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ABSTRACT

Recent work demonstrates that castration-resistant prostate cancer (CRPC) 
tumors harbor countless genomic aberrations that control many hallmarks of 
cancer. While some specific mutations in CRPC may be actionable, many others are 
not. We hypothesized that genomic aberrations in cancer may operate in concert 
to promote drug resistance and tumor progression, and that organization of these 
genomic aberrations into therapeutically targetable pathways may improve our 
ability to treat CRPC. To identify the molecular underpinnings of enzalutamide-
resistant CRPC, we performed transcriptional and copy number profiling studies using 
paired enzalutamide-sensitive and resistant LNCaP prostate cancer cell lines. Gene 
networks associated with enzalutamide resistance were revealed by performing an 
integrative genomic analysis with the PAthway Representation and Analysis by Direct 
Reference on Graphical Models (PARADIGM) tool. Amongst the pathways enriched 
in the enzalutamide-resistant cells were those associated with MEK, EGFR, RAS, and 
NFKB. Functional validation studies of 64 genes identified 10 candidate genes whose 
suppression led to greater effects on cell viability in enzalutamide-resistant cells as 
compared to sensitive parental cells. Examination of a patient cohort demonstrated 
that several of our functionally-validated gene hits are deregulated in metastatic 
CRPC tumor samples, suggesting that they may be clinically relevant therapeutic 
targets for patients with enzalutamide-resistant CRPC. Altogether, our approach 
demonstrates the potential of integrative genomic analyses to clarify determinants 
of drug resistance and rational co-targeting strategies to overcome resistance.

INTRODUCTION

Prostate cancer is the third leading cause of cancer-
related death in the United States [1]. Nearly all of these 
deaths are due to castration-resistant prostate cancers 
(CRPC), the lethal form of the disease that has progressed 
despite androgen deprivation therapies that interfere 
with androgen levels or androgen receptor (AR) function 

[2]. Recent work demonstrates that CRPC cells develop 
resistance to androgen deprivation therapy by synthesizing 
their own androgens or making use of adrenal androgens 
to sustain AR function [3, 4, 5]. These discoveries led 
to the development of the novel anti-androgen drug 
enzalutamide, which competes with androgens for 
binding to AR and leads to suppression of CRPC tumor 
growth in pre-clinical models [6]. Recently, two phase III 
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clinical trials demonstrated that enzalutamide treatment 
significantly improves overall survival in CRPC patients, 
and enzalutamide is now approved for the treatment of 
men with metastatic CRPC [7, 8]. However, nearly half of 
all patients do not respond to enzalutamide treatment, and 
resistance is universal [9].

Several emergent resistance mechanisms to 
enzalutamide have been identified. These include AR 
splice variants that lack the ligand-binding domain for 
androgens or enzalutamide as well as F876L mutations in 
the ligand-binding domain that may convert enzalutamide 
to an agonist [10-12]. The prevalence of F876L or other 
enzalutamide resistance-associated mutations has been 
reported to occur in approximately 20% of CRPC patients 
progressing on enzalutamide [13, 14]. Although these 
mutations are clinically-relevant examples of acquired drug 
resistance, these mechanisms are currently not targetable by 
therapeutic compounds. In addition to AR mutations, CRPC 
tumors harbor countless genomic aberrations that control 
many hallmarks of cancer [15-17], however most of these 
are not actionable drug targets [17]. Therefore, there is an 
urgent need to further clarify mechanisms of enzalutamide 
resistance in order to identify rational strategies to 
overcome enzalutamide resistance. Further, an enhanced 
understanding of the genetic basis of drug resistance and 
treatment failure may lead to better molecular stratification 
of patients for treatment, as well as to predict prognosis.

Our prior work demonstrated that the genomic 
aberrations in cancer operate in concert to promote drug 
resistance and tumor progression [18, 19]. We hypothesized 
that organizing genomic aberrations into biologically 
meaningful pathways may improve our ability to understand 
mechanisms of resistance to enzalutamide treatment. Here, 
we performed genomic studies using paired enzalutamide-
sensitive and resistant LNCaP cell models. After 
transcriptional and copy number profiling, we performed 
integrative pathway analysis using PARADIGM to identify 
differentially regulated cellular networks [18, 19] and 
analyzed these large-scale networks to identify sub-networks 
associated with acquired resistance. Genes residing within 
significant sub-networks were nominated for functional 
validation studies with RNAi. We identified specific 
sub-networks that contribute to enzalutamide resistance. 
Importantly our approach identified nodes in these sub-
networks that may be targeted therapeutically, demonstrating 
the translational significance of this approach.

