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Abstract. We present evidence that direct activation 
of neuronal second messenger pathways in PC12 cells 
by opening voltage-dependent calcium channels mim- 
ics cell adhesion molecule (CAM)-induced differentia- 
tion of these cells. PC12 cells were cultured on mono- 
layers of control 3T3 cells or 3T3 cells expressing 
transfected N-cadherin in the presence of KC1 or a 
calcium channel agonist Bay K 8644. Both potassium 
depolarization and agonist-induced activation of calcium 
channels promoted substantial neurite outgrowth from 
PCI2 cells cultured on control 3T3 monolayers and 
increased neurite outgrowth from those cultured on 
N-cadherin-expressing 31"3 monolayers. The potassium- 

induced response could be inhibited by L- and N-type 
calcium channel antagonists and by kinase inhibitor 
K-252b but was unaffected by pertussis toxin. In con- 
trast activators of protein kinase C did not stimulate 
neurite outgrowth, and the neurite outgrowth response 
induced by activation of protein kinase A was not in- 
hibited by calcium channel antagonists or pertussis 
toxin. These studies support the postulate that CAM- 
induced neuronal differentiation involves a specific 
transmembrane signaling pathway and suggest that ac- 
tivation of this pathway after CAM binding may be 
more important for the neurite outgrowth response 
than CAM-dependent adhesion per se. 

T 
HE innervation of target tissue by neurons during de- 
velopment or after injury requires the extension of 
axons and their guidance along precise pathways. Stud- 

ies, largely using in vitro model systems, have suggested that 
a wide variety of stimulatory and inhibitory cues may con- 
tribute to growth and guidance. These include cell surface 
glycoproteins, diffusible factors, and constituents of the 
extracellular matrix (Doherty and Walsh, 1989; Strittmatter 
and Fishman, 1991; Bixby and Harris, 1991; Schwab, 1990). 
Four well-defined receptor systems present in neuronal 
growth cones have been shown to promote or support neurite 
outgrowth over a variety of cell types, including astrocytes, 
Schwann cells, and muscle cells. These are the integrins 
(Reichardt and Tomaselli, 1991) which are receptors for ex- 
tracellular matrix components such as larninin; and the neu- 
ral cell adhesion molecules (CAMs) ~ N-cadherin (Takeichi, 
1988, 1991; Doherty et al., 1991a; Bixby and Jhabvala, 
1990), neural cell adhesion molecule (NCAM) (Cunningham 
et al., 1987; Walsh and Doherty, 1991; Bixby et al., 1987), 
and L1 (Seilheimer and Schachner, 1988; Lagenaur and 
Lemmon, 1987). These CAMs m e ,  ate cell-cell interac- 
tions primarily by a homophilic interaction with products of 
the same gene expressed on the surface of other cells, al- 
though recent evidence suggests that two of these molecules 
can also function as heterophilic receptors for products of 

1. Abbreviations used in this paper: CAM, cell adhesion molecule; NCAM, 
neural cell adhesion molecule; NGF, nerve growth factor. 

related genes. For example, N-cadherin can bind to R-cad- 
herin (Inuzuka et al., 1991) and L1 can function as a neurite 
outgrowth promoting receptor for the Axonin-I glycoprotein 
(Knhn et al., 1991). 

When NIH 3"1"3 fibroblasts are transfected with cDNAs en- 
coding NCAM and N-cadherin, the transgene product is able 
to promote neurite outgrowth from a variety of neurons cul- 
tured on monolayers of the transfeeted cells (Matsunaga et 
al., 1988; Doherty et al., 1990a,b). In addition, the rat 
pheochromocytoma cell line, PC12, which can be induced 
by nerve growth factor (NGF) and FGF to differentiate from 
its adrenal chromaltin cell phenotype to that of a sympathetic 
neuron (Greene and Tischler, 1976; Togaris et al., 1985), 
will assume the same morphological phenotype when cul- 
tured on 3T3 monolayers expressing transfected N-cadherin 
or NCAM. The neurite outgrowth induced by N-cadherin 
exceeded that elicited by NGF (Doherty et al., 1991b) and 
this study also showed that CAMs directly induce this change 
in PCI2 cell morphology. 

