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An apparent vitamin D paradox, characterized by lower serum 25-hydroxyvitamin D (25(OH)D) levels and
higher bone mineral density, is present in black population. In contrast, blacks have higher serum 1,25-dihydrox-
yvitamin D (1,25(OH)2D) levels. The effect of 1,25(OH)2D on the skeleton is not fully understood. We examined
serum 25(0OH)D, 1,25(0H),D and bone histomorphometry in 50 black and white women (25 each) matched for
age, menstrual status, and BMI. Histomorphometric indices related to bone structure, remodeling and mineral-
ization were measured in cancellous bone in iliac bone biopsies. Data analyses led to the following results: 1)
serum 25(OH)D was significantly lower and 1,25(OH),D was significantly higher in black than in white women,
but neither blacks nor whites revealed significant correlation between these two vitamin D metabolites. 2) there
was no significant difference in PTH levels between blacks and whites. 3) except for greater trabecular thickness
(Tb.Th) in blacks, there were no significant differences in other histomorphometric variables between the two
ethnic groups. 4) osteoid surface (OS/BS), unlabeled osteoid surface (ulOS/BS), and osteoblast surface (ObS/BS)
significantly correlated with serum 1,25(0H).D levels. We conclude that lower serum 25(0OH)D levels in blacks
do not impair bone structure and remodeling, nor decrease bone mineralization. Higher serum 1,25(0H);D levels
in blacks may help preserve bone mass by stimulating bone formation via increasing osteoblast number and
function, but moderately inhibit terminal bone mineralization as shown by higher ulOS/BS.

1. Introduction

The major circulating form of vitamin D is 25-hydroxyvitamin D (25
(OH)D), and is the best available index of vitamin D nutrition (Rao et al.,
2020). Vitamin D deficiency is defined as a serum 25(OH)D level of <20
ng/mL, which associated with bone loss and in severe deficiency with
rickets/osteomalacia (Holick, 2007; Laird et al., 2010). It has long been
recognized that serum 25(OH)D levels are significantly lower in black-
than in whiteindividuals (Bell et al., 1985; Aloia et al., 2015). In the
United States the prevalence of vitamin D deficiency is about 54-82 % in
blacks but only 14-31 % in whites (Herrick et al., 2019; Forrest and
Stuhldreher, 2011). Despite the higher prevalence of vitamin D defi-
ciency, blacks have higher bone mineral density (BMD) and lower
prevalence of osteoporosis and fragility fractures (Bell et al., 1985; Aloia
et al., 2015; Cosman et al., 2000; Shieh and Aloia, 2017; Powe et al.,

2013; Brown et al., 2018; Kleerekoper et al., 1994; Putman et al., 2017;
Popp et al., 2017). The coexistence of lower 25(0OH)D levels and better
bone health in blacks has been referred to as vitamin D paradox (Brown
et al.,, 2018; Aloia, 2008), but the underlying mechanism(s) for this
paradox remains unclear.

1,25-dihydroxyvitamin D (1,25(0H);D) is the biologically active
metabolite of vitamin D that stimulates intestinal calcium and phos-
phate absorption (Goltzman, 2018; Holick, 1996; Christakos et al.,
2019), and interacts with vitamin D receptors (VDR) in osteoblasts to
promote bone formation (Goltzman, 2018; Christakos et al., 2019;
Reichel et al., 1989). Since 1,25(0H)»D is converted from 25(OH)D in
the kidney and other target tissues by the action of la-hydroxylase
enzyme (CYP27B1) (Christakos et al., 2019), it is expected that these
two vitamin D metabolites are positively correlated (Rejnmark et al.,
2008; Swanson et al., 2014). However, the available data on the
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relationship between 25(OH)D and 1,25(OH)»D levels are limited and
inconsistent (Rejnmark et al., 2008; Swanson et al., 2014; Tsuprykov
et al., 2021; Ishimura et al., 1999). There is strong evidence that blacks
have lower 25(OH)D but higher 1,25(0OH);D levels than their white
counterparts (Bell et al., 1985; Aloia et al., 2015; Weaver et al., 2008).
Thus, higher 1,25(0OH)2D levels may optimize bone health (Goltzman,
2018), which can, at least partly, explain the mechanism of vitamin D
paradox in blacks.

