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Abstract: The integrative analysis of copy number alteration (CNA) and gene expression (GE) is
an essential part of cancer research considering the impact of CNAs on cancer progression and
prognosis. In this research, an integrative analysis was performed with generalized differentially
coexpressed gene sets (gdCoxS), which is a modification of dCoxS. In gdCoxS, set-wise interaction is
measured using the correlation of sample-wise distances with Renyi’s relative entropy, which requires
an estimation of sample density based on omics profiles. To capture correlations between the
variables, multivariate density estimation with covariance was applied. In the simulation study,
the power of gdCoxS outperformed dCoxS that did not use the correlations in the density estimation
explicitly. In the analysis of the lower-grade glioma of the cancer genome atlas program (TCGA-LGG)
data, the gdCoxS identified 577 pathway CNAs and GEs pairs that showed significant changes of
interaction between the survival and non-survival group, while other benchmark methods detected
lower numbers of such pathways. The biological implications of the significant pathways were well
consistent with previous reports of the TCGA-LGG. Taken together, the gdCoxS is a useful method
for an integrative analysis of CNAs and GEs.

Keywords: copy number alteration; gene expression; integrative analysis; Renyi’s relative entropy;
the cancer gene atlas project; lower-grade glioma

1. Introduction

Copy number alteration (CNA) is a cytogenetic hallmark of cancer pathophysiology [1]. Due to the
aberrant behavior of cancer cell proliferation and differentiation, genomic sequences can be amplified or
deleted in cancer cells. The CNA can cause the abnormal expression of oncogenes or tumor suppressor
genes. These abnormal expressions are related to cancer progression or poor prognosis [2–6]. For this
reason, the identification of the copy number aberration has been a key issue in cancer research [7–9].

The array comparative genomic hybridization (aCGH) facilitated the discovery of the CNAs
in cancer [7]. The paradigm of high-throughput technology, which is a massive parallelization of
single experiments, was directly applied to the aCGH method. Consequently, researchers can obtain
information about copy numbers on a genome-wide scale using the aCGH platform. Studies on
many types of cancers revealed copy number anomalies in various genomic regions with the aCGH
technology [8–12]. Recently, researchers have used a single nucleotide polymorphism (SNP) microarray
platform for the detection of CNAs [13]. For the detection of CNAs, specific probes are inserted in the
microarray platform. Several algorithms had been developed for analysis of the CNAs using the SNP
microarray platform [14–17].
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Although the microarray platforms enable the efficient screening of the CNAs, they give no
information about gene expression (GE). For the identification of their impact on GE, they should be
validated at the transcription level because the GEs of CNA loci can show no significant change [18].
To this end, the GE microarray or RNA sequencing platform can be used concurrently on the same
samples that are applied to the CNA-detecting platform for accurate detection of the CNAs having an
effect on transcription. The underlying assumption of the integrative analysis of the CNA and GE is
straightforward: if the CNAs of genomic loci co-vary with the expression level of genes, it indicates
that the genomic loci are likely to influence the GE.

The integrative analysis of the CNV and GE datasets has been focused on single gene-wise
correlations or regression-based approaches that found significant relationships between CNA and
GE, which are focused on identifying the coordinated variation between CNA and GE. To capture the
variation, several computational methods were applied [19,20]. Lathi et al. reviewed and classified
such methods into four categories, including two-step-, regression- and correlation-based approaches,
and latent variable models [20]. The two-step approach consists of detecting CNA lesions and testing
the association of the lesions and differential gene expressions. Regression- and correlation-based
approaches are dependent on the corresponding statistical models that have been widely used in
the data analysis, and some modifications of the original models are applied. Latent variable models
are used to model the shared and independent signals between CNA and GE. This approach has
an advantage in that it directly models the signal and noise, but has the disadvantage of high
computation time.

