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One of the most intricate relationships in biology is that 
between a host and a parasite. Almost all organisms 
studied so far harbor mobile genetic elements and/or 
their derivatives. At the genomic level, the traditional 
view of mobile elements is that they provide seemingly 
little or no benefit to the host while parasitizing the host’s 
cellular machinery to promote element mobility through 
complex molecular pathways [1,2]. The host’s response to 
these elements is primarily defensive, as evidenced by the 
many forms of negative regulation that downregulate the 
activity of mobile elements [3-8]. The persistence of a 
mobile element in a given population is thus the result of 
a delicate balance between an excessive mutational 
burden on the host caused by the element’s unrestricted 
activity, and excessive negative regulation imposed by the 
host on the element to limit mobility. While the 
relationship between host and mobile element is often 
viewed as a molecular arms race [9], recent experimental 

data argue that the relationship is more elaborate than 
previously appreciated.

Mobile introns: ribozymes with baggage
One group of mobile genetic elements comprises the group I 
and II introns. These sequences interrupt protein-coding and 
structural RNA genes in all domains of life and can be con
sidered as molecular parasites. When the gene is transcribed 
into RNA, the intron sequence acts as a ribozyme (an RNA 
with enzymatic activity), which removes the intron sequence 
from the primary RNA transcript, thus limiting the 
phenotypic cost associated with insertion of the element into 
a host gene and promoting their maintenance in the genome. 
In the case of group I and II introns, the host-parasite 
relationship is enriched by the fact that the introns 
themselves have been invaded by smaller parasitic elements 
– genes that encode mobility-promoting activities that 
enable the DNA element to move within and between 
genomes [10]. Thus, at least two levels of parasitism exist for 
mobile introns: the intron in the host gene it interrupts, and 
the invading gene in the intron. Collectively, the intron and 
its encoded mobility protein (often termed an intron-
encoded protein, IEP) collaborate to form a composite 
mobile element that utilizes host DNA replication, recombi
nation and repair pathways to spread [11], while the ribozyme 
activity ensures that it does not disrupt the function of genes 
into which it is inserted. Accordingly, it has become evident 
that there is an extraordinary degree of co-evolution among 
IEPs, the introns that house them, and the host organism. 
This review highlights several recent studies probing the 
interplay among self-splicing introns in bacterial and phage 
genomes, their genes, and their bacterial and phage hosts.

Group I introns
Group I introns commonly inhabit bacterial, organellar, 
bacteriophage and viral genomes, and the ribosomal 
RNA genes (rDNA) of eukaryotes, and produce a self-
splicing RNA [12]. Group II introns have a similar 
distribution, except that they are not found in eukaryotic 
nuclear genes. Group I and group II introns show little 
primary sequence conservation, yet their RNAs each 

Abstract
Group I and II introns can be considered as molecular 
parasites that interrupt protein-coding and structural 
RNA genes in all domains of life. They function as self-
splicing ribozymes and thereby limit the phenotypic 
costs associated with disruption of a host gene while 
they act as mobile DNA elements to promote their 
spread within and between genomes. Once considered 
purely selfish DNA elements, they now seem, in the 
light of recent work on the molecular mechanisms 
regulating bacterial and phage group I and II intron 
dynamics, to show evidence of co-evolution with their 
hosts. These previously underappreciated relationships 
serve the co-evolving entities particularly well in times 
of environmental stress.

Learning to live together: mutualism between 
self‑splicing introns and their hosts
David R Edgell1*, Venkata R Chalamcharla2,3 and Marlene Belfort2*

r e v i e w 	 Open Access

*Correspondence: dedgell@uwo.ca, belfort@wadsworth.org 
1Department of Biochemistry, Schulich School of Medicine and Dentistry, 
The University of Western Ontario, London, Ontario, Canada N6A 5C1 
Full list of author information is available at the end of the article

© 2010 Author et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

Edgell DR et al. BMC Biology 2011, 9:22 
http://www.biomedcentral.com/1741-7007/9/22



adopt characteristic secondary and tertiary structures 
necessary for ribozyme activity [13,14] (Figure 1a,b). 
Moreover, the introns can tolerate the insertion of large 
amounts of sequence into terminal loops of the ribozyme 
secondary structure with little or no effect on splicing, 
providing convenient ‘hiding’ spots for parasitic genes.