To our knowledge, there is little information regarding the rela-
tionship between 25(OH)D and 1,25(0OH),D levels in normal popula-
tion, particularly in blacks, and dichotomy of the effect of 1,25(0OH),D
on bone histomorphometry between blacks and whites. We hypothe-
sized that the better bone health in blacks is related to increased 1,25
(OH)2D production despite low serum 25(0OH)D levels, which is the best
currently available index of vitamin D nutrition (Rao et al., 2020). To
test this hypothesis, we examined serum biochemical variables,
including 25(0H)D, 1,25(0H)yD, calcium and parathyroid hormone
(PTH), and iliac bone histomorphometry in 50 black and white women
(25 each) matched for age, menstrual status, and BMI to determine the
effects of vitamin D metabolites on bone histomorphometry in these two
ethnic groups.

2. Materials and methods
2.1. Subject characteristics

One hundred forty-four black and white women, aged 20-73 years,
were recruited between 1981 and 1993 as part of a larger study of the
effect of age and menopause on bone structure and remodeling, the
details of which have been reported previously (Kleerekoper et al., 1994;
Han et al., 1996). All women were skeletally healthy and underwent in
vivo double tetracycline labeling before a transiliac bone biopsy. Of the
144 subjects, 71 women, all recruited after 1989, in whom measure-
ments for serum levels of calcium (Ca), Creatinine (Cr), PTH, 25(0OH)D
and 1,25(0OH),D were available. From this sub-set, we selected 50 black
and white women, 25 in each group, matched for age, menstrual status
(pre- and post-menopause) and body mass index (BMI). The study was
approved by the Institutional Review Board of the Henry Ford Hospital
and a written informed consent was obtained from each participant.

2.2. Biochemical measurements

Serum calcium (Ca) and creatinine (Cr) was measured in the hospital
laboratory by standard methods using a Hitachi-747 auto-analyzer
(Hitachi, Hialeah, FL, USA). Serum Ca was adjusted for serum albumin
(CCa). Serum intact parathyroid hormone (PTH) was measured by
immunoradiometric assay (Nichols Institute Diagnostics, San Juan
Capistrano, CA, USA). Serum 25(OH)D was measured by radio-
immunoassay (Incstar, Stillwater, MN, USA) and serum 1,25(OH);D
was measured by radioreceptor assay using kits from Nichols Institute
Diagnostics. All measurements were performed within one month of
bone biopsy (Rao et al., 2013).

2.3. Bone histomorphometry

Before biopsy, all patients received in vivo double tetracycline la-
beling with an inter-label interval of 14 days. Cylindrical transiliac bone
biopsy was obtained using a trephine with an internal diameter of 7.5
mm, stained en bloc by 70 % alcohol containing 1 % basic fuchsin, and
embedded, sectioned, stained, and examined as previously reported
(Han et al., 1996; Rao, 1983; Han et al., 1997). All biopsy procedures
were performed by a single operator (SDR). Units and symbols of bone
histomorphometry were designated in accordance with the American
Society for Bone and Mineral Research Histomorphometry Nomencla-
ture Committee (Dempster et al., 2013).

The static histomorphometric indices were measured in sections
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stained with modified toluidine blue method, and the dynamic indices
were measured in unstained sections. All the measurements were per-
formed using a Bioquant image analysis system equipped by bright-field
and fluorescent microscope.