RESULTS

Enzalutamide-resistant cells have distinct 
genomic profiles as compared to parental 
enzalutamide-sensitive cells

To understand the molecular basis of enzalutamide-
resistance in CRPC, we utilized the V16D enzalutamide-
sensitive CRPC cell line, as well as MR49F, its 

enzalutamide-resistant derivative. These cell lines 
were derived by long-term treatment of LNCaP-CRPC 
xenografts with enzalutamide for multiple generations to 
create the enzalutamide-resistant cell line MR49F (Figure 
1A) [20]. To establish the baseline therapeutic response of 
these cell lines, we cultured V16D cells or MR49F cells in 
growth media supplemented with either vehicle or 10 μM 
enzalutamide and measured cell viability. As expected, we 
observed that enzalutamide treatment reduced viability of 
V16D cells but did not reduce viability of MR49F cells, 
demonstrating their resistant phenotype (Figure 1B). 
Further, enzalutamide treatment of V16D cells suppressed 
the expression of canonical AR target genes while there 
was no effect in MR49F cells, in keeping with the fact that 
MR49F cells harbor an AR F876L resistance-conferring 
mutation [19]. We performed RNA sequencing and exome 
sequencing to identify the gene expression differences and 
copy number changes between the V16D and MR49F cell 
lines. This analysis identified 586 significant differentially 
expressed genes between V16D and MR49F cells (t-test, 
q < 0.05, fold-change > 2, Figure 2A, Supplementary 
Table 1). Gene-set enrichment analysis demonstrated 
that the top deregulated pathways include those linked 
to MEK, EGFR, the RAS-associated kinase STK33, and 
TBK1 a serine-threonine protein kinase associated with 
NFKB signaling (Supplementary Table 2).

We reasoned that copy number changes specifically 
present in the resistant MR49F cell line as compared to 
the parental V16D cell line were candidate resistance-
associated genomic changes [21]. Our analysis revealed 
focal copy number gains and losses on multiple 
chromosomes of MR49F as compared to V16D, including 
regions of significant amplification on chromosomes 
1 and X, and a deletion on chromosome 16 (Figure 
2B, Supplementary Tables 3 and 4). The focal gain on 
chromosome 1 contains just a few genes, including 
MTHFR, a gene implicated in folate metabolism. The 
amplification on chromosome X is comprised of 3 
significant regions and includes AR.

PARADIGM network analysis identifies 
pathways deregulated in enzalutamide resistant 
cells

We next sought to identify the pathways and gene 
networks that were differentially expressed in MR49F 
cells as compared to V16D cells. We used PARADIGM, a 
network modeling approach that integrates multiple data 
types to infer alterations in biological pathway activity 
that contribute to a specific phenotype or cell state [19]. 
PARADIGM inferred from the molecular profiling data 
an Integrated Pathway Level (IPL) score for each node 
in a reference pathway curated from Reactome, BioCarta, 
and NCI Nature pathway resources [37]. A key feature of 
PARADIGM is that the IPL for each node reflects both 
the input data (e.g., gene expression and copy number) as 
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well as the scores of neighboring nodes. In our analysis, 
we used the transcriptional profiling and copy number data 
to infer a network associated with enzalutamide resistance. 
This PARADIGM network revealed that ER, EGFR, 
MYC, and DNA Damage pathways were differentially-
regulated between the parental V16D CRPC cell line and 
the enzalutamide-resistant MR49F cell lines (Figure 2C).

We further analyzed this large network to identify 
biologically relevant deregulated pathways by filtering the 
PARADIGM results for nodes that showed a change in 
pathway activity greater or less than 2 standard deviations 
from the median IPL score. This approach nominated 
607 nodes with 235 nodes representing individual genes. 
We reasoned that genes with the greatest differential-
expression between V16D and MR49F would be most 
important for mediating resistance. After applying a filter 
to remove lowly expressed PARADIGM-nominated genes, 
we identified 64 genes for functional validation with RNA 
interference. We also included as biological controls several 
genes known to be important for prostate cancer cell 
viability: AR, MYC, and KIF11 (Supplementary Table 5).