Many group I introns move by a DNA-based 
transposition mechanism known as ‘homing’. Such 
introns harbor genes encoding so-called homing 
endonucleases, site-specific but sequence-tolerant DNA 
endonucleases that introduce double-strand breaks 
(DSBs) in cognate alleles that lack the intron, initiating 
intron mobility via a DSB-repair process [11] (Figure 1c). 
The outcome of a homing event is the unidirectional 
movement of the intron and endonuclease open reading 
frame (ORF) to an unoccupied allele, leaving a copy of 
the intron in its original location (Figure 1c). Group I 
introns can also harbor other ‘baggage’. Many group I 
introns in organellar genomes encode maturases – 
proteins that help promote intron splicing by a variety of 
mechanisms [15,16]. Some maturases also function in 
trans to promote splicing of other group I introns in the 
same genome [17,18]. Interestingly, many maturases 
characterized so far are degenerate or bifunctional 
homing endonucleases of the LAGLIDADG class – so 
named for their conserved sequence motif – that have 
acquired an RNA chaperone activity independent of their 
DNA endonuclease activity [19,20]. Group I introns can 
also harbor ORFs unrelated to mobility or splicing 
[21,22], as exemplified by the astonishing case of an 
approximately 18-kilobase-long intron inserted in the 
mitochondrial ND5 gene of the mushroom coral 
Discosoma that encodes 15 mitochondrial genes in the P8 
loop of the intron [23,24]. Interestingly, these 15 genes 
include both the small and large subunit rRNA genes and 
the cox1 gene, which is interrupted by another self-
splicing group I intron.

Some bacterial group I introns have been invaded by 
mobile elements other than those that encode homing 
endonucleases. Notable among these are the chimeric 
intron/insertion sequence (IS) elements (IStrons) of 
Clostridium that contain an IS605-like element inserted 
at the 3’ end of the intron [25]. It is not known, however, 
whether the chimeric intron/IS element is mobilized by 
the IS605 machinery. Intriguingly, another unusual 
clostridial group I intron arrangement was recently found 
by a bioinformatic search for riboswitches [26], RNA 
structural elements that control gene expression through 
alternative secondary structures in response to binding of 
secondary metabolites. In this case, the tandem 
riboswitch/intron lies in the upstream region of a 
putative virulence factor gene, and sensing of cyclic di-
guanosyl-5’-monophosphate by the riboswitch controls 
choice of the 3’ splice junction by the intron to modulate 
expression of the virulence factor.

While many ORFs embedded within group I introns are 
entirely located in loop regions, a surprising number of 
ORFs extend beyond peripheral loops to contribute 
nucleotides to more distant regions of the intron that 
form key structural elements needed for splicing [27]. The 

Figure 1. Models of group I and group II introns and their 
‘homing’ mechanisms. (a,b) Schematic representations of (a) group I 
and (b) group II intron secondary structures [13,37]. In both cases, 
secondary structures are represented by solid lines indicating 
conserved stem-loop structures, named P1 to P10 for group I introns, 
and DI to DVI for group II introns. The positions of ORFs and other 
insertions are depicted by solid red lines. The asterisk (*) next to 
domain II of group II introns indicates bioinformatic predictions of 
the ORF start sites, but these remain uncharacterized. Dashed gray 
lines indicate joining regions of unpaired nucelotides, with arrows 
indicating a 5’-3’ orientation. The 5’ and 3’ exons are indicated by grey 
rectangles. (c) Homing of a group I intron. In this DNA-based mobility 
pathway, the intron donor (D) expresses the intron endonuclease (red 
enzyme symbol) (step 1). After cleavage of the allelic intron recipient 
sequence (R) at the homing site (step 2) the donor and recipient 
engage in double-strand break (DSB) repair to generate two intron-
containing alleles. (d) Group II intron retrohoming by means of an 
RNA intermediate. The intron donor (D) in this case is the spliced 
intron lariat RNA (dashed red line), whereas the recipient (R) can be 
either double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA), 
as at a replication fork. A ribonucleoprotein complex between the 
RNA and the IEP catalyzes a reverse splicing (step 1). In the dsDNA 
pathway the IEP then cleaves the second strand to generate the 
primer for cDNA synthesis by the IEP, whereas in the ssDNA pathway 
an Okazaki fragment at the replication fork (solid gray line) acts as 
a primer (step 2). Second-strand cDNA synthesis followed by repair 
completes the retromobility reactions (step 3).
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extent of the contribution of ORF sequence to ribozyme 
structural elements varies depending on the particular 
intron-ORF arrangement. For instance, in the well-
studied bacteriophage T4 td intron, the 3’ end of an ORF 
called I-TevI (which encodes a homing endonuclease of 
the GIY-YIG type, again named for a conserved sequence 
motif ) contributes 20 nucleotides that form part of the 
P6a, P6.0 and P7 structures that are essential for splicing 
of the intron [28] (Figure 2a). In other cases, the extent of 
the overlap is greater, involving the 5’ end as well as the 3’ 
end of the endonuclease ORF (Table 1). It should be 