It is possible that CAM-induced neurite outgrowth simply 
depends on the increased adhesion resulting from direct 
homophilic binding. Alternatively, it may be primarily de- 
pendent on transmembrane signaling and second mes- 
sengers. In this context, experimentally induced increases in 
the levels of intraceUular calcium are known to affect neurite 
outgrowth and growth cone motility in a number of neuronal 
types (Kater and Mills, 1991). Recent studies have shown 
that blockage of the L- and N-type calcium channels or treat- 
merit with pertussis toxin substantially inhibits the ability of 
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substrate-associated N-cadherin and NCAM to promote 
neurite outgrowth from PC12 ceils and primary neurons 
(Doherty et al., 1991b, 1992a,b). On the basis of these re- 
suits we have postulated that CAMs primarily promote cell 
migration and neurite outgrowth via a G-protein-dependent 
activation of neuronal calcium channels and consequent 
influx of extracellular calcium, and that this is not simply 
related to their ability to support adhesion per se. 

There is also other evidence that the ability of a molecule 
to promote cell migration and neurite outgrowth may be fun- 
damentally different from its ability to support adhesion. For 
example, if the cytoplasmic domain of the a2 integrin 
receptor subunit is replaced with that of the c~4 or c~5 
subunit, the ability of the chimeric receptors to recognize 
laminin and collagen is not impaired. However, whereas 
receptors containing the o~2 or o~s cytoplasmic domains 
promoted stable exertion of physical force to collagen or 
laminin substrata, the receptor containing the or4 subunit 
cytoplasmic domain stimulated cell migration over the same 
substrata (Chan et al., 1992). 

In a similar vein our own group has recently shown that 
use of the VASE exon (Doherty et al., 1992a) or exon 18 
(Doherty et al., 1992c) which respectively modify the ex- 
tracellular and cytoplasmic domains of NCAM, can both im- 
pair NCAM's ability to act as a substrate molecule that pro- 
motes neurite outgrowth without obviously impairing its 
ability to support adhesion. In addition, whereas polysialic 
acid on neuronal NCAM promotes NCAM-dependent neu- 
rite outgrowth (Doherty et al., 1990a,b) it can act as a 
general inhibitor of cell adhesion (Rutishauser et al., 1988). 

In the present study we have directly tested our postulate 
(see above) by determining if direct activation of the pro- 
posed second messenger pathway is sufficient to mimic 
CAM-dependent neurite outgrowth. Depolarizing concen- 
tration of KC1 and the calcium channel agonist Bay K 8644 
have each been added to cocultures of PC12 cells growing 
on confluent monolayers of control and N-cadherin-express- 
ing 3T3 cells to directly activate voltage-dependent calcium 
channels by a mechanism independent of CAMs. Previous 
studies have shown that K + depolarization and Bay K 8644 
promote the survival of primary neurons by increasing cal- 
cium flux through neuronal calcium channels (Collins and 
Lile, 1989; Collins et al., 1991; Koike et al., 1989). 

The effect on PC12 cells of these agents in the presence and 
absence of L- and N-type calcium channel antagonists, per- 
tussis toxin, and kinase inhibitor K-252b has been assessed 
by measuring neurite outgrowth. The results have shown that 
both Bay K 8644 and depolarization-induced calcium chan- 
nel opening can result in a morphological response by PC12 
cells which is indistinguishable from CAM-induced neuritc 
outgrowth. This response can be inhibited by a combination 
of L- and N-type calcium channel antagonists and kinase in- 
hibitor K-252b but not by pertussis toxin. These data are 
consistent with CAM-induced neuronal differentiation being 
dependent on activation of second messenger pathways 
rather than on adhesion per se. 

Materials and Methods 

Cell Culture 
Parental and N-cadherin-transfected 3T3 cells were maintained on plastic 

culture dishes in DME containing 10% FCS. PC12 cells were grown on 
collagen-coated plastic culture dishes in defined SATO medium (Doherty 
et al., 1988). All cells were grown at 37~ in 8% COz. For establishment 
of cocultures, 3"I"3 ceils were seeded at 8 x I04 cells per chamber of an 
eight-chamber slide (Lab-Tek, Naperville, IL) coated sequentially with 
poly-L-lysine and collagen (Doherty et al., 1990b), and allowed to form 
confluent monolayers overnight. PC12 cells were introduced onto the 
monolayer at a density of 1.5 • 103 cells per chamber after being tryp- 
siuized from the culture plate (0.1% trypsin wt/vol in PBS/0.02% EDTA), 
pelletted, resuspended in SATO medium and triturated (19-guage syringe 
needle) to achieve a single-cell suspension. Cocultures were maintained for 
40-48 h in SATO medium in the presence of other reagents as indicated and 
then fixed for 30 min with 4% paraformaldehyde for staining as below. 

