub-
types. The average silhouette width value was 0.93 in
silhouette plot (Figure 3(e)), demonstrating that clustering
cervical cancer patients into three subtypes can be more
accurate. Subsequently, we used data from GEO database
to validate the three subtype classifications (Figure S1), and
the results showed that the classification was appropriate.
Comparing Figure 3(c) with Figure S1C, we can find that
the subtype 1,3,2 which was classified using data from
TCGA database corresponds to subtype 2,1,3 which was
classified using data from GEO database, respectively.

3.3. Correlation between Clinical Characteristics and Cervical
Cancer Subtypes. Then, we further investigated the correla-
tion between clinical characteristics and the three divided
cervical cancer subtypes. The clinicopathological features of
three cervical cancer subtypes are presented in Figure 4
and Table 1.

The heatmap presented the distribution of clinical char-
acteristics of each sample and the enrichment scores of gene
sets within each sample (Figure 4). As shown in Figure 4, the
enrichment scores of gene sets in subtype 1 were higher than
other subtypes, suggesting that gene sets are upregulated in
subtype 1. These findings showed that there were significant
variations between the three subtypes in histological type, T
stage, M stage, and N stage (Figure 4 and Table 1). Patients
in subtypes 1, 2, and 3 all often have lower T, M, and N
stages, although the T, N, and M stages of a lot of samples
were unknown. Patients in subtypes 1 and 2 are almost cer-
vical squamous cell carcinoma.

Type

Type
Normal
Tumor

5

−5

0

Figure 2: The heatmap of enrichment score of 4922 gene sets in cervical cancer and adjacent normal samples.
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3.4. The Differential Analysis of Gene Sets within Three
Divided Subtypes. Then, to find out the number of the differ-
ential gene sets among divided three subtypes, we calculated
the discrepancy enrichment score and overlapped them
(adjusted p value < 0.05) (Figure 5(a)). Finally, 25 differential
gene sets were found to be representative, and they were dis-
tinct among the three subtypes. Based on the 25 differential
gene sets we found, we draw the heatmap of the 25 differen-
tial gene sets and clinical characteristics (Figure 5(b)).

As displayed in Figure 5(b), subtype 1 had higher enrich-
ment scores of 4 gene sets in nontumor samples and 18 gene
sets in tumor samples than that in other subtypes, such as N_
GSE1460_DP_VS_CD4_THYMOCYTE_DN, N_GSE21670_
STAT3_KO_VS_WT_CD4_TCELL_TGFB_IL6_TREATED_
DN, N_GSE6259_33D1_POS_DC_VS_CD4_TCELL_DN, T_
GSE13485_DAY3_VS_DAY7_YF17D_VACCINE_PBMC_
DN, T_GSE13485_DAY1_VS_DAY7_YF17D_VACCINE_
PBMC_DN, and T_GSE19888_ADENOSINE_A3R_INH_
VS_ACT_WITH_INHIBITOR_PRETREATMENT_IN_
MAST_CELL_UP. Subtype 2 had higher enrichment scores of 2
gene sets in nontumor samples and 1 gene set in tumor samples,
including T_GSE36888_UNTREATED_VS_IL2_TREATED_
STAT5_AB_KNOCKIN_TCELL_2H_UP, N_HALLMARK_
ANGIOGENESIS, and N_HALLMARK_EPITHELIAL_MES-
ENCHYMAL_TRANSITION. Contrary to the two subtypes,
subtype 3 had low enrichment scores in the 25 gene sets.

3.5. The Exploration of Prognostic Gene Sets. We used the
univariate Cox regression analysis to screen potentially
prognostic gene sets in TCGA cohort based on the expres-
sion of intersection gene sets from the results of differential
analysis of gene sets. Ultimately, three gene sets were
screened, and they were representative gene sets (p < 0:05),
including N_HALLMARK_ANGIOGENESIS, N_HALL-
MARK_EPITHELIAL_MESENCHYMAL_TRANSITION,
and T_GSE36888_UNTREATED_VS_IL2_TREATED_
STAT5_AB_KNOCKIN_TCELL_2H_UP (Table S1). In
Table S1, a logarithmic transformation of hazard ratio was
also conducted. The hazard ratio of the three gene sets was
larger than 1, suggesting the three gene sets have high
survival risk for cervical cancer patients. The high
expression the three gene sets had, the more dangerous the
patients were. Combined with the results above, these three
gene sets were all enriched in subtype 2, suggesting that
the bad prognosis of patients in subtype 2 may be related
to these three gene sets.