noted, however, that the extent of overlap noted is based 
on predictions of endonuclease ORFs, and it is possible 
that many cases of extensive overlap result from incorrect 
bioinformatic identification of the 5’ and 3’ ends of 
endonuclease genes. Regardless of this, the presence of an 
endonuclease ORF within a highly structured RNA 
molecule poses a number of fascinating evolutionary and 
functional questions. Specifically, how did composite 
mobile introns evolve, and what are the functional 
consequences of translation of endonuclease ORFs from 
within such highly structured RNA molecules?

Table 1 Examples of ORF overlap with core group I intron sequences

	 Host gene	 Endonuclease	 Insertion site	 Overlap with	 Structural 
Organism	 interrupted	 family 	 within intron 	 intron (nucleotides)	 element overlap

Bacillus thuringiensis sup. pakistani [90]	 nrdF	 GIY-YIG	 P6a	 56	 P6a/P7/P7.1/7.1a

Bacillus phage SPO1 [91]	 DNA polymerase	 HNH	 P8	 9	 P8

Synechococcus lividus [92]	 rDNA LSU	 LAGLIDADG	 P8	 81	 P6/P7/P3/P8/P9.0/P9

Synechocystis PCC 6803 [93]	 tRNAfmet	 PD-(D/E)-XK	 P1	 61	 P1/P2

Physarum polycephalum [94]	 rDNA LSU (nucleus)	 His-Cys box	 P1	 0	 None

Figure 2. Overlap of the I-TevI ORF with core td intron sequence. (a) Secondary structure of the relevant portion of the td intron from phage 
T4 [27], labeled as in Figure 1. The I-TevI ORF is located in the P6 loop (solid blue line), but extends into the core td structure, as indicated by the 
last 20 nucleotides (colored red) of the I-TevI ORF, which contribute to P6a and P7. Short red lines to the side of these nucleotides indicate codons 
corresponding to the five carboxy-terminal amino acids of I-TevI (F241 to A245). The RNA hairpin that sequesters the I-TevI ribosome-binding site 
(RBS) is indicated in the P6 loop [55,59]. (b) Co-crystal structure of the I-TevI 130C DNA-binding domain with intronless DNA substrate [47], modified 
from PDB 1T2T using PyMol. The amino acids corresponding to the region of overlap with the td intron sequence are shown as red sticks, with 
the remainder of the I-TevI protein colored blue. The DNA strand backbones are in yellow with the bases in green. Note that the carboxy-terminal 
alanine (A245) was not present in the I-TevI structure. The zinc ion coordinated by the I-TevI zinc finger is shown as a blue sphere.
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Group II introns
Similar questions can be asked regarding group II 
introns, which are found in similar niches to group I 
introns, but not in nuclear genomes [14]. Group II 
introns all have a common ribozyme structure consisting 
of six helical domains (Figure 1b) [29,30]. Their mobility-
promoting IEPs are typically encoded within domain IV, 
and the introns move via an RNA-based mechanism 
known as ‘retrohoming’. Unlike their group I intron 
counterparts, the group II IEPs are multifunctional 
proteins containing maturase (X), reverse transcriptase 
(RT) and DNA-binding (D) functions in addition to DNA 
endonuclease (En) activity. The maturase activity 
facilitates intron splicing by stabilizing the catalytically 
active RNA conformation, while the RT, D and En 
functions aid in RNA-based mobility pathways. In this 
type of movement, the spliced intron lariat RNA invades 
either double- or single-stranded DNA ((Figure 1d). As 
well as retrohoming to allelic target sites, group II introns 
can transpose to non-allelic sites [11,14].