In addition to the single gene-wise method, gene set approaches were also applied to the integrative
analysis of CNA and GE. Menezes et al. used the global test to identify the relationship between single
copy number alteration and corresponding gene set expression profiles [21]. By mapping neighbor
expression probes to a single aCGH probe, they identified the CNAs that influenced the gene set
expression profiles using the global test. The other gene set approach identified relationships between
sets of CNAs and sets of expression values using canonical correlation analysis. Peng et al. applied the
multivariate regression method for the set-wise analysis of CNAs and GEs [22]. To deal with the high
dimensionality of genomic data, they used a regularization process. The canonical correlation analysis
is a multivariate analysis method for detecting similarity between two variable sets. Lahti et al. used
the canonical correlation method to determine a regional set of copy numbers and gene expression
changes [23], which includes a probabilistic approach that is robust to small sample sizes. In another
research, the elastic net approach was adopted to reduce the number of variables in the genomic
data [24]. Similarly, selecting sparse subsets of variables of CCA instead of considering all combinations
of genomic variables is proposed to consider high dimensional variables of genomic data [25].

In this research, the integrative analysis of CNA and gene expression is performed in terms of
the gene set approach. The rationale for the set-wise analysis was to identify biological findings that
were not detected by the single gene-wise analysis. Moreover, conditional changes in the similarity
between CNAs and gene expressions are explicitly tested to identify whether a pair of CNAs and GEs
is associated with the condition, which indicates that the CNAs and GEs are likely to be involved
in the biology of the condition. For this purpose, the dCoxS method is modified to capture the
variation between heterogenous omics data, especially for CNAs. The dCoxS was originally designed
to detect interaction between a pair of GEs [26]. The interaction implies similarity between GEs,
which is measured by the correlation between sample-wise distances in the GE matrices. For the
identification of interactions between CNAs and GEs, dCoxS is able to be applied directly. However,
if the CNAs data are in a segmented form, the dCoxS may not identify the combination effect of CNA
loci in the determination of interaction because the dCoxS uses productive kernels for the estimation
of sample-wise distances. Since the productive kernel computes the bandwidth parameters of the
variables from the standard deviation of each variable, which can show monotonic variations in the
segmented values of CNAs that represent only three statuses of gain, loss, and normal, the productive
kernel may not be appropriate for the segmented CNA data. In this research, multivariate normal
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density estimation was applied, which integrates the correlation structure of the CNAs explicitly.
Here, the modified method is named generalized dCoxS (gdCoxS), and it can analyze heterogenous
omics datasets. The performance of the gdCoxS is tested using simulation data and lower-grade glioma
of the cancer genome atlas program data.

2. Materials and Methods

2.1. Identification of Conditional Change of Interactions between Set-Wise CNAs and GEs

The overview of analysis is illustrated in Figure 1. The dCoxS method was originally developed
for detecting significant changes in the interaction of a pair of gene expression matrices between
different conditions. In the dCoxS, conditional similarity between two gene set expression profiles was
determined by the correlation of sample-wise distances in the expression profiles, which was defined
as the interaction score (IAS).
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Figure 1. Overall analysis flow of generalized differentially coexpressed gene sets (gdCoxS). In each
condition, copy number and gene expression matrices are converted to matrices of sample-wise
distances that are measured by Renyi’s relative entropies. Then, interactions are determined by the
computation of correlation coefficients of sample-wise distances from the copy number and gene
expression matrix. CNAs: copy number alterations; GEs: gene expressions; IAS: interaction score;
RREs: sample-wise distances with Renyi’s relative entropies.
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For the estimation of sample-wise distances, Renyi’s relative entropy is estimated by the ratio of
densities from two different samples. The densities were computed using the multivariate productive
kernel that multiplies the single density values and bandwidth parameters obtained from standard
deviations of the variables. The dCoxS performs well in the estimation of differential interaction
between a set of gene expressions. However, when the method is applied to CNAs and gene
expressions, the productive kernel may not represent the dynamics of CNA changes because it
integrates no explicit correlation structure into the density estimation. The CNA status includes only
three possible values, which are loss, neutral and gain, and these are frequently coded as −1, 0 and 1,
respectively. Since the CNAs occur in a small portion of samples, it is likely that the density of the
CNA matrix had small variations because combinations of the CNA status are not considered explicitly
in the dCoxS. Thus, in this analysis, a multivariate normal density estimation that uses a covariance
matrix representing combinations of the CNA status is adopted. The multivariate density function is:

f (x) =
1√

(2π)p/2
|Σ|1/2

e−(x−µ)
′Σ−1(x−µ)/2 (1)

where n and p represent the number of samples and variables. The µ is a mean vector of CNA or GE

profiles, and Σ̂1/2 is the square root of the estimated covariance matrix. In practice, n was the number
of samples and d was the number of CNAs or GEs in a pathway. The corpcor R package was used for
the shrinkage estimation of the covariance matrix and its inverse form [27] to handle the computation
of high-dimensional matrices that are frequently possible with various types of genomics data (n < p).