Then, we used LASSO regression to find central parts
of these three gene sets (Figures 6(a) and 6(b)), and two
gene sets were identified with the corresponding risk coef-
ficient (Table 2). One gene set was tumor gene set (T gene
set: T_GSE36888_UNTREATED_VS_IL2_TREATED_
STAT5_AB_KNOCKIN_TCELL_2H_UP), and the other
was nontumor gene set (N gene set: N_HALLMARK_

3: 123 0.91|

2: 110 0.93|

1: 71 0.98

3n = 304
Silhouette plot

clusters Cj
j: nj avei Si

|

|

0.0
Silhouette width Si

Average silhouette width : 0.93

0.5−0.5 1.0

Cj

(e)

Figure 3: Identification of clinically relevant subtypes of cervical cancer in TCGA database. (a) The optimal number of clusters (k). (b) The
cluster plot of 3 subtypes. (c) Kaplan-Meier plot of the three clusters. (d) The correlation heatmap of 3 subtypes. (e) Silhouette plot of three
subtypes.
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ANGIOGENESIS). Based on the enrichment scores of two
prognostic gene sets and the risk coefficients (Table 2), we
got the prognostic model: riskScore = T GSE36888
UNTREATED VS IL2 TREATED STAT5 AB KNOCKIN
TCELL 2H UP∗ 2:617 + N HALLMARK ANGIOGENESI
S∗ 4:860.

Survival analysis for different groups classified by the
median of enrichment scores was used to confirm the gene
sets roles in prognosis, which are shown in Figures 6(c)
and 6(d). The results indicated that in these two gene sets,
high enrichment scores were both significantly related to
worse overall survival time.

3.6. GO and KEGG Enrichment Analyses. Next, we executed
GO and KEGG pathway enrichment analyses on the genes
extracted from two prognostic-related gene sets for the fur-
ther investigation of their mechanism. The two prognostic-
related gene sets are screened from the differential gene sets
among the three subtypes.

The genes from T gene sets were shown involved in
many processes in the analysis of GO biological process
(Figures 7(a) and 7(b)). The top 3 enriched BP terms were
response to lipopolysaccharide, response to molecule of bac-
terial origin, and neutrophil activation (Figures 7(a) and
7(b)). Cellular component enrichment analysis indicated
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Figure 4: The correlation between enrichment scores of gene sets and clinical characteristics in TCGA cohort. ∗∗∗p < 0:001, ∗∗p < 0:01, and
∗p < 0:05.
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that the tumor genes were closely associated with the CC
terms including tertiary granule, secretory granule mem-
brane, and ficolin-1-rich granule (Figures 7(a) and 7(b)).
GO terms also revealed several molecular functions, includ-
ing cytokine receptor binding, receptor ligand activity, and
signaling receptor activator activity (Figures 7(a) and 7(b)).
These results suggested that tumor tissue genes may lead
to the changes in metabolism and immune. The KEGG
pathway analysis demonstrated that immune-related path-
ways like cytokine-cytokine receptor interaction, IL-17 sig-
naling pathway, and viral protein interaction with cytokine

and cytokine receptor were the pathways most of tumor tis-
sue genes enriched (Figures 7(c) and 7(d)), which indicated
that they may impact on immune activity.

On the other hand, for nontumor genes, biological pro-
cess indicated various terms such as extracellular matrix
organization, extracellular structure organization, and exter-
nal encapsulating structure organization related to genes
from N gene sets (Figures 7(e) and 7(f)). Collagen-
containing extracellular matrix, endoplasmic reticulum
lumen, and secretory granule lumen were the top 3 CC
terms for these genes (Figures 7(e) and 7(f)). The following

Table 1: The correlation between clinical characteristics and subtypes.