RNAi screen identifies critical pathway nodes 
that contribute to enzalutamide resistance

To identify genes that promote survival and 
contribute to enzalutamide resistance in MR49F cells, we 
used RNAi to suppress the 64 nominated genes. We also 
measured cell viability in V16D cells after suppression 
of these same genes, to allow us to identify genes whose 
suppression was specific to the enzalutamide-resistant 
MR49F cell line. Cell viability was quantified with MTS 

assays, and data were normalized to quantitate the change 
in viability after knock-down (Supplementary Table 6).

Next, we attempted to home in on the PARADIGM-
nominated genes causally associated with enzalutamide 
resistance by filtering the RNAi output to identify genes 
that caused at least a 15% decrease in cell viability in 
the MR49F cell line, and also showed a greater decrease 
in cell viability in the MR49F cell line as compared to 
the V16D cell line. This approach identified 10 genes 
as functionally associated with enzalutamide resistance: 
EDN2, TP5313, TNFRSF10C, TIMP3, ZPF36L1, DDIT3, 
ADIPOQ, PMAIP1, DDIT4, and CEBPA. The control 
gene MYC was also identified as having preferential cell 
viability effect in MR49F as compared to V16D (Figure 
3, Supplementary Table 7). AR knock-down had a modest 
effect on MR49F, though it was below the threshold we 
set to identify hits. We assessed the knockdown hits in the 
context of the computed PARADIGM network and found 
that many of them reside in inter-connected networks 
inferred to be upregulated in the MR49F enzalutamide 
resistant cell line as compared to the enzalutamide 
sensitive cell line (Figure 4). This indicates that these 
gene alterations coordinately contribute to enzalutamide 
resistance and moreover suggests that targeting key nodes 
in enzalutamide-resistant tumors may block this network.

We next sought to determine the clinical significance 
of hits identified from our pre-clinical studies. Publically 
available datasets of enzalutamide-sensitive and resistant 
cells were not available, so instead, we assessed the 
expression of our 10 “top hit” genes in a cohort of human 
samples comprised of metastatic CRPC and localized 
prostate cancer samples [12]. Importantly, several of the top-

Figure 1: Cell line models of enzalutamide resistance. (A). Castration-sensitive, enzalutamide-sensitive human LNCaP cell 
line underwent serial murine xenograft transplantation in the setting of androgen deprivation therapy to produce a castration-resistant 
but enzalutamide-sensitive V16D cell line model. Continued xenograft transplantation in the presence of enzalutamide gave rise to the 
castration-resistant and enzalutamide-resistant MR49F cell model. (B). V16D and MR49F cell counts after 5 days of 10 μM enzalutamide 
treatment confirm that the MR49F cell line is resistant to enzalutamide while the V16D cell line remains sensitive. Bars represent the mean 
of the Invitrogen Countess automated cell count. *** denotes statistical significance (p < 0.05).
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hit genes were more highly expressed in the metastatic CRPC 
samples as compared to the localized prostate cancers (Figure 
5). These genes include: ADIPOQ, CEBPA, and DDIT4. We 
also observed concordant down-regulation of expression 
of TIMP3 and ZFP36L1 in both the enzalutamide-resistant 

MR49F cell line and metastatic CRPC prostate cancers. 
Taken together, these findings demonstrate the relevance 
of our in vitro studies and suggest that these pathway nodes 
may already be selected for in the transition from hormone-
responsive prostate cancer to CRPC tumors.