The indices related to bone structures included total bone volume per
tissue volume (BV/TV [%]), trabecular thickness (Tb.Th [pm]) and
trabecular number (Tb.N, [#/mmz]). The static indices included osteoid
volume as a fraction of bone volume (OV/BV [%]), eroded surface,
osteoid surface and unlabeled osteoid surface as a fraction of bone
surface (ES/BS [%], OS/BS [%] and ulOS/BS [%]), as well as osteoid
thickness (O.Th [pm]) and wall thickness (W.Th [pm]). In addition, the
fraction of bone surface covered by osteoblasts and osteoclasts was
expressed as Ob.S/BS [%] and Oc.S/BS [%]. The dynamic indices were
measured based on tetracycline labeling beneath the bone surface,
which represents the extent of mineralizing surface (MS). MS as a frac-
tion of bone surface and (MS/BS [%]) and osteoid surfaces (MS/OS [%])
was determined. The unlabeled osteoid surface as a fraction of bone
surface (ulOS/BS [%]) was calculated as OS/BS-MS/BS. Mineral appo-
sition rate (MAR [pm/day]) was obtained from the average distance
between the two tetracycline labels divided by the interval of adminis-
tration (14 days in our study). Adjusted apposition rate (Aj.Ar, pm/day)
was calculated as MAR*MS/OS. Osteoid maturation time (Omt, days)
and mineralization lag time (MIt, days) were calculated as O.Th/MAR
and O.Th/Aj.AR, respectively. Bone formation rate at the surface level
(BFR/BS, pmS/pmz/year) was calculated as MAR*(MS/BS). Activation
frequency (Ac.f, #/year), the annual probability of activation of a new
remodeling site at any given locus on the bone surfaces, was derived
from (BFR/BS)/W.Th. For the surface containing only a single label, a
minimum value of 0.3 pm/day was assigned to MAR. If no label was
present, MAR, Aj.Ar, Omt, Mlt and FP were treated as a missing value,
whereas MS/BS, MS/0S, BFR/BS, and Ac.f were assigned a zero.

2.4. Statistical analysis

The data were expressed as mean + SD and compared between black
and white subjects using Student t-tests. Mann-Whitney test was used
when a variable was not normally distributed. The categorical data, such
as menopausal status and vitamin D deficiency (defined as <20 ng/mL)
in blacks and whites, were compared using Fisher's exact test. Correla-
tions between serum biochemical and bone histomorphometric vari-
ables were analysed using nonparametric Spearman rank correlation
tests.

3. Results
3.1. Subject characteristics

Since the age, menstrual status and BMI were matched, there was no

Table 1
Demographic characteristics.
Overall Black White p
n =50 n=25 n=25
Age (year) 48.3 48.4 48.2 0.958
(13.3) (12.9) (13.9)
Postmenopausal (#)" 29 (58 %) 14 (56 %) 15 (60 %) 1.000
Height (cm) 164 (6.76) 163 (6.46) 164 (7.16) 0.630
Weight (kg) 74.5 75.9 73.2 0.337
(17.9) (14.6) (21.0)
BMI (kb/m?) 27.7(5.73) 28.5 27.0 0.332
(5.03) (6.36)
25(0OH)D <20 ng/mL (#)" 25 (50 %) 21 (84 %) 4 (16 %) <0.001
1,25(0OH)2D <18 pg/mL 3 (6 %) 1 (4 %) 2 (8 %) 1.000

@)

Data expressed as mean (SD).
# Data expressed as number (percent).
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significant difference in these variables between the 2 groups (Table 1).
Half of the subjects were vitamin D deficient defined as serum 25(OH)D
level < 20 ng/mL, but the prevalence was much higher in blacks than in
whites (84 % vs 16 %, p < 0.001) (Table 1). Based on the manufacturer's
reference range for serum 1,25(OH)sD levels of 18-78 pg/mL (https:
//emedicine.medscape.com/article/2088672-overview), 1 black and 2
white women had 1,25(0H),D lower than 18 pg/mL, but none had 1,25
(OH)2D higher than 78 pg/mL (Table 1).

3.2. Differences in serum biochemical and bone histomorphometric
indices between black and white women

The biochemical results are shown in Table 2. Serum levels of 25
(OH)D were significantly lower in blacks than in whites (16.2 + 10.1
ng/mL vs 26.4 + 8.34 ng/mL, p < 0.001) (Table 2). In contrast, serum
levels of 1,25(0H),D were significantly higher in blacks than in whites
(41.0 + 16.4 pg/mL vs 31.0 &+ 10.7 pg/mL, p < 0.05) (Table 2). There
were no significant differences in serum levels of CCa, Cr, or PTH be-
tween blacks and whites (Table 2).