Total (n = 304) Subtype 1 (n = 71) Subtype 2 (n = 110) Subtype 3 (n = 123) p value

Age (years) (%)

≤65 269 (88.49) 64 (90.14) 99 (90) 106 (86.18) 0.5825

>65 35 (11.51) 7 (9.86) 11 (10) 17 (13.82)

HPV_status

Negative 9 (2.96) 1 (1.41) 2 (1.82) 6 (4.88) 0.5031

Positive 169 (55.59) 43 (60.56) 61 (55.45) 65 (52.85)

Unknown 126 (41.45) 27 (38.03) 47 (42.73) 52 (42.28)

Histological type (%)

Nonsquamous 50 (16.45) 5 (7.04) 7 (6.36) 38 (30.89) <0.001
Squamous 227 (74.67) 59 (83.1) 91 (82.73) 77 (62.6)

Unknown 27 (8.88) 7 (9.86) 12 (10.91) 8 (6.5)

Grade (%)

G1 18 (5.92) 1 (1.41) 6 (5.45) 11 (8.94) 0.0667

G2 135 (44.41) 27 (38.03) 51 (46.36) 57 (46.34)

G3 118 (38.82) 37 (52.11) 38 (34.55) 43 (34.96)

G4 1 (0.33) 1 (1.41) 0 (0) 0 (0)

Unknown 32 (10.53) 5 (7.04) 15 (13.64) 12 (9.76)

TNM stage (%)

Stage I 162 (53.29) 36 (50.7) 55 (50) 71 (57.72) 0.275

Stage II 69 (22.7) 20 (28.17) 21 (19.09) 28 (22.76)

Stage III 45 (14.8) 10 (14.08) 22 (20) 13 (10.57)

Stage IV 21 (6.91) 2 (2.82) 10 (9.09) 9 (7.32)

Unknown 7 (2.3) 3 (4.23) 2 (1.82) 2 (1.63)

T (%)

T1 140 (46.05) 35 (49.3) 43 (39.09) 62 (50.41) 0.0376

T2 71 (23.36) 23 (32.39) 19 (17.27) 29 (23.58)

T3 20 (6.58) 4 (5.63) 9 (8.18) 7 (5.69)

T4 10 (3.29) 0 (0) 6 (5.45) 4 (3.25)

Tis 1 (0.33) 0 (0) 1 (0.91) 0 (0)

Unknown 62 (20.39) 9 (12.68) 32 (29.09) 21 (17.07)

M (%)

M0 116 (38.16) 37 (52.11) 32 (29.09) 47 (38.21) 0.0227

M1 10 (3.29) 1 (1.41) 3 (2.73) 6 (4.88)

Unknown 178 (58.55) 33 (46.48) 75 (68.18) 70 (56.91)

N (%)

N0 133 (43.75) 35 (49.3) 40 (36.36) 58 (47.15) 0.0160

N1 60 (19.74) 20 (28.17) 23 (20.91) 17 (13.82)

Unknown 111 (36.51) 16 (22.54) 47 (42.73) 48 (39.02)

Note: TNM: primary tumor (T), regional lymph nodes (N), distant metastases (M).
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Figure 5: The differential analysis of gene sets. (a) Venn diagram of the number of differential gene sets between three subtypes. (b)
Heatmap of represented gene sets in three subtypes.
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MF terms shared close correlations with normal tissue genes:
glycosaminoglycan binding, heparin binding, and sulfur
compound binding (Figures 7(e) and 7(f)). In KEGG analy-
sis, these genes were significantly enriched in focal adhesion,
PI3K-Akt signaling pathway, and proteoglycans in cancer
(Figures 7(g) and 7(h)).

3.7. Protein-Protein Interaction Analysis. Using “Multiple
proteins” module of STRING database (https://cn.string-db
.org/), protein-protein interaction (PPI) networks were con-
structed for the two prognostic gene sets: T and N gene sets,
respectively (Figures 8(a) and 8(b)). What is more, Cytos-
cape was exerted for further module analysis visualization.
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Figure 6: (a) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the gene sets. (b) Best penalization coefficient
according to partial likelihood deviance. (c) K-M curves for N gene set and (d) T gene set.