Figure 2: Molecular profiling of MR49F. (A). Heatmap showing the 586 differentially expressed genes with a fold-change > 2 
between MR49F and V16D (FDR-adjusted q < 0.05). Color reflects median centered expression values. (B). Copy number aberrations 
in cell line MR49F relative to V16D. Each dot represents the log2 ratio between MR49F and V16D cell lines for one probe region of the 
captured exome. Horizontal red lines represent the normalized log2 ratio after segmentation. (C). Differentially regulated PARADIGM 
network rendered with Cytoscape. Node color represents PARADIGM-inferred IPL scores where red indicates up-regulated in and blue 
indicates down-regulated in MR49F as compared to V16D. Triangle-shaped nodes indicate druggable targets. Biologically meaningful 
deregulated subnetworks are indicated.
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DISCUSSION

In recent years, the knowledge that androgens 
persist in CRPC cells and are sufficient to activate AR 
transcriptional activity has led to the development of 
new therapies to treat patients with CRPC. The second-
generation AR antagonist enzalutamide is one such 
example, and two phase III clinical trials demonstrate 
that enzalutamide improves survival for patients with 
metastatic CRPC [7, 8]. However, even patients who 
initially respond to enzalutamide ultimately undergo 
disease progression, demonstrating the urgent need to 
identify mechanisms of acquired resistance.

Several enzalutamide resistance mechanisms have 
been described previously, including both AR-dependent 
and AR-independent alterations. Examples of the former 
include: AR splice variants that lack the ligand-binding 
domain [22], gain of function AR mutations [13, 14], AR 
gene amplification [13, 14], the glucocorticoid receptor 
maintaining AR signaling [23], and reciprocal feedback 
between the AR and the PI3K pathways [24]. Examples of 
AR-independent mechanisms are much less well described, 
although the clinical frequency of neuroendocrine 
prostate cancer appears to be on the rise, perhaps due to 
the selective pressure of treatment with drugs such as 
enzalutamide that block AR function [25, 26]. MYC has 
also been implicated in CRPC, as demonstrated by both 
genomic alterations [27] as well as demonstration that 

androgen treatment leads to downregulation of MYC 
and concomitant upregulation of both IGF1 and EGFR 
[28]. It is clear that a multiplicity of gene alterations is 
common in CRPC tumors, including in those resistant to 
enzalutamide. A better understanding of the importance of 
specific genomic alterations and how they cooperate could 
aid with patient stratification and treatment selection.

In this report, we used the PARADIGM algorithm 
to identify emergent enzalutamide resistance mechanisms 
that could be targeted to improve therapeutic response. 
The PARADIGM algorithm is based on the premise 
that pathway level analysis provides better sensitivity 
and specificity in identifying relevant oncological 
alterations in comparison to approaches that consider 
genes as independent actors. One distinct advantage of 
PARADIGM is the ability to simultaneously integrate 
multiple genomic and epigenomic data types, providing 
an analytical framework for integrating molecular changes 
that occur across different omic levels -- from DNA to 
RNA to protein. Furthermore, PARADIGM superimposes 
biological data with curated molecular pathways from the 
literature. This enables inference of genetic or epigenetic 
alterations that are likely to be functional contributors to 
a specific cell state or phenotype and to identify critical 
interdependencies that occur at the pathway level. We 
leveraged these ideas to understand the coordinate copy 
number and transcriptional changes that occur with 
enzalutamide resistance.

Figure 3: Functional validation of PARADIGM-nominated gene candidates identifies genes mediating enzalutamide 
resistance. Bars represent viability in V16D or MR49F cell lines after RNAi knock-down with specific genes, where viability scores have 
been normalized against scramble control. Horizontal line at 0.85 represents the minimum viability effect required to indicate a functional 
hit. Error bars represent s.e.m.
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We focused on pathway analyses because this 
approach can identify genes implicated in specific 
networks or processes, however, this approach has some 
general limitations. Most critically, pathway-based 
analyses rely on a curated pathway definition and, as such, 
may ignore deregulated genes that are not well curated 
[29]. Furthermore, there are many different algorithms 
available for pathway analysis, each with their own 
strengths and weaknesses: ARACNe and MARINA to 
discover and interrogate transcription factor networks 
[30-32], HotNet which uses heat diffusion to model the 
effects of gene alterations [33], and signaling pathway 
impact analysis (SPIA) to identify highly impactful 
nodes in a network [34]. Nonetheless, our pathway-
based approach identified important genes linked to 
enzalutamide resistance. While computational approaches 
such as these can aid in understanding biological 
mechanisms, it is important to note that they are limiting 
in that they can only identify associations with phenotype. 
Specifically, functional experimental validation is 
critically necessary for identifying causal relationships 
between pathway activity and cellular function.