The differences in bone histomorphometric indices between black
and white women are shown in Table 3. For bone structure, Tb.Th was
significantly higher in blacks than in whites (p < 0.05). However, there
were no significant differences in static and dynamic variables between
the 2 ethnic groups.

Correlation of 25(OH)D and 1,25(0OH);D levels with related
biochemical and bone histomorphometric indices in black and white
women.

The correlations between biochemical markers in the entire cohort
and subgroups of blacks and whites are shown in Table 4. Serum 25(0OH)
D levels were not significantly correlated with 1,25(0H),D, CCa or Cr in
either group but inversely correlated with serum PTH levels (r =
—0.507, p < 0.05) only in white women. Additionally, 1,25(0OH),D did
not correlated with CCa, Cr or PTH in either group.

In the entire cohort, 1,25(0OH);D had significantly positive correla-
tion with several bone static variables including Oc.S/BS, OV/BV, OS/
BS, ulOS/BS, W.Th and ObS/BS, (all p < 0.05). The correlation trends for
these variables were identical between blacks and whites (Table 5). It is
worth noting that 1,25(OH);D was significantly positively correlated
with OS/BS, ulOS/BS in both black and white women (p < 0.05)
(Table 5). There was no significant correlation of 1,25(0H),D with other
histomorphometric variables. However, 25(OH)D levels did not corre-
late to any bone histomorphometric variable in either black or white
women.

4. Discussion

There is evidence that serum 25(OH)D levels are affected by age,
menstrual status and BMI (Perez-Lopez et al., 2011; Adami et al., 2009;
Holick, 2006; Rajakumar et al., 2011). Compared to white women, we
found that serum 25(OH)D levels were significantly lower but 1,25
(OH)2D levels significantly higher in black women matched for age,
menstrual status and BMI, suggesting that the differences in 25(OH)D

Table 2
Differences in serum biochemical data between black and white women.
Overall Black White p
n =50 n=25 n=25
25(0OH)D (ng/mL) 21.3 (10.5) 16.2 (10.1) 26.4 (8.34) <0.001
1,25(0OH),D (pg/mL) 36.0 (14.6) 41.0 (16.4) 31.0 (10.7) 0.014
Corrected Calcium (mg/ 9.44 9.43 9.44 0.953
dL) (0.469) (0.496) (0.449)
Creatinine (mg/dL) 1.07 1.10 1.04 0.195
(0.184) (0.181) (0.185)
PTH (pg/mL) 34.5 (12.0) 34.9 (13.5) 34.0 (10.5) 0.801

Data expressed as mean (SD).
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Table 3

Differences in bone static and dynamic indices between black and white women.
Variable Overall Black White P

n =50 n=25 n=25

Structural indices
BV/TV (%) 23.6 (6.95) 24.7 (6.42) 22.5 (7.43) 0.274
Tb.Th (pm) 142 (27.6) 152 (30.8) 132 (19.4) 0.026
Tb.N (#/mm) 1.66 (0.383) 1.63 (0.319) 1.68 (0.443) 0.649

Static indices

ES/BS (%) 7.21 (3.50) 6.94 (3.76) 7.48 (3.28) 0.558
0Oc.S/BS (%) 1.21 (0.905)  1.33(1.01) 1.09 (0.792)  0.423
OV/BV (%) 2.38 (1.50) 2.26 (1.63) 2.50 (1.37) 0.410
0S/BS (%) 20.0 (13.2) 19.7 (15.1) 20.4 (11.3) 0.541
ulOS/BS (%) 14.1 (9.26) 12.9 (8.50) 15.3 (9.98) 0.357
0.Th (pm) 8.23 (1.62) 8.32 (1.87) 8.14 (1.35) 0.892
W.Th (um) 34.4 (3.85) 35.0 (4.12) 33.8 (3.55) 0.269
0b.S/BS (%) 6.92 (5.36) 6.23 (6.69) 7.21 (3.70) 0.154
Dynamic indices