lmmunostaining 
Fixed cultures were washed and nonspecific protein binding sites blocked 
with 0.5 % gelatin (45 min, room temperature). PCI2 cells were then visual- 
ized by the sequential application (60 rain each, room temperature), after 
fixing as above, of the OX-7 mAb which recognizes the Thy 1 antigen 
(diluted 1:50) followed by biotinylated anti-mouse immunoglobulin and 
Texas red-conjugated streptavidin (both Amersham International [Amer- 
sham, UK], diluted 1:500). Cultures were then mounted and analyzed as 
below. 

Image Analysis 
Fluorescent images were detected using a low light-sensitive video camera 
(model 4722-5000; Cohu Inc., San Diego, CA) and analyzed using a Sight 
Systems Image Manager (Sight Systems, Newbury, England). Mounted cul- 
tures were scanned systematically over the whole slide area and the length 
of the longest neurite per PC12 cell was measured as previously described 
(Doherty et al., 1991b). To enable scoring of cells with no visible neurite 
it was necessary to assign them the minimum possible length of 2 ~m; this 
did not significantly raise the mean. 

Other Reagents 
Pertussis toxin and K-252b were gifts from Drs. J. Kenirner and Y. Matsuda, 
respectively. Diltiazem and tetrodotoxin were purchased from Sigma 
Chemical Co. (St. Louis, MO), ,,-conotoxin GVIA from Life Technologies, 
Inc. (Grand Island, NY) and Bay K 8644 from Calbiochem Corp. (La Jolla, 
CA). All channel antagonists/agonists, K-252b, and pertussis toxin were 
used at concentrations established from the literature to have maximal 
effects on their targets, 

Results 

Potassium Depolarization Mimics N-cadherin-induced 
Neurite Outgrowth 
PC12 cells express N-cadherin and after 48 h the majority 
of PC12 cells grown on confluent mor~olayers of N-cadherin- 
expressing 3T3 cells extended one or more primary neurites, 
the extent of neurite outgrowth exceeding that elicited by a 
maximally active NGF concentration (50 ng/ml) over the 
same culture period (see Doherty et al., 1991b). In contrast, 
PC12 cells cultured on parental 3T3 monolayers showed vir- 
tually no neurite outgrowth (Fig. 1). The effect of elevated 
potassium (5-75 mM) on neurite outgrowth was tested for 
PC12 cells cultured on confluent monolayers of 3T3 cells. 
After 48 h the cocultures were fixed and stained using a Thy 
1 antibody which binds specifically to PC12 cells. PC12 cells 
responded to increasing KCI concentration by extending 
neurites (Fig. 1) and this response is quantitated in Fig. 2. 
The mean length of the longest neurite per cell increased 
with increasing KC1 concentration, reaching a maximum at 
,'~45 mM KC1. From a basal value of 13.9 • 1.0 ~m (n = 
133) on parental 3T3 monolayers, the mean length of the lon- 
gest neurite (which we also refer to as the mean neurite 

The Journal of Cell Biology, Volume 118, 1992 664 



length) rose by 130% to 31.9 + 2.5 #m (n = 127) in the 
presence of 45 tram KC1. PC12 cells in a parallel experiment 
growing on N-cadherin--expressing monolayers had an almost 
identical mean neurite length of 31.5 + 2.5 izm (n = 142). 