Functional validation of our top-hit genes with 
RNAi identified several genes that conferred survival 
to an enzalutamide resistant cell model, suggesting that 
genes—or the networks in which they reside—may be 
important contributors to enzalutamide resistance. These 

functional validation studies identified PARADIGM-
nominated genes that are more critical for conferring 
cell viability in enzalutamide-resistant MR49F cells 
as compared to parental V16D cells. It is worth noting, 
however, that several of these genes reduced viability 
in the enzalutamide-sensitive V16D cell line as well, 
suggesting that they may be important for mediating 
both enzalutamide resistance and viability in castration-
resistant prostate cancer cells.

Examination of CRPC and hormone-naïve 
prostate cancer datasets demonstrated that several of our 
functionally-validated hits are deregulated in metastatic 
CRPC tumor samples, suggesting translational potential of 
our studies. For example, CEBPA is a transcription factor 
involved in cell cycle regulation and tissue differentiation. 
A recent study found that CEBPA promotes castration-
resistance and AR signaling in prostate cancer through a 
direct protein interaction with AR; this suggests that co-
targeting CEBPA and AR may be one approach to block 
AR in either castration-resistant or enzalutamide-resistant 
tumors [35]. Consistent with our functional studies, 
PMAIP1 (NOXA), which promotes activation of caspases 
and apoptosis, is associated with CRPC, indicating that 
PMAIP1 may be another promising target to overcome 
enzalutamide resistance [36]. Interestingly, we observed 
variable expression of many of our top-hit genes across 
a cohort of primary tumor samples, which suggests 

Figure 4: PARADIGM subnetwork for top-hit genes. Network includes the statistically significant siRNA hits, positive control 
(MYC), and their first neighbors, as identified from the PARADIGM curated pathway information file. Node color represents PARADIGM 
network scores, where blue indicates down-regulated activity in MR49F as compared to V16D, and red indicates upregulated network 
activity. Node shape: circles represent PARADIGM network entities, with significant siRNA hits indicated by large circles; triangles 
indicate drug targets.
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molecularly distinct subsets of CRPC.  It is worth noting 
that the cohort of tumor samples we assessed are not 
annotated with senstivitity or resistance to enzalutamide 
and it is likely that both types of patients exist in this 
sample set, providing a basis for the heterogeneous 
expression of some of these genes. For example,  TP53I3 
is regulated by the well-known cancer associated 
transcription factor TP53, and its response in our RNAi 
screen could indicate that the DNA damage pathway may 
be an effective therapeutic target in enzalutamide-resistant 
prostate cancer, for instance with PARP inhibitors. A 
prior network analysis nominated ZFP36L1 as a critical 
gene in metastatic prostate cancer, and our functional 
studies validated that prediction [37]. We observed that 
enzalutamide-resistance was associated with down-
regulation in expression of TIMP3 and ZFP36L1, and that 
this pattern was also shared in CRPC tumors. This finding 
is consistent with the idea of CYCLOPS genes that have 
undergone copy number loss and are therefore vulnerable 
to knock-down [38]. Altogether, our studies reveal an 

interconnected gene network associated with enzalutamide 
resistance in CRPC.

Our PARADIGM and gene set enrichment analyses 
revealed that enzalutamide resistance is associated with 
MEK, EGFR, ESR1, the RAS-associated kinase STK33, 
and TBK1 a serine-threonine protein kinase associated 
with NFKB signaling pathways. Several of these pathways 
are targetable with small molecule inhibitors, indicating 
that they may be directly therapeutically relevant. 
Consistent with our observations, a report by Toren et al 
[20] demonstrated that MR49F cells are more sensitive 
to the MEK inhibitor PD0325901 than are V16D cells. 
Several previous reports indicate expression of oncogene-
specific tyrosine kinase signatures--including EGFR--in 
CRPC [39]. Further, expression of AR has been shown 
to be negatively regulated by EGFR and ERBB2 in 
CRPC cells [40]. Consistent with this, the MR49F cell 
line is sensitive to the EGFR/ERBB2 inhibitor lapatinib, 
both in vitro and in vivo [41]. These studies highlight the 
ability of our approach to identify therapeutically-relevant 

Figure 5: Expression of nominated siRNA hits in CRPC tumors, primary tumors, and benign prostate samples. Heatmap 
represents gene expression for CRPC primary tumors from Grasso, et al. after median-centering. Metastatic CRPC samples (purple) cluster 
together after unsupervised hierarchical clustering, indicating that the siRNA hits implicated in enzalutamide resistance are coordinately 
deregulated in these samples.
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networks that may be targeted to improve outcomes for 
patients with enzalutamide-resistant prostate cancer.