MS/BS (%) 5.94 (6.10) 6.83 (7.93) 5.05 (3.39) 0.503
MS/0S (%) 27.9 (17.3) 31.1 (14.9) 24.7 (19.2) 0.194
MAR (pm/day) 0.547 (0.153)  0.543(0.120)  0.551(0.182)  0.734
Aj.AR (um/day) 0.172(0.108)  0.182(0.082)  0.163(0.128)  0.156
Omt (days) 17.7 (14.0) 16.5 (6.46) 18.8 (18.7) 0.674
MLT (days) 74.6 (63.3) 59.4 (40.1) 89.2 (77.6) 0.271
BFRs (um®/um?/year)  11.0 (8.09) 11.3 (7.95) 10.7 (8.37) 0.705
Ac.f (#/year) 0.319(0.228)  0.326 (0.229)  0.312(0.230)  0.764

Data expressed as mean (SD).

Table 4
Correlations among biochemical indices.

1,25(0H) Corrected Ca Creatinine PTH
D
Overall
25(0OH)D (ng/mL) —0.224 0.051 0.027 —0.198
1,25(0H)2D (pg/mL) —0.223 0.372 0.200
Corrected calcium (mg/ -0.138 —0.063
dL)
Creatinine (mg/dL) 0.143
Black
25(0OH)D (ng/mL) 0.112 0.181 0.387 —0.078
1,25(0H)2D (pg/mL) -0.179 0.380 0.212
Corrected calcium (mg/ —0.200 —0.078
dL)
Creatinine (mg/dL) 0.059
White
25(0OH)D (ng/mL) —0.255 0.024 -0.172 —0.507*
1,25(0OH);D (pg/mL) —0.326 0.240 0.235
Corrected calcium (mg/ -0.172 —0.026
dL)
Creatinine (mg/dL) 0.194

Data expressed as correlation coefficient r value.
" p <0.05.

and 1,25(0H)2D levels might be independent of these factors. Decreased
serum 25(OH)D levels in blacks results from attenuated cutaneous
production of vitamin D because of dark skin pigmentation (Holick,
2004; Chen et al., 2007). In addition, there were no significant differ-
ences in serum Ca and PTH levels between the 2 ethnic groups. Our
results agree with other studies that reduced serum 25(OH)D levels do
not alter serum Ca and PTH levels in blacks (Bell et al., 1985; Cosman
et al., 2000; Meier et al., 1991), most likely due to the result of calcium
economy (Aloia, 2008; Cosman et al., 1997). Blacks are more efficient
than whites in absorbing dietary calcium, preserving calcium in bones,
and reabsorbing calcium in the kidney (Aloia, 2008; Cosman et al.,
1997), and thus maintain adequate calcium hemostasis despite lower 25
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Table 5
Correlations of 25(OH)D and 1,25(0H),D levels with bone histomorphometric
indices.

Variables 25(0H)D 1,25(0H),D
Overall  Black White Overall Black White
n = 50 n=25 n=25 n =50 n=25 n=25
Structural indices
BV/TV (%) -0.172 —0.403 —0.002 0.142 0.103 0.121
Tb.Th (pm) —0.228 —0.008 —0.347 0.185 —0.024 0.188
Tb.N —0.008 —0.307 0.168 —0.017 0.043 0.031
(#/mm)
Static indices
ES/BS (%) 0.149 0.221 0.290 0.104 0.177 0.085
Oc.S/BS —0.029 0.038 0.200 0.311* 0.302 0.325
(%)
OV/BV (%) 0.151 0.331 0.039 0.321* 0.362 0.456*
OS/BS (%) 0.099 0.334 —0.165 0.380"* 0.446* 0.496*
ulOS/BS 0.107 0.300 -0.177 0.393** 0.476* 0.476*
(%)
O.Th (pm) 0.060 0.164 0.211 —0.034 0.073 —0.151
W.Th (pm) —0.194 —0.181 —0.073 0.331* 0.231 0.387
Ob.S/BS 0.187 0.351 —0.057 0.319* 0.445* 0.410*
(%)
Dynamic indices
MS/BS (%) —0.011 0.369 —0.131 0.250 0.224 0.263
MS/0S (%) —0.101 0.029 0.234 0.246 0.170 0.231
MAR (pm/ 0.040 —0.125 0.132 —-0.272 —0.401 —0.063
day)
Aj.AR (pm/ —0.092 0.061 0.138 -0.175 —0.396 —0.163
day)
Omt (days) 0.027 0.319 —0.026 0.090 0.220 —0.131
MLT (days) 0.067 —0.046 —0.149 0.195 0.357 0.223
BFRs —0.005 0.280 —0.008 0.155 0.100 0.230
(pm3/
pm?/
year)
Ac.f —0.012 0.297 —0.032 0.125 0.106 0.153
(#/year)
Data expressed as correlation coefficient r value.
" p <0.05.
" p<0.01.