Having ascertained from the dose-response curve that 40 
mM KC1 was near maximal for depolarization-induced neu- 
rite outgrowth, a number of corroborative experiments (n = 
5-7) were conducted to further test the effect of 40 mM KC1 
on PC12 cells cultured on control and N-eadherin-express- 
ing 3T3 monolayers. The results, showing mean neurite 
length as a percentage of basal growth on 31"3 monolayers 
and percentage of cells with a neurite >20 tLm are summa- 
rized in Fig. 3. The mean neurite length of PC12 cells cul- 
tured on control 3"1"3 monolayers in the presence of 40 mM 
KCI was 282 + 14% (n = 7) of basal growth which slightly 
surpassed the mean neurite length of PC12 ceils cultured on 
N-cadherin-expressing monolayers which was 257 + 18% 
(n = 5) of basal growth. Similarly, whereas <20% of PC12 
cells extended a neurite >20/zm on control 3"1"3 monolayers, 
this rose to 60.3 -k 7.0% (n = 7) in the presence of 40 mM 
KC1 which is again almost identical to the 61.8 + 8.6% 
(n = 5) found on N-cadherin-expressing monolayers. Both 
these measurements show that potassium depolarization is 
able to fully mimic the N-cadherin-dependent neurite out- 
growth response by PC12 cells. Data taken from Reber and 
Reuter (Fig. 1 A; 1991) shows 40 mM K § to induce a sus- 
tained rise in PC12 cell calcium from •100 to 250 riM. 
A maximal response (to *300 riM) was apparent at 50- 
60 mM K § 

KC1 could also elicit a neurite outgrowth response from 
NGF primed (but not naive) PC12 cells cultured on a 
collagen-coated substratum. Potassium depolarization did 
not appear to stimulate the release of polypeptide growth fac- 
tors from the monolayer cells as dialyzed conditioned media 
from the latter had no neurite growth promoting activity (J. 
Saffell, unpublished results). Thus we conclude that in the 
above cocultures KC1 probably acts directly on the PC12 
cells. 

The effect of depolarization was also tested for PC12 cells 
growing on N-cadherin-expressing monolayers (Fig. 1, G 
and H). The mean length of the longest neurite rose from 257 
+ 18% (n = 5) of basal growth to 410 + 25% (n = 6) in 
the presence of 40 mM KC1 and the percentage of cells with 
a neurite >20/~m from 61.8 5:8.6 (n = 3) to 82.3 + 5.5 
(n = 6) % (Fig. 3). These data show that the effects of 
depolarization and N-cadherin-mediated neurite outgrowth 
are partially additive, suggesting that neither factor alone 
elicits a maximal response. 

Calcium Channel Agonist Bay K 8644 also Mimics the 
N-cadherin Response 

Bay K 8644 is a calcium channel agonist which acts by 
reducing the level of depolarization required for calcium 
channel activation. In combination with KC1 it allows the cal- 
cium channel to open in the presence of lower potassium 
concentrations than would otherwise be effective, i.e., it 
shifts the KCl-neurite outgrowth dose response curve to the 
left but has little effect on its own (see Koike et al., 1989; 
Collins et al., 1991). The effect of Bay K 8644 on neurite 
outgrowth was determined by culturing PC12 cells on 
confluent control 3T3 monolayers in the presence of a maxi- 
mal concentration of Bay K 8644 (5/zM) and/or a concentra- 

tion of KC1 suboptimal for neurite outgrowth (20 raM). The 
results of a representative experiment are shown in Fig. 4. 
On its own Bay K 8644 had no significant effect on neurite 
outgrowth. However, in the presence of 20 mM KC1 Bay K 
8644 increased the mean length of the longest neurite by 
85%, from 14.5 + 1.1 (n = 173) to 26.91 :t: 1.7 (n = 192) 
/~m, (P < 0.0005). In this experiment 20 mM KCI, alone was 
able to slightly increase neurite outgrowth to 138% of the 
control. The Bay K 8644 response was identical to the maxi- 
mal KC1 depolarization response measured in sister cultures 
(data not shown). 

The effect of Bay K 8644 on neurite outgrowth from PC12 
cells cultured on N-cadherin-expressing monolayers was 
also determined. In the absence of KC1, Bay K 8644 again 
had no significant effect on neurite outgrowth. Thus N-cad- 
herin is unlikely to stimulate growth via a voltage-dependent 
mechanism (see below). In this experiment 20 mM KC1 on 
its own increased the mean length of the longest neurite from 
28.15 + 2.1 (n = 166) to 42.7 + 3.5 (n = 143) t~m, a rise 
of 52%. In the presence of 20 mM KCI, Bay K 8644 induces 
an additional, albeit small, significant increase in neurite 
outgrowth to 51.42 + 3.13/~m (n = 129) (P < 0.05). This 
suggests that neither agonist-induced nor N-cadherin-induced 
neurite outgrowth promoting effects are maximal. 