Group II introns can also be invaded by elements 
encoding proteins other than the multifunctional IEPs. 
These elements include, but are not limited to, simple 
LAGLIDADG endonuclease ORF insertions in domain 
III [31,32]. Another arrangement produces the so-called 
twintrons, in which a group II intron has inserted into 
another group II intron, as in the case of the psb locus in 
Euglena gracilis chloroplast DNA and the TelI introns in the 
cyanobacterium Thermosynechococcus elongatus [33-35]. 
Whereas some insertions functionally ‘split’ the group II 
intron and interfere with intron splicing, others, such as 
some eukaryotic organellar introns, allow trans-splicing [36].

Recent crystallographic studies on the ribozyme 
structure of the Oceanobacillus iheyensis group II intron 
Oi5g revealed that coaxial stacking of domain IV with its 
neighboring domain III projects domain IV away from 
the ribozyme core, probably preventing nonproductive 
interactions of the IEP coding sequence with the 
ribozyme core [37]. Likewise, the positioning of domains 
II and III away from the ribozyme suggests that they can 
accommodate additional sequence [29,38]. Although 
domains II, III and IV may enhance splicing efficiency, 
they are not strictly required for catalysis, making them 
hospitable sites for invasive elements. In bacteria, IEPs 
are encoded entirely within loops of their host group II 
introns, and possess regulatory features such as 
promoters and ribosome-binding sites that are distinct 
from those that control expression of the host gene in 
which the intron resides [39]. In contrast, in organellar 
genomes, ORFs embedded within group II introns are 
regulated by promoters in the upstream exons [40,41]. 
Thus, the intron ORFs are initially translated as fusion 
proteins with the 5’ exon and require subsequent 
proteolytic processing [40,41].

Visitors make themselves at home: core creep
Many lines of evidence suggest that both group I and 
group II introns were ancestrally ORF-less, only to be 
invaded multiple independent times to create composite 
mobile elements. Notably, ORFs are located at different 
positions within introns; similar introns contain different 
ORFs; and similar ORFs occur in divergent introns. 
Several hypotheses have been put forward to explain the 
origin and evolution of mobile introns [42-46], with each 
hypothesis relying on illegitimate recombination 
pathways to create a composite mobile intron consisting 
of intron and endonuclease ORF. These hypotheses do 
not, however, address the evolutionary and functional 
ramifications of the overlap of protein ORFs with key 
structural elements of their host introns. Also worth 
considering are the multiple selective pressures on ORFs 
that extend into the ribozyme core: the ORF sequence 
must evolve in such a way so as not to accumulate 
substitutions that adversely affect endonuclease activity 
(and hence affect the spread and retention of the intron 
in populations); while at the same time it must co-evolve 
with disparate regions of the intron to ensure that 
secondary structure elements necessary for splicing are 
maintained by compensatory base-pairing interactions.

We propose an alternative scenario for invasion of 
introns by ORFs in which ORF insertion into peripheral 
loops of the introns was favored, such that the ORF 
sequence did not overlap with core intron sequences, 
thus limiting any phenotypic cost associated with 
reduced intron splicing. This scenario also avoids the 
requirement that the invading ORF would have to 
contain exactly the same nucleotides as it was replacing 
in order to maintain the crucial base pairing required for 
intron folding. Instead, we argue that the current overlap 
of intron ORFs with core intron sequences occurred after 
invasion by a process we term ‘core creep’. Essentially, this 
is an extension of the coding region by mutation of an 
existing termination codon into one specifying an amino 
acid, so that the ORF is extended until the next 
occurrence of an in-frame termination codon. For intron-
encoded ORFs that underwent core creep, the next 
termination codon could lie within ribozyme core 
sequences, resulting in the overlap exhibited in many 
intron-ORF arrangements. Similarly, selection of an 
alternative initiation codon can account for the 
observation that the 5’ ends of some endonuclease ORFs 
include intron core sequences.

Importantly, this hypothesis gives rise to a number of 
testable predictions. First, the length of the 5’ or 3’ 
extension should be variable for each independent case of 
endonuclease invasion, and the position of the initiation 
or termination codon should be influenced by the GC 
content of the intron because termination and initiation 
codons are slightly more AT rich than GC rich and the 
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GC content of the intron will therefore influence the 
probability of mutation of a sense codon into a nonsense 
(stop) codon. The second prediction is that the sequence 
at the 5’ or 3’ ends of an endonuclease ORF that extends 
into the intron may not be essential for endonuclease 
function. In the case of I-TevI, the 20 nucleotides that 
extend into the td intron encode 6 amino acids on the 
carboxy-terminal end of I-TevI (out of a total 245 amino 
acids). In the crystal structure of the I-TevI DNA-binding 
domain bound to DNA representing either its homing 
target site or its target operator site, only one of the 
carboxy-terminal residues (Tyr242) makes a hydrogen 
bond to the phosphate backbone of the DNA substrate, 
clearly not providing any specificity to the interaction of 
I-TevI with its DNA substrate [47]. Bioinformatic 
searches with the I-TevI amino acid sequence also show 
that the carboxyl terminus is variable in length and 
composition (DRE, unpublished observations), implying 
that it is not critical for function.