(OH)D levels (Heaney, 2002; Gutierrez et al., 2011). Higher levels of
serum 1,25(0OH),;D in blacks would stimulate intestinal calcium ab-
sorption (Christakos et al., 2019; Christakos et al., 2020). It is well-
known that 25(OH)D is the substrate for synthesis of 1,25(OH)2D in
the kidney via la-hydroxylase (CYP27B1) activity. Therefore, there is
likely to be a significantly positive correlation between 25(OH)D and
1,25(0OH),D levels in blood circulation (Rejnmark et al., 2008; Swanson
et al., 2014). However, this relationship was not significant in either
blacks or whites in our study. In the black cohort, only 1 of 21 (~5 %)
subjects with 25(OH)D deficiency had subnormal level of 1,25(0H)3D
(<18 pg/mL). The possible mechanism is that healthy black individuals
with 25(0H)D deficiency usually have adequate levels of 1,25(0OH),D,
which may be caused by increased activity of 1-a-hydroxylase
(CYP27B1) or reduced 1,25(0H),D catabolism (Robinson-Cohen et al.,
2013). Increased CYP27B1 activity in blacks could be driven by
increased parathyroid hormone or by racial differences in CYP27B1
affinity for 25 (OH)D (Robinson-Cohen et al., 2013).

Despite significantly lower serum 25(OH)D levels, blacks generally
have higher bone mineral density (BMD) and lower risk of fragility
fractures than whites (Aloia et al., 2015; Shieh and Aloia, 2017; Powe
et al., 2013; Brown et al., 2018). This contradiction is commonly
referred to as “vitamin D paradox”. However, BMD only represents bone
mass rather than other components, such as bone microarchitecture,
remodeling and mineralization, all of which are very important to bone
health. Bone histomorphometry is able to assess bone structure,
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resorption, formation, remodeling and mineralization in the same
specimen (Han et al., 1996; Han et al., 1997; Dempster et al., 2013;
Parfitt et al., 1997). Our previous studies demonstrated that many bone
histomorphometric variables relative to bone structure, mineralization
and remodeling were remarkably different between blacks and whites
with different ages and menstrual status (Han et al., 1996; Han et al.,
1997; Parfitt et al., 1997). In order to reduce the effects of these con-
founding factors, we designed a nested-case control study to adjust for
age, menstrual status and BMI. The results showed that, except for
greater Tb.Th in blacks, there was no significant difference in any other
histomorphometric variables between the 2 ethnic groups. The values of
bone histomorphometry are well within the normal range in both black
and white women (Qiu et al., 2020). In addition, 25(OH)D levels did not
correlate with any bone histomorphometric variables in either black or
white women. The reported findings on the effect of serum 25(0OH)D
levels on bone are inconsistent. High-resolution peripheral quantitative
computed tomography (HR-pQCT) and finite element measurements at
the radius and tibia demonstrated that serum 25(OH)D levels was
moderately associated with poor or deteriorated bone microarchitecture
(Boyd et al., 2015; Garrahan et al., 2022) but no significant effect on
bone strength (failure load) (Burt et al., 2019). Also, there are incon-
sistent data on the relationship between serum 25(OH)D level and BMD
measured by dual-energy x-ray absorptiometry (DXA). Interestingly,
more recent studies reported insignificant correlation between serum 25
(OH)D level and DXA measured BMD (Alkhenizan et al., 2017; Allison
et al., 2018). Furthermore, the clinical trial data suggest that vitamin D
neither improves bone health nor reduce the risk osteoporotic fractures
(Reid et al., 2014; Bolland et al., 2018; Torjesen, 2018; LeBoff et al.,
2022). Based on these findings, absence of correlation between 25(0OH)D
levels and bone histomorphometry is not surprsing. Our data, although
collected several decades ago, also support the current perspectives that
25(0OH)D is not essential for protecting bone health (Torjesen, 2018;
LeBoff et al., 2022). Accordingly, there is little justification to use
vitamin D supplements to maintain or improve musculoskeletal health
(Bolland et al., 2018; LeBoff et al., 2022).