Effects of portussis Toxin, Calcium Channel 
Antagonists and Kinase Inhibitor K-252b o n  

Potassium-induced Neurite Outgrowth 
PC12 cells were cultured on control 3'I"3 monolayers for 48 
h in the presence of 40 mM KCI and each of the following: 
pertussis toxin (1 ttg/ml), diltiazem (10 #M), ~conotoxin 
(0.25 t~M), a mixture of diltiazem and oJ-conotoxin, and the 
kinase inhibitor K-252b (100 ng/ml), to test the effects of 
these perturbants of CAM-induced neurite outgrowth (Do- 
herty et al., 1991b) on the KCI depolarization-induced re- 
sponse. The results of a representative experiment are shown 
in Fig. 5, where neurite length is expressed as a percentage 
of the KCl-induced response on control 3"1"3 monolayers. 

The ability of pertussis toxin (at 1 /~g/ml), which inacti- 
vates G proteins of the Gi/Go families by ADP-ribosylation 
of the et subunit, to inhibit KCI- (40 raM) dependent out- 
growth was determined in two er4aeriments. In both in- 
stances pertussis toxin had only marginal inhibitory effects 
on the K § response (e.g., see Fig. 5). This contrasts with 
the complete inhibition of CAM-induced neurite outgrowth 
and provides direct evidence for a pertussis toxin-sensitive 
heterotrimeric G protein-modulating CAM function up- 
stream of calcium channel opening. Diltiazem, which blocks 
L-type calcium channels, significantly inhibited the KC1 re- 
sponse in three experiments by, on average, 66 + 7.3%. In 
addition w-conotoxin, which blocks N-type calcium chan- 
nels inhibited the response in sister cultures by 28 + 9.1% 
(both values mean + SEM for three experiments (see Fig. 
5 for an individual experiment). In general, when diltiazem 
and 00-conotoxin were present together there was a slightly 
greater inhibition, e.g., see Fig 5. However, in a total of three 
experiments a residual KC1 response of 30 + 8.4% (mean 
-t- SEM) remained after treatment with both diltiazem and 
o~-conotoxin. Reber and Reuter (1991) have previously 
shown that KCl-dependent influx of calcium into PC12 cells 
can be substantially inhibited by L-type calcium channel an- 
tagonists with a small increase in the magnitude of this block 
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seen on addition of ~conotoxin. Interestingly, a combina- 
tion of L- and N-type channel blockers could not fully inhibit 
K+-dependent increases in intracellular calcium and this 1~ 
was particularly prominent at the growth cone. Thus, the ^ 8 
effects of KCI and calcium channel antagonists on neurite 
outgrowth correlate well with their ability to modulate the = 
level of intraeellular calcium in PC12 cells via the activation 
and antagonism of L- and N-type calcium channels. | 

K-252b is a broad-specificity kinase inhibitor which has 
been shown to reduce CAM-induced neurite outgrowth to 
below basal levels on control 3T3 monolayers (Doherty et 
al., 1991b). In this study, KC1 depolarization-induced neu- 
rite outgrowth was similarly reduced to below basal levels 
by K-252b, indicating that if it is acting by inhibiting a ki- 
nase, this kinase is present downstream of calcium entry into 
PC12 ceils. 

Calcium Channel Activation Does Not Contribute to 
the Neurite Outgrowth Response Induced by Activation 
of  Protein Kinase A 
The above results have clearly shown that activation of cal- 
cium channels can mimic CAM-dependent neurite out- 
growth. We have also tested if this pathway can be activated 
by other agents. Phorbol esters at concentrations that activate 
protein kinase C did not induce neurite outgrowth from PC12 
cells cultured on monolayers of 3T3 cells (our own unpub- 
lished observation). However cholera toxin, which increases 
intraceUular cAMP levels with concomitant activation of 
protein kinase A, is a potent inducer of neurite outgrowth in 
this coculture model (Doherty et al., 1991b). In the present 
study we have tested the ability of pertussis toxin and cal- 
cium channel antagonists to block this response with the 
results summarized in Table I. The results show very clearly 
that a pertussis toxin-sensitive G protein and L- and N-type 
calcium channels are not involved in this pathway. The re- 
sponse to cholera toxin could however be partially blocked 
by Rp-cAMP (a competitive inhibitor of protein kinase A) 
and K-252b (our own unpublished observations). 