Table 2: Risk coefficients of screened gene sets.

Gene sets Coefficient

T_GSE36888_UNTREATED_VS_IL2_TREATED_STAT5_AB_KNOCKIN_TCELL_2H_UP 2.617

N_HALLMARK_ANGIOGENESIS 4.859875

10 Journal of Oncology

https://cn.string-db.org/
https://cn.string-db.org/
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(b) (d)

(e) (g)

(f) (h)

Tumor

Normal

Figure 7: GO term and KEGG pathway analyses for genes from T and N gene sets. (a, b) Bar and bubble plot of GO term analysis and (c, d)
of KEGG pathway analysis for genes from T gene sets. (e, f) Bar and bubble plot of GO term analysis and (g, h) of KEGG pathway analysis
for genes from N gene sets.
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We obtained the close-related region clusters in PPI network
by module MCODE (Molecular Complex Detection), and
the results are plotted in Figures 9(a)–9(f) and 10(a) and
10(b) . For T gene set, the top three hub genes of subnetwork
1 were CXCL1, CXCL2, and CXCL8, subnetwork 2 were
ALDOA, TALDO1, and LDHA, subnetwork 3 were CCL4,
FCAR, and FCER1G, and the top two hub genes of subnet-
work 4 were SAMSN1 and LILRB1, subnetwork 5 were
SH3PXD2B and PPM1N, and subnetwork 6 were PKM
and FKBP4. The hub genes of the clusters were mainly
linked to immune reaction and metabolic process. As for
N gene sets, the top three hub genes of subnetwork 1 were
ITGAV, PTK2, and SPP1, and the top two hub genes of sub-
network 2 were THBD and APOH. These hub genes were
mostly related to protein regulation.

4. Discussion

Cervical cancer has become the fourth most common cancer
among women [24, 25]. Persistent infection with high-risk
human papillomavirus (HPV) is a major risk factor for cer-
vical cancer [26]. As a malignant tumor, the case fatality rate
of cervical cancer increased, especially in young women, in
China [27]. Therefore, it is important to discover the prog-
nostic biomarkers in order to help diagnose and treat cervi-
cal cancer. On account of the less detectable of cervical
cancer by Papanicolaou testing [28], there is a greater need
to discover new subtypes of cervical cancer.

First of all, we used GSVA to calculate the enrichment
scores of gene sets. Then, combined with NMF method,
Cox regression model, and K-means clustering algorithm,
we identified three novel subtypes of cervical cancer and val-
idated in GEO cohort. Interestingly, patients in subtype 2
had significant poorer overall survival than patients in sub-
types 1 and 3. Patients in subtypes 1 and 3 did not have sig-
nificant difference in overall survival. Additionally, we found
that there were significant variations between the three sub-
types in histological type, T stage, M stage, and N stage.

Previous studies mainly concentrated on the subtypes of
cervical cancer but ignored the role of adjacent nontumor
tissue. And some of the studies also indicated that subtypes
were important for the prognosis of cancers. The 5-year sur-
vival of neuroendocrine cervical cancer (NECC), a rare and
aggressive subtype of cervical cancer [29], decreased as the
stage increased, and for stage IVB, the five-year survival
was 0% [30]. Pan et al. [31] and Cao et al. [32] revealed that
the tumor histologic subtype was a prognostic factor of cer-
vical cancer. Besides, a retrospective study discovered three
main morphological subtypes [33]. Turashvili and Park
[34] studied the subtypes of endocervical adenocarcinomas
and helped clinical management. Li et al. [35] developed
six subtypes based on DNA methylation sites. Therefore,
developing new subtypes of cervical cancer is of great impor-
tance for the treatment and prognosis of cervical cancer.