For each corresponding copy number and expression matrix, sample-wise distances were measured
with Renyi’s quadratic divergence.

D2(P||Q) = log
f̂h(Si)

f̂h(S j)
(2)

In Equation (2), D2(P||Q) represents Renyi’s quadratic diversity [26]. The Si and Sj indicate different
samples. The f̂h(Si) and f̂h(S j) are the probabilistic densities of the samples Si and Sj. Therefore, the
higher divergence implies that two samples are more distant from each other.

Using the Renyi’s diversity, set-wise CNA and expression matrices were transformed to
sample-wise distance matrices. The upper trigonal members of the sample-wise distance matrices
were used for the computation of the IAS. The IAS was obtained through the correlation coefficient
between the upper trigonal members of the sample-wise distance matrices.

IAS =

∑
i< j(REC

−REC)(REG
−REG)√∑

i< j(REC −REC)
2
√∑

i< j(REG −REG)
2

(3)

In Equation (3), REC and REG are the sample-wise distance (relative entropy) matrices of the CNAs
and GEs, respectively. After the IASs were determined in each condition, the significance of the IAS and
the differences in the IAS between conditions were tested non-parametrically (Supplementary Methods).

2.2. Simulation Analysis

Since the IAS is used for determining the similarity between set-wise CNA and gene expression
matrices, unlike the original application, a simulation study tests whether the IAS reflects the similarity
between CNAs and GEs.
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First, a CNA matrix was generated using binomial distribution. In general, CNA occurs in a
small proportion of samples. Neutral status was therefore set to the predefined proportion of total
samples. Then, gain (+1) or loss (−1) status was assigned to the rest of the samples using binomial
distribution with number of trials = 1 and probability = 0.5. The rbinom R function generates a 0 or 1
status according to the predefined probability, and 0 is assigned to the −1. The proportion of samples
having CNAs in the total sample was selected among the predefined values (0.1, 0.2, 0.3, 0.4 and 0.5)
for each simulated CNA.

After the generation of CNAs, the GEs matrix with similarity with the CNA matrix was simulated.
The random values from the normal distribution with different standard deviation (SD) values were
added to a simulated CNA for the generation of GEs having various similarities according to the SD
values. To simulate a GE matrix having less similarity with the CNA matrix, a greater SD value was
applied in the generation of random numbers.

Power analysis was also performed with the simulation data. First, two random CNAs–GEs pairs
were generated. The CNA matrices were generated by the same method used in similarity analysis.
Then, a random expression matrix was generated and the same matrix was used as an expression
matrix in both conditions. The random expression matrix was generated by random numbers from
standard normal distribution. Since the CNA matrices were different and the expression matrices
were the same between conditions, this generated the true differential interaction of CNAs and GEs
between conditions. Simulation data were generated with different parameters, including the number
of samples and genes.

2.3. Analysis of TCGA-Multiomics Data

In addition to the simulation study, to test whether the current approach identifies valid biological
phenomena, TCGA-LGG data were analyzed. The data were downloaded from the genomic data
commons (GDC) portal (https://portal.gdc.cancer.gov/), and clinical information was also obtained
from the portal. For the detection of CNAs and GEs, Affymetrix 6.0 SNP microarray and Illumina
Hiseq 2500 sequencing platform were used, respectively.