60 

40 

20 

N-CAD 3T3 

3- 

Figure 3. Depolarizing concentrations of KCI increase outgrowth 
from PC12 cells on control and N-cadherin-expressing 3"1"3 mono- 
layers. PC12 cells were cultured on control or N-cadherin-trans- 
fected 3T3 monolayers in the presence or absence of 40 ram KCI 
for 48 h before being fixed and stained. The results show mean 
length of the longest neurite normalized to the control growth on 
3T3 monolayers (,4) and the percentage of cells with a neurite >20 
/zm (B). Each value is the mean + SEM pooled for 5-7 independent 
experiments. ([]) control; ([]) 40 mM KC1. 

Discussion 

CAMs such as N-cadherin and NCAM share at least two fun- 
damental functional properties: their ability to promote 
adhesion and their ability to promote neurite outgrowth 
(Bixby et al., 1987; Doherty and Walsh, 1989). One possi- 
bility is that these functions are directly related, i.e., neurite 
outgrowth is a direct consequence of the adhesive interac- 
tions mediated by these molecules. An alternative possibility 
is that they are fundamentally different and in some ways 
contradictory functions that are not directly related. For ex- 
ample, in the case of NCAM, at some stages of development 
this molecule promotes plasticity (e.g., cell migration and 

Figure 1. PC12 cells extend neurites on N-cadherin-expressing 3T3 monolayers and on control 3T3 monolayers in the presence of 40 mM 
KCI. PC12 cells were grown for 48 h on a substratum of confluent 3T3 cells in the absence (A and B) or presence (E and F) of 40 mM 
KCI, or on a substratum of N-cadherin-expressing cells in the absence (Cand D) or presence (Gand H) of 40 mM KCI. PC12 cells were 
specifically stained using mouse anti-rat Thyl mAb. Bar, 50/~m. 
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Figure 4. Bay K 8644 increases neurite outgrowth from PC12 cells 
on control and N-cadherin-expressing 3T3 monolayers. PC12 ceils 
were cultured on control (n) and N-cadherin-expressing 3T3 rnono- 
layers in the presence of Bay K 8644 (w), 5 #M; KCI (~), 20 raM; 
or both ([]) for 48 h before being fixed and stained. Each value is 
the mean length of the longest neurite 5- SEM of 100-200 PC12 
cells sampled from replicate cultures. *** P < 0.0005; ** P < 
0.0025; and n.s. not statistically different. Statistical analysis com- 
pared growth on either 31"3 or N-cadherin monolayers in control 
media against growth on the same monolayers in test media, i.e., 
the presence of Bay K 8644, KC1, or both. 

axonai growth), whereas at other stages of development 
NCAM may be involved in stabilizing connections (axon fas- 
cicles and synapses) between cells (Hoffman and Edelman, 
1983; Rutishauser et al., 1988). Whereas the former un- 
doubtedly requires homophilic binding and the consequent 
activation of second messenger pathways (Doherty et al., 

Figure 5. The effects of a variety of perturbants on KCl-induced 
neurite outgrowth. PC12 cells were cultured on 3T3 monolayers in 
the presence of 40 mM KC1 plus each of the following: pertussis 
toxin ([]) (1 #g/ml), diltiazem (~) (I0 #M), c0-conotoxin ([]) (0.25 
#M), diltiazern + c0-conotoxin (m), and K-252b (am) (100 ng/ml). 
Results are expressed as % KCl-induced response where 100% re- 
sponse is the difference in mean length of the longest neurite for 
PC12 cells growing on 3"1"3 monolayers in the absence and presence 
of 40 mM KCI. None of these agents had any significant effect on 
PC12 cell morphology on 3T3 monolayers in control media, i.e., 
no KC1 (Doherty et al., 1991b), Each value is the mean + SEM 
of 120-170 PC12 ceils sampled from replicate cultures. The average 
length of the longest neurite in the absence and presence of 40 mM 
KCI was 11.3 + 0,7 (164) and 35.3 + 2.0 (162) #m, respectively. 
Both values mean 5- SEM (n). 