It has been reported that 1,25(0OH);D increases bone volume by
stimulating osteoblastic bone formation but decreases bone minerali-
zation by raising local and systemic inhibitors of osseous mineralization
(Goltzman, 2018; Wronski et al., 1986). However, most of these obser-
vations came from in vitro and animal experiments. Our study showed
that Ob.S/BS and W.Th increase with increasing serum 1,25(OH);D
levels, suggesting that circulating 1,25(OH)»D may facilitate bone for-
mation by increasing osteoblast number and function. Cosman et al.
(2000) reported that administration of 1,25(0OH);D caused a more
robust increase in two markers of bone formation (osteocalcin and
carboxyterminal propeptide of type 1 procollagen) in black women than
in white women, indicating that the sensitivity of osteoblasts to circu-
lating 1,25(0H),D is greater in black women. Although 1,25(0H)D is
primarily synthesized in the kidney (Zofkova, 2018), there is a number
of bone cells, especially osteoblasts and osteocytes, can produce it as
well (Turner et al., 2014; Lanske et al., 2014). The renal 1,25(0H),D
affects the skeleton via endocrine pathway (Anderson, 2017), but the
locally produced 1,25(OH);D in bone cells affect the skeleton via
autocrine and intracrine pathways (Anderson, 2017; Labrie, 1991).

Vitamin D metabolites have been considered to play an important
role in maintenance of bone mineralization. In bone histomorphometry,
O.Th and MLT are specific indices used for the assessment of bone
mineralization and diagnosis of osteomalacia (Bhan et al., 2018). Our
results demonstrated that there was no significant difference in O.Th and
MLT between black and white women and no subject fell into the
category of osteomalacia (0.Th > 12.5 pg and MLT > 100 days, data not
shown). In addition, O.Th and MLT were not correlated with serum 25
(OH)D and 1,25(0H);D levels. These findings indicate that neither 25
(OH)D nor 1,25(0OH),D levels in blacks or whites affect general bone
mineralization. A less frequently reported osteoid-related variable,
ulOS/BS ([0S-MS]1/BS), was included in our study. This variable
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represents the fraction of bone surface covered with osteoid which is
lack of tetracycline labeling. The change in ulOS/BS may be attributed
to one or more interruptions of mineralization during the life span of the
osteoid seam (Parfitt et al., 1997). Lack of label occurs preferentially at
locations where the osteoid is thin and distant from the cement line, and
covered by flat cells that have probably stopped making bone matrix
(Parfitt et al., 1997). Thus ulOS/BS reflects the status of bone mineral-
ization at the terminal stage of bone remodeling, because bone forma-
tion is extremely low or even ceased in this period (Parfitt et al., 1997).
The positive correlation between 1,25(0OH)sD levels and ulOS/BS in-
dicates that 1,25(OH)»D may attenuate terminal mineralization of bone.

There are some limitations in our study. First, this is a cross-sectional
and retrospective study with relatively small sample size. Retrospective
nature of the study may generate less valid conclusion usually due to
missing data. Second, we did not have data on routine or daily intake of
vitamin D supplementation. Third, our study did not include healthy
male subjects for examining gender differences in vitamin D paradox in
black male population.

5. Conclusion

Although black women have significantly lower serum 25(OH)D
levels and higher prevalence of vitamin D deficiency, their bone mass,
remodeling and mineralization are well-maintained. However, higher
serum 1,25(0OH)sD levels may facilitate bone formation by increasing
osteoblast number and function, and moderately inhibit bone mineral-
ization at the terminal stage of bone remodeling. These results indicate
that vitamin D deficiency, as currently defined by serum 25(OH)D, does
not compromise bone health, particularly in blacks.
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