For the set-wise CNA expression interaction analysis of the TCGA-LGG data, biological pathway
information was used. The current analysis framework can be applied straightforwardly to gene sets that
are constructed with the other biological knowledge, such as gene ontology. The pathway information,
which is mainly compiled from the Bio-Carta (www.biocarta.com), KEGG (www.genome.jp/kegg) and
the Reactome (www.reactome.org) websites, was downloaded from MSigDB of the Broad Institute
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

2.4. Comparison with Single Gene-Wise CNA Expression Analysis

One of the strengths of the gene set-wise analysis was that it could identify slight changes in
genomic signals [28]. Maybe the strength came from the modeling of the interaction between the
elements of the gene sets. To find out whether the current set-wise approach had the same advantage,
the detection of significant changes in the CNAs and gene expression profiles was performed single
gene-wisely. However, previous methods are not implemented to model the difference in interaction
between conditions. Therefore, applicable methods for testing the differential change in the interaction
of CNAs and GEs between conditions were applied. First, correlation-based single CNA and GE
analysis was performed (See Supplementary Methods), and Mantel statistics with different distance
measures, including Euclidean, Manhattan and Mahalanobis distances, that were available to the
differential interaction analysis, were applied for comparison with Renyi’s relative entropy and Mantel
statistics in the analysis of gdCoxS.

https://portal.gdc.cancer.gov/
www.biocarta.com
www.genome.jp/kegg
www.reactome.org
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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3. Results

3.1. Simulation Analysis Results

To generate simulation data for testing whether IAS represents similarity between CNAs and GEs,
CNA matrices that have 20, 50, and 100 variables, and 100 samples, were generated. For each simulated
CNA, the proportion of the CNA in the total samples was randomly selected from among the predefined
frequencies as described in the methods. When a CNA matrix was generated, random values from the
normal distribution with SD = 0.01 were added, which resulted in high IAS between the CNA and GE
matrices. The second GE matrix was generated by adding random values from normal distribution
with SD = 0.1 to the previously generated GE matrix. Likewise, the i-th GE matrix was generated by
adding random values from normal distribution with SD = (i − 1) × 0.1 to the (i − 1)-th GE matrix.
This generated GE matrices that were less similar to the simulated CNA matrix compared with the
previously generated matrix. For each simulated CNA matrix, five GE matrices were generated in
total, and this process was iterated 1000 times. When the number of variables in a GE matrix was 100,
the same CNA vectors were repeatedly sampled and used for the generation of the GE matrix. Figure 2
shows that the IAS represents the similarity between CNAs and GEs. Each point indicates the mean
IAS between the CNA matrices and the simulated expression matrices, with corresponding SD values.
In general, the mean IASs were highest when SD was 0.01, and they became lower with increasing SD.
The mean IAS was lowest with SD = 0.4 in all simulations. Besides mean values, the paired t tests of
the IASs were highly significant between IASs from different SDs (p < 2.2 × 10−16). These indicate that
the IAS represents similarity between CNAs and GEs. Since the CNA and GE matrices are different
types of data, the simulated matrices should have different distributions. While it was obvious that the
simulated CNA matrices have binomial distributions, it was not clear that the simulated GE matrices
have multivariate normal distributions that are frequently used in the simulation of a gene expression
matrix, because they were generated by adding numbers from binomial and normal distributions.
Therefore, normality tests were applied to the GE matrices and the result showed that the matrices had
multivariate normal distributions with Bonferroni’s multiple testing correction (data not shown).
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Figure 2. Results of simulation study for measuring similarity between copy number alterations (CNAs)
and gene expressions (GEs). The red, black and blue dots and lines indicate the numbers of variables in
the gene expression matrix, as 20, 50, and 100, respectively. As standard deviations (SDs) increase, the
mean IASs decline.

Power analysis was performed with changes in the number of samples and number of elements
in the simulation data. The number of samples included {100, 200, 400}, and the number of variables in
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the set were set within {10, 20, 30}. The number of permutations was set to 100. Figure 3 shows the
results of the power analysis. There was an obvious trend whereby the power of gdCoxS and dCoxS
increased as the number of samples was elevated. However, dCoxS had a decreasing power as the
number of elements in the gene sets increased, regardless of the number of samples, while dCoxS
showed the best performance with the smallest number of elements (n = 10). Since the gdCoxS used a
covariance matrix for estimating the relationship between variables, gdCoxS captured the difference in
CNA matrices more efficiently than the dCoxS, which adopted the productive kernel in estimating
density without the use of such a covariance matrix, which was more evident in the higher number of
elements in the gene set. Considering the high-dimensional characteristics of functional genomics data,
the gdCoxS is a more efficient and robust method, which can detect the dynamics between matrices
from two different sets of genomic data.
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Figure 3. Results of power analysis. The number of x axis is the number of variables in the gene sets,
and the y axis represents power. When the number of samples is higher, the overall powers of gdCoxS
are higher than the powers with lower number of samples, regardless of the number of variables.
The dCoxS shows, however, an obvious trend of decreasing power with elevating numbers of elements
of gene sets. N; number of simulation samples in each class.