Table L Effects of Pertussis Toxin and Calcium 
Channel Antagonists on Neurite Outgrowth Induced 
by Cholera Toxin 

Mean length of the Percent cells with a 
Media longest neurite neurite >20 #m 

/,tm 

(a) Control 15.1 + 0.8 (165) 26 
(b) Cholera toxin 67.7 5:4.0 (128)*** 88 

+ Diltiazem 72.5 5:4.3 (145) .... 88 
+ c0-conotoxin 74.9 5:4.3 (143) .... 94 
+ Pertussis toxin 61.4 + 3.4 (164) .... 89 

PC12 cells were grown for 24 h on a substratum of contluent 3T3 cells in (a) 
control media or (b) media containing cholera toxin (1 ng/ml) further sup- 
plemented with Ditiazem (10 #M), cr (0.25 #M) or pertussis toxin 
(1 #g/ml). The results show the mean length of the longest neurite per 
cell + SEM for the given number of PC12 cells sampled from replicate cul- 
tures. The percentage of these neurites >20 #m in length is also shown. 
*** P < 0.0005 is compared with growth in the absence of cholera toxin. 
".~ Not statistically different from growth in media supplemented with cholera 
toxin alone. 

1991b), the latter may depend only on the adhesive forces 
generated by such binding. Evidence that different isoforms 
of NCAM can differentially affect adhesion and neurite out- 
growth has recently been obtained (Doherty et al., 1992a,c). 

We have recently provided evidence that CAMs directly 
induce neurite outgrowth by triggering the activation of sec- 
ond messenger pathways in neurons (Doherty et ai., 1991b, 
1992a, b). Our results showed that pertussis toxin or a com- 
bination of L- and N-type calcium channel antagonists could 
fully block NCAM and N-cadherin-dependent neurite out- 
growth from PC12 cells and both hippocampal and cerebel- 
lar neurons. We interpreted these data as supporting the 
involvement of a CAM-induced, G protein-dependent acti- 
vation of both L- and N-type calcium channels. In the present 
study we have tested whether, by simply activating this path- 
way, we can mimic CAM-dependent neurite outgrowth. In 
this context Collins et al., (1991) have recently shown that 
40 mM KCI can fully mimic the survival effects of trophic 
factors on chick ciliary ganglion neurons and that this is a 
direct result of activation of voltage-gated calcium channels. 
In the present study, KCl-induced a dose-dependent neurite 
outgrowth response from PC12 cells which, at its maximal 
level (,,~40 mM KCI) was indistinguishable from that in- 
duced by transfected N-cadherin. In combination N-cadherin 
and KC1 effects were only partially additive suggesting that 
a saturable response had not been reached by either factor. 

The involvement of both L- and N-type calcium channels 
in the KCl-induced response is demonstrated by the observa- 
tion that both L- and N-type calcium channel antagonists 
could inhibit the response. However, whereas diltiazem and 
c0-conotoxin each block PC12 cell CAM-dependent neurite 
outgrowth by ,,o50%, diltiazem was slightly more effective 
than o~-conotoxin at blocking the KCl-induced response. 
This may indicate that the degree of depolarization achieved 
by 40 mM KC1 preferentially activates the L-type calcium 
channels so that a greater proportion of influxing calcium 
enters the cell through L-type rather than N-type channels. 
Direct evidence for this has been obtained by measuring the 
ability of nifedipine and co-conotoxin to block K + depolari- 
zation induced increases in intracellular free calcium in 
PC12 cells (Reber and Reuter, 1991). 
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Further evidence that simple opening of calcium channels 
is sufficient to promote morphological differentiation is 
shown by the effect on neurite outgrowth of the calcium chan- 
nel agonist Bay K 8644 (Koike et al., 1989) which acts by 
reducing the level of depolarization required for calcium 
channel activation. At a sub-optimal KCI concentration (20 
mM), Bay K 8644 was able to increase neurite outgrowth 
from PC12 cells growing on control monolayers to the level 
of the N-cadherin-mediated response. The latter response 
could also be enhanced by the agonist. 