In our viability studies, we tested a single time 
point of 5 days post-treatment. While this is a biologically 
meaningful time in which to observe changes associated 
with therapy or RNAi knock-down, it does not capture 
information about the dynamic nature of therapeutic 
response. Future studies that focus on identification 
of early and late responses will lead to greater insights 
about the nature of therapeutic resistance and will provide 
additional insights into how to improve therapeutic 
responses [42]. An additional limitation to our RNAi 
studies is that they focus on a singular phenotypic change 
of cell viability. While this is one of the most clinically 
relevant changes induced by therapeutic treatment, it 
does not capture phenotypic changes that may affect 
other cancer hallmarks, such as differentiation state, 
DNA damage response, or migration [16]. Indeed, other 
studies that leverage high-content imaging have revealed 
other phenotypic changes in cells following therapeutic 
treatment [43].

The PARADIGM computational algorithm 
facilitates nomination of genes associated with the 
emergence of drug resistance―including mechanisms of 
enzalutamide resistance in CRPC. The integrative nature 
of this strategy goes has clear advantages over traditional 
means of comparative analyses, such as differential 
expression analysis, by providing biological context in 
which the gene alterations occur. In support of this are 
our functional data demonstrating the connectivity of 
many of our PARADIGM-nominated hits in specific 
gene networks. Improving patient stratification and 
understanding emergent resistance mechanisms is 
essential to improving clinical outcomes. In the future, 
we plan to examine the relevance of genes identified 
herein in tumor samples from CRPC patients undergoing 
enzalutamide treatment through a prospective clinical trial 
(NCT02099864). Once that trial is complete, PARADIGM 
analysis of pre- and post-treatment samples like the 
approach used here may enable us to confirm our findings 
and prioritize targets most relevant to overcome clinical 
enzalutamide resistance.

MATERIALS AND METHODS

Cell culture

Paired enzalutamide-sensitive and enzalutamide-
resistant LNCaP derivative cell lines were generously 
provided by Martin Gleave from the University of 
British Columbia [44]. The enzalutamide-sensitive 
LNCaP-derived parental V16D cell line was maintained 
in RPMI 1640 (Gibco #11875-093) supplemented with 
10% fetal bovine serum (FBS) (Gibco #16000-044). The 
enzalutamide-resistant MR49F cell line was constitutively 
maintained in RPMI 1640 supplemented with 10% FBS 

and 10 μM enzalutamide (MedchemExpress #HY-70002). 
Cells were passaged by treatment with trypsin with EDTA 
and phenol red (ThermoFisher Scientific #R001100). Each 
cell line was processed and analyzed for transcriptional 
and copy number profiling in biological triplicate.

RNA-sequencing and analysis

MR49F and V16D cells were seeded in RPMI 
and 10% FBS in biological triplicate in 6-well plates at 
300,000 cells per well. After 96 hours, or 50% confluence, 
cells were treated with 10 μM Enzalutamide or 0.1% 
DMSO and harvested 24 hours post treatment. Total 
cellular RNA was extracted with Trizol/CHCl3 and re-
suspended in 30uL RNAse-free water. Cell line RNA 
libraries were prepared for sequencing with the Agilent 
SureSelect RNAseq protocol as per the manufacturer’s 
instructions. Triplicate samples were sequenced on an 
Illumina HiSeq as single-end 50 bp reads. Samples were 
aligned to the human reference (hg19) using Tophat 
(v2.0.9) and transcripts were assembled and quantified 
by Cufflinks (v2.1.1). To identify significant differentially 
expressed genes between V16D and MR49F samples, 
we performed a t-test, followed by multiple comparisons 
correction with Benjamini-Hochberg false discovery rate 
(q-value < 0.05 deemed significant). Additionally, to 
ensure identification of a biologically meaningful set of 
differentially expressed genes, we required a minimum 
fold-change of 2 between V16D and MR49F cell lines.