3.2. Real Data Analysis

In the TCGA-LGG, genes of CNA and expression data were mapped to the ensemble identifier
system. Since the pathway information used gene symbols, the mapping table of the HUGO Gene
Nomenclature Committee (HGNC) for gene symbols and ensemble identifiers was used for mapping
gene symbols to ensemble identifier (https://www.genenames.org/download/cus-tom/). The CNA data
had 533 samples and the RNA sequencing data had 530 samples. Of the samples, 507 samples with
CNA, gene expression and survival information were used in the analysis. In the MSigDB, there were
1335 canonical pathways from the open databases including the KEGG, BioCarta and Reactome.
The class was labeled into two groups according to the survival status (death = 98, survival more
than 5 years = 409). In the analysis of the TCGA-LGG dataset, the GDC provided CNA information
that had been computed using the Genomic Identification of Significant Targets in Cancer (GISITC)
algorithm [17]. The CNA information of 12,117 ensemble genes, that were matched to the genes of
the 1335 items of MSigDB pathway information, were applied in this analysis. The RNA sequencing
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(RNA-seq) data has 60,483 transcripts in total, and 13,339 transcripts were mapped to the ensemble
identifiers of all the pathway information in the 1335 pathways. Since the RNA-seq data had different
batches, a batch effect adjustment was performed with Combat-seq program [29]. After the adjustment,
the RNA-seq data were normalized using the quantile normalization method. First, zero values
were treated as missing values and they were imputed using the impute R package with default
parameters [30]. The data were then log-transformed and the quantile normalization was applied. For
the quantile normalization, the normalize.quantiles function of the preprocessCore R package was
used [31]. In the real data analysis, pathway gene sets having more than 10 elements were arbitrarily
selected for analysis. In total, 1282 pathways were applied for this analysis. The numbers of CNA
ensemble identifiers of each pathway ranged from 10 to 933 (median = 23). Those of the pathway
expression matrices lay between 10 and 941 (median = 23).

For each pathway, CNA and expression matrices with elements of the pathway were generated,
and the differential interaction of two matrices between the survival and death group was computed.
To test the significance of the difference of IASs between conditions, a permutation test was applied
with 26,000 repeats of permutation.

In the gdCoxS analysis, Bonferroni’s multiple testing correction was applied (adjusted p value =

3.9 × 10−5). With the threshold, 577 pathways were found to exhibit significantly different interactions
of CNAs and expressions of the pathways between the survival and death groups of TCGA-LGG
patients (Table 1 and Supplementary Table S1).

Table 1. Pathways showing upper and lower top 5 significant results in gdCoxS analysis. The total
results are listed in Supplementary Table S1.

Pathway Database Pathways NCNA
1 NEXP

2 IAS.S 3 IAS.NS 4 diffIAS 5

PID IL3_PATHWAY 10 10 0.023 0.407 −52.037

REACTOME PROTEIN_METHYLATION 14 14 0.197 0.524 −48.578

REACTOME DUAL_INCISION_IN_GG_NER 14 14 0.081 0.430 −48.002

BIOCARTA FORMATION_OF_INCISION_COMPLEX_IN_GG_NER 26 26 0.176 0.501 −47.231

REACTOME MICRORNA_MIRNA_BIOGENESIS 10 10 0.146 0.476 −47.219

REACTOME TRIGLYCERIDE_CATABOLISM 15 11 0.148 −0.179 41.893

REACTOME DEGRADATION_OF_CYSTEINE_AND_HOMOCYSTEINE 11 10 0.168 −0.159 41.940

BIOCARTA EGF_PATHWAY 14 14 0.200 −0.145 44.284

KEGG CYTOSOLIC_DNA_SENSING_PATHWAY 16 15 0.240 −0.127 47.355

REACTOME GLYCOSPHINGOLIPID_METABOLISM 31 28 0.256 −0.136 50.660
1 NCNA: number of variables in copy number matrix; 2 NCNA: number of variables in gene expression matrix; 3

IAS.S: interaction score in survival group; 4 IAS.NS: interaction score in non-survival group; 5 diffIAS: difference of
interaction scores; PID: pathway interaction database; KEGG: Kyoto Encyclopedia of Genes and Genomes.