These results imply that activation of the postulated neu- 
rite outgrowth-promoting pathway by using mechanisms in- 
dependent of CAMs is sufficient to trigger the full morpho- 
logical response. Not only does this support the CAM 
binding calcium influx transmembrane signaling postulate, 
but also suggests that the ability of CAMs to open calcium 
channels is more important for the neurite outgrowth re- 
sponse than their ability to support adhesion per se. This is 
consistent with the evidence from previous studies that al- 
though removal of ot2-8-1inked polysialic acid from NCAM 
increases its ability to promote adhesion (Hoffrnan and Edel- 
man, 1983), it actually reduces its ability to induce neurite 
outgrowth from a variety of neuronal types, including chick 
retinal ganglion cells (Doherty et al., 1990b) and rat cerebel- 
lar neurons (Doherty et al., 1992a) and rat hippocampal 
neurons (Doherty et al., 1992c). In the light of these results 
it might appear possible that CAM-dependent neurite out- 
growth itself involves a depolarization stage. For example, 
a CAM-induced opening of sodium channels would result in 
depolarization leading in turn to opening of the voltage acti- 
vated calcium channels. However, such a mechanism is un- 
likely because we have found that the sodium channel 
blocker tetrodotoxin has no effect on CAM-dependent neu- 
rite outgrowth (our own unpublished observation) and in 
contrast to the potassium depolarization response, the N-cad- 
herin response is not potentiated by Bay K 8644. 

The present study has shown that pertussis toxin has little 
effect on KCl-induced neurite outgrowth, indicating that 
there is no pertussis toxin-sensitive G protein involved in the 
pathway downstream of calcium entry through calcium chan- 
nels. This is strong evidence that the G protein inactivated 
by pertussis toxin to prevent CAM-mediated neurite out- 
growth is located upstream of the calcium channel which 
would be the expected position for a G protein postulated to 
signal between homophilically bound CAMs and calcium 
channels. It also provides additional evidence that pertussis 
toxin does not block a very general step involved in neurite 
outgrowth per se (Doherty et al., 1991b) Similarly, pertussis 
toxin did not block cholera toxin-dependent neurite out- 
growth. 

K-252b is a broad specificity kinase inhibitor. In a recent 
study we showed that it can fully inhibit both CAM-induced 
and basal neurite outgrowth from PC12 cells cultured on 31"3 
monolayers, suggesting that an unidentified kinase may be 
involved in CAM-dependent neurite outgrowth (Doherty et 
al., 1991b). However, it remained to be determined whether 
this kinase was acting upstream or downstream of calcium 
channel activation. In the present study K-252b fully in- 
hibited both KCl-induced and basal neurite outgrowth from 
PC12 cells, implying that if it inhibits a single kinase, this 
is positioned downstream of calcium entry and is not in- 
volved in G protein activation of calcium channels. In addi- 

tion, we have found that K-252b can also inhibit NGF, FGF, 
and cholera toxin-dependent neurite outgrowth from PCI2 
cells cultured on 3T3 monolayers suggesting that it can act 
at a common step shared by several pathways. 

In this context there appear to be at least four pathways 
that can lead to PC12 cell neurite outgrowth: an integrin- 
dependent pathway; a pathway activated by soluble growth 
factors such as NGF and FGF; a pathway activated by agents 
that increase cAMP levels; and a common pathway activated 
by a variety of CAMs including NCAM, N-cadherin, and 
more recently L1 (E. Williams, P. Doberty, G. Turner, R. A. 
Reid, J. Hemperly, and E S. Walsh, manuscript submitted 
for publication). Whereas K-252b can inhibit all of the above 
pathw~ays suggesting a late convergent step, a pertussis toxin 
sensitive G protein and activation of neuronal calcium chan- 
nels appear at the moment to be totally exclusive to the CAM 
pathway (also see Doherty et al., 1991b). 

The neurite outgrowth response resulting from KCI- 
induced opening of calcium channels was essentially identi- 
cal to the N-cadherin response. The KC1 concentration op- 
timal for neurite outgrowth from PC12 cells, 40 raM, is also 
optimal for promotion of survival of a range of neuronal 
types (Koike et al., 1989; Collins and Lile, 1989; Collins et 
al., 1991). Thus, both survival and neurite outgrowth are 
promoted by a potassium depolarization-induced activation 
of calcium channels. Ernsberger et al. (1989) has shown that 
the survival of early embryonic chick sympathetic neurons 
is dependent on the nature of the culture substratum rather 
than the availability of NGF. It is therefore possible that, 
alongside other environmental influences which may affect 
intracellular calcium, such as afferent electrical input, 
CAM-mediated calcium influx could contribute to survival 
of neurons in vivo. 
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