Whole exome sequencing and analysis

Cellular DNA from V16D and MR49F cell 
lines was extracted using the Agilent SureSelect XT2 
protocol. Exonic regions were isolated by hybrid capture 
for Agilent’s 71Mb + UTR V5 library. Samples were 
sequenced on an Illumina HiSeq as paired-end 100 bp 
reads at an average depth of 30X. Data were aligned 
to the human genome (hg19) using bwa (v0.7.3a), 
duplicates were sorted and removed with samtools 0.1.19 
and Picard tools 1.51 and local realignment and quality 
score recalibration was done with GATK version 2.1-13. 
Copy number analysis was performed using DNACopy 
(v1.44.0) in R (v3.2.3) [45]. The parental V16D cell line 
was used as the comparator in the copy number analysis.

PARADIGM analysis

We used RNAseq derived expression and gene-level 
copy number data as input to the PARADIGM algorithm. 
To generate a single expression value representing a 
differential between our samples of interest, the expression 
data was first log2 transformed and subtracted from the 
corresponding parental cell line’s expression levelfor each 
gene. Copy number data was preprocessed as log2 copy 
number ratios on a per-gene basis, comparing the derived 
to parental cell line. We analyzed these data with the 
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PARADIGM algorithm webtool available through Five3 
Genomics (w). We used the pid_120912 curated network 
file and visualized the resultant networks with Cytoscape 
v.3.1.1 [46].

Nominating PARADIGM siRNA candidates

We considered PARADIGM-nominated genes 
with integrated pathway level (IPL) scores greater or less 
than 2 standard deviations from the median to be most 
biologically relevant. In an effort to prioritize the 235 
nodes that passed the IPL cutoff criteria, we reasoned 
that genes with low or invariant expression could be 
excluded as RNAi candidates. We eliminated these genes 
by implementing a coefficient of variation filter that 
removed genes with CVs of less than 10 and greater than 
200. We also required non-zero gene-level expression in 
at least two samples. This yielded 64 gene candidates for 
functional validation with RNAi. In addition to the 64 
PARADIGM-nominated gene candidates, we included 
in our RNAi screen several genes as biological controls: 
scramble as negative control, KIF11 as positive control for 
viability, as well as MYC and AR because they have been 
implicated in CRPC and enzalutamide-resistance.

RNAi screen

Gene candidates nominated from our PARADIGM 
analysis were validated with RNAi. Briefly, for 
both the V16D or MR49F cell lines, 5000 cells per 
well were seeded in a 96-well microtiter plate pre-
coated with specific oligo RNA sequences in RPMI + 
10%FBS + 10 μM enzalutamide. After 24 hours, RNAi 
transfection was initiated by addition of lipofectamine 
(ThermoScientific #T2002-01) to each well containing a 
unique smart pool of 50 μM siRNA probes (Dharmcon). 
After 6 hours, the volume of each well was doubled by 
addition of enzalutamide-containing cell media to cease 
the transfection by dilution. Next, each microtiter plate 
was allowed to incubate at 37 C without media change 
for five days to minimize cell loss. Cell viability was 
assessed by colorimetric MTS assay (Promega CellTiter 
96 #G3581) per manufacturer recommended protocol 
by spectrophotometric absorbance at 490 nm. RNAi 
knockdown was conducted in biological triplicate per gene 
per cell line.

The MTS values were normalized as follows: for 
each plate, we created a bivariate loess model of the 
spatial variations using the formula MTS~Row+Column 
with a span of 1 for plates where all wells were occupied 
by siRNAs and 0.2 for partially occupied plates. We 
divided each raw MTS value by its predicted loess 
value to generate a normalized estimate of cell viability 
that removed any spatial artifact. We then divided these 
normalized values by the normalized value of the non-
targeted negative control from the same plate. The plate 
median was used in lieu of the negative control in the one 

partial plate that did not have values for the non-targeted 
siRNA.

We used the following approach to identify siRNA 
hits of interest. First, we identified genes that showed a 
significantly different knock-down effect in the two cell 
lines by performing a two-sided Wilcoxon rank sum 
test followed by Benjamini & Hochberg adjustment for 
multiple comparisons. Genes with q-values < 0.2 were 
further filtered to identify those with at least 15% cell kill 
in the MR49F cell line, as well as significantly greater cell 
kill in MR49F as compared to V16D.
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