In the result, 274 pathways showed increased interactions of CNAs and GEs in the non-survival
group, which indicated that variations in CNAs and GEs were more harmonized. On the other hand,
303 pathways had decreased interactions in the non-survival group. The IAS of the IL3_PATHWAY
from the pathway interaction database (PID) increased from 0.023 in the survival group to 0.407
in the non-survival group, which was the greatest absolute diffIAS among the results (Figure 4).
The ‘GLYCOSPHINGOLIPID_METABOLISM’ pathway from the REACTOME database had the
greatest positive diffIAS (= 50.66), which implied that the coordination of the CNAs and GEs of
the pathway in the survival group was disrupted in the non-survival group. While the IAS of the
pathway CNAs and GEs was 0.256 in the survival group, it decreased (−0.136) in the non-survival
group (Figure 4).
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Figure 4. Heatmap and scatter plot of sample-wise distances of pathway copy number alteration and
gene expression matrices of the significant results. Note that pathway CNA matrices contain substantial
portions of neutral status. The orders of genes in the CNA and GE matrices are set to the same in the
survival and non-survival groups. (a) Results of ‘GLYCOSPHINGOLIPID_METABOLISM’. (b) Results
of ‘IL3_PATHWAY’ pathway gene set. The scatter plots are made up of plotting sample-wise distances
from CNA and GE matrices. The slopes of red lines in the scatter plots indicate interaction scores of
each condition.

For the benchmark analysis of gdCoxS, differential co-expression analysis and Mantel statistics
were applied. The differential coexpression analysis includes an estimation of the correlation coefficient
between a CNA and GE in each condition, and a test of the significance of the difference in correlations
between conditions (See Supplementary Methods). In the single gene-wise differential coexpression
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analysis, cis and trans regulation were considered, and only the CNAs and GEs that were used in the
pathway analysis were included to avoid the loss of power that resulted from a large number of statistical
tests. First, 6202 CNAs and 6233 GEs were selected and correlations between the CNAs and GEs were
computed in each condition, and the differences in the correlations were tested (Supplementary Methods).
After the Bonferroni’s multiple testing correction, there was no significant result from the Bonferroni’s
multiple testing correction (adjusted p < 1.29 × 10−9).

In the benchmark analysis, the Mantel statistics were also applied to compare the performance
of gdCoxS when different similarity measures other than Renyi’s relative entropy were applied
(Supplementary Methods). Different statistics, including Euclidean, Manhattan and Mahalanobis,
which could compute interactions between CNAs and GEs, were applied. Although the Mantel test
with different measures showed substantial numbers of significant results, the numbers were far less
than those of the gdCoxS analysis (Supplementary Tables S2–S4, respectively). In the result, the Mantel
statistics with the Mahalanobis distance using the covariance matrix showed the largest number of
significant results (n = 171).

4. Discussion

In this research, the gdCoxS performs an integrative analysis of CNAs and GEs. In the simulation
analysis, the gdCoxS shows an improvement in the performance in terms of power, especially with
larger numbers of gene set elements. In the real data analysis, the gdCoxS detected 577 significant
results, while the single gene-wise differential coexpression analysis gave no significant result, and the
set-wise analysis with Mantel statistics identified fewer significant pathways than gdCoxS. These results
seem to indicate that the gdCoxS outperforms the other benchmark methods.