Then, two prognosis-related gene sets, T gene set: T_
GSE36888_UNTREATED_VS_IL2_TREATED_STAT5_
AB_KNOCKIN_TCELL_2H_UP and N gene set: N_HALL-
MARK_ANGIOGENESIS, were identified through LASSO
method. Moreover, in these two gene sets, high enrichment
scores were all significantly related to worse overall survival
time. N gene set contains genes upregulated during forma-
tion of blood vessels [15]. Therefore, genes from N gene
set are related to angiogenesis. It is reported that angiogene-
sis helps the expansion of tumor tissues and is related to the
progression of tumor [36–38]. Angiogenesis is associated
with poor prognosis. So, inhibiting angiogenesis is reason-
able to control tumor progression [39]. Genes from T gene
set are upregulated in STAT5a-STAT5-b double knock-in
(DKI) T cells, which hinder the formation of tetramers.
These genes from T gene set are related to immune response.
It is reported that the CD4+CD25+ T cells, NK cells, and
CD8+ T cells of STAT5 DKI mice are deficient [40]. IL-2
growth factor can activate STAT5 [41]. Rani and Murphy
showed that activated STAT5 plays a pivotal role in the pro-
liferation of tumor cells and the suppression of antitumor
immunity [42]. These two gene sets all showed poor survival
and were all enriched in subtype 2, demonstrating that the

(a) (b)

Figure 8: The protein-protein interaction network of (a) T gene sets and (b) N gene sets by STRING database.
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bad prognosis of patients in subtype 2 may related to these
two gene sets. This was consistent with the result of
Figure 3(c).

Our study also found that the genes from T gene set were
enriched in cytokine-cytokine receptor interaction, IL-17
signaling pathway, and viral protein interaction with cyto-
kine and cytokine receptor pathways. These pathways are
all related to metabolism and immune activities. Genes from
T gene set also participate in response to lipopolysaccharide,
response to molecule of bacterial origin, cytokine receptor
binding, receptor ligand activity, signaling receptor activa-
tor, and neutrophil activation. For nontumor genes, they
participate in glycosaminoglycan binding, heparin binding,
and sulfur compound binding and are enriched in focal
adhesion, PI3K-Akt signaling pathway, and proteoglycans
in cancer.

The hub genes from T gene set included CXCL1,
CXCL2, CXCL8, ALDOA, TALDO1, LDHA, CCL4, FCAR,
FCER1G, SAMSN1, LILRB1, SH3PXD2B, PPM1N, PKM,
and FKBP4. The hub genes of the clusters were mainly

linked to immune reaction and metabolic process. It is
reported that CXCL1, CXCL2, and CXCL8 are related to
the tumor growth in cervical cancer [43, 44]. ALDOA may
increase the possibility of progression of cervical cancer
[45]. In addition, LDHA [46], CCL4 [47], and PKM [48]
were reported to be associated with the development, prolif-
eration, or progression of cervical cancer cells.

As for N gene sets, the hub genes included ITGAV,
PTK2, SPP1, THBD, and APOH. These hub genes were
mostly related to protein regulation. PTK2 [49] SPP1 [50]
were also related to the progression of cervical cancer.

There were some limitations in our study. First of all,
there were only 3 adjacent nontumor samples in TCGA
cohort, and the others were tumor samples. Therefore,
these results need to be validated after recruiting more
normal people. Second, the two prognostic gene sets were
not validated within clinical samples. Further work needs
to be done to focus on investigating the clinical value of
these gene sets. As a result, more researches should be
done to verify these results.
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Figure 9: The (a–f) subnetworks 1-6 of protein-protein interaction network through MCODE of Cytoscape for T gene sets. The red
represented the hub genes.
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5. Conclusion

In conclusion, our study discovered three novel subtypes of
cervical cancer and identified two prognostic gene sets of
cervical cancer. The hub genes of the two prognostic gene
sets were also identified. Our study presented a theoretical
foundation for other researchers to find better therapy strat-
egies for cervical cancer patients. Based on these findings, we
can develop more and more effective treatments for cervical
cancer patients. Based on the gene-enriched pathways, we
can develop specific drugs targeting the pathways.
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(k). (B) The cluster plot of 3 subtypes. (C) Kaplan-Meier plot
of the three clusters. (D) The correlation heatmap of 3 sub-
types. (E) Silhouette plot of three subtypes. Table S1: the
screened gene sets after univariable Cox regression analysis.
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