When the single gene differential coexpression analysis was applied, no significant results could be
found in the result of the single gene-wise analysis. However, gene set methods including gdCoxS and
Mantel tests identified a lot of significant pathway CNA–GE set pairs. These findings clearly indicate
the benefit of gene set-wise analysis, which has more power to detect significant interactions between
CNAs and GEs. In the benchmark study using Mantel statistics, the results with Mahalanobis distance
showed a far better performance than the other measures. This seems to result from the fact that the
Mahalanobis distance uses a covariance matrix that can capture the relationship between elements
of gene sets. This finding supports the validity of the concept in gdCoxS, which is an application of
the multivariate density function with covariance information to capture the relationship between
CNAs explicitly. The dCoxS method was not compared in the real data analysis because variations
in sample-wise distances in CNA matrices tended to be zero, which made the computation of IAS
intractable. Among the pathways, more than a thousand of pathway CNA matrices showed such
variations. This finding strongly indicates that the productive kernel of the dCoxS was not suitable
for detecting combinatorial variations in CNAs. In the benchmark analysis, the set-wise methods,
such as modified canonical correlation analysis (CCA), that were presented in the introduction could
be applied. However, the methods can estimate the similarity between CNA and GE matrices only,
and the differences in the similarities between conditions were not considered. Moreover, the methods
provided no statistical testing for the estimation of P values. Therefore, the comparison between the
gdCoxS and the modified CCA was not possible.

In the result, many pathways were related to the glioma pathophysiology in previous studies.
For example, 10 pathways were related to p53, which has impacts on the glioma pathophysiology
(Supplementary Table S1). The mutation and inactivation of p53 is related to the proliferation and
progression of glioma, invasion, and anti-apoptotic activity [32–35]. It is possible that copy number
alterations in p53-related pathways disrupt the CNAs–GE relationship in the favorable group of
LGG. The significant change in IASs between the CNAs and GEs of the p53-related pathways in the
non-survival group seems to implicate a disrupted regulatory relationship between CNAs and GEs.
Considering the role of p53 in the prognosis of many types of cancers [35], these results indicate
the validity of gdCoxS analysis. Among the p53-related pathways, the “53 regulates transcription of
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caspase activators and caspases” pathway is interesting because the result indicated that the differential
interaction of CNAs and GEs in the pathway was associated with the apoptosis that is critical to the
survival of cancer genes. There are supportive results to this finding. In the pathway, p53 regulates
caspase 10, which is associated with apoptotic signaling in glioblastoma [36], and capase 10 induced
cellular death in response to the chemotherapeutic agent, which has a possibility of prolonged
survival [37]. In the mouse experiment, the ATM gene was involved in the suppression of glioblastoma
by the down-regulation of glioblastoma-associated genes such as the PDGFRA gene [38]. P63, which is
another member of the pathway, was revealed to suppress tumor growth by up-regulating caspase
1 expression [39]. These seem to be consistent with the results of the significant differential interaction
of CNAs and GEs between survival and non-survival groups.

The EGF pathway also indicated the validity of the analysis result (Table 1). The EGF receptor
(EGFR) and its downstream signaling is frequently aberrant in cancers, especially in glioma [40].
EFGR gene amplification and overexpression can be observed in approximately 40% of glioblastoma [41].
Since the EGFR signaling is associated with the apoptosis, proliferation and invasion of cancer cells [42],
the EGFR was investigated as a therapeutic target in previous studies [43]. The significant change
in the interaction of CNAs and GEs in the EGF pathway between the survival and non-survival
groups seems to be further supportive evidence of the fact that the EGF and its receptor have a
therapeutic potential. It is notable that the homocysteine pathway (‘DEGRADATION OF CYSTEINE
AND HOMOCYSTEINE’ from REACTOME database) was highly ranked in the significant results. It is
well known that the homocysteine metabolism is aberrant in cancers, including glioma [43], and the
homocysteine level is associated with the death of a human glioblastoma cell line [44]. Moreover,
the variant of the methylenetetrahydrofolate reductase was shown to be significantly associated with
patient survival [45,46]. Considering these, the interaction between CNAs and GEs in the homocysteine
pathway seems to be related to the pathophysiology of the lower-grade glioma.

In conclusion, the set-wise identification of the interaction between CNAs and GEs revealed
pathways that are consistent with the molecular pathophysiology of lower-grade glioma, which was
not found in single-variable analysis. This gene set method for performing the integrative analysis of
multi-omics data will promote the discovery of hidden biologic mechanisms.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1099-4300/
22/12/1434/s1.
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