Don’t bite the hand that feeds you: translational 
regulation of intron ORFs
The successful spread and retention of mobile introns 
depends on expression of the mobility-promoting protein 
from within the intron, and on accurate splicing-out of 
the introns from the flanking exon sequences. For most 
group I introns, mobility and splicing are independent of 
each other, whereas for group II introns, and some 
organellar group I introns, these processes are not 
mutually exclusive. In these cases, translation of the IEP 
from the pre-splicing intron transcript is necessary for 
splicing because the IEP acts as an RNA maturase, in 
addition to facilitating mobility (reviewed in [14]). 
Furthermore, for group II introns, the spliced-out 
ribozyme is the agent of mobility, integrating into the 
DNA target [48] (Figure 1d). Thus, translation of intron-
encoded proteins must be carefully orchestrated so as 
not to interfere with intron-splicing pathways, and recent 
studies have revealed that diverse mechanisms are 
employed to regulate ORF expression and intron splicing.

One potential barrier to efficient intron splicing in 
bacterial and organellar genomes is the coupled nature of 
transcription and translation, which raises the possibility 
that ribosomes translating the RNA transcript could 
encounter the 5’ exon-intron junction before the 3’ splice 
site of the intron is transcribed, thus preventing the 
folding of critical intron structures and recognition of the 
correct splice sites by the intron. Ironically, a number of 
studies with bacterial group I introns have shown that 
translation of the exon upstream of the 5’ splice site is 
necessary for efficient splicing, probably because a 
ribosome at this position acts as a ‘chaperone’ to prevent 
nonproductive interactions between exon and intron 
sequences that would disrupt the intron-folding pathway 

[49-51]. Most group I introns also have an in-frame stop 
codon positioned immediately downstream of the 5’ 
exon-intron junction to prevent ribosome entry into the 
structured intron RNA. Ribosome entry into the intron 
core could also occur as a result of translation events that 
initiate at ORFs embedded within the intron. The various 
approaches to downregulating the translation of intron-
encoded ORFs in prokaryotic genomes include the 
presence of non-AUG initiation codons and non-
consensus ribosome-binding sites [52,53].

More complicated types of regulation are implied by 
numerous examples of ribosome-binding sites in introns 
that are sequestered by RNA secondary structure [54-
58]. Mutational analysis of one such RNA secondary 
structure that regulates translation of the I-TevI homing 
endonuclease revealed a pronounced splicing defect 
resulting from ribosome occupancy of intron sequences 
that form the crucial structures necessary for splicing 
[59]. A different strategy of regulating translation from 
within a bacterial group II intron has been revealed by 
detailed biochemical studies of the LtrA protein encoded 
within the LI.LtrB group II intron of Lactococcus lactis 
[60,61]. LtrA binds with high affinity to the intron RNA, 
occluding the Shine-Dalgarno sequence necessary for 
translation of LtrA, and presumably limiting access of the 
ribosome to structured regions of the group II ribozyme.

Structured group I introns interrupt the nuclear rDNA 
of many eukaryotes, in which coupled transcription and 
translation is not an issue, but they nonetheless face a 
different set of problems connected with intron-encoded 
ORFs. The well-studied group I introns in rDNA genes in 
the slime mold Didymium [62] contain ORFs known as I-
DirI and I-DirII. On transcription of the rDNA by 
polymerase I (Pol I), these ORFs are embedded within a 
transcript that is not able to be translated. How then can 
these proteins get expressed? In the case of I-DirII, the 
ORF is in the antisense orientation relative to the rDNA 
transcription unit, and expression of I-DirII is driven by 
its own RNA polymerase II promoter, followed by 
removal of a spliceosomal intron and addition of a 
poly(A) tail [63]. I-DirI is in the same orientation as the 
Pol I rRNA transcript [64], and has a more complicated 
expression mechanism. Maturation of a transcript 
competent for translation involves excision of an unusual 
branching ribozyme (known as DiGIR1) from the 5’ end 
of the intron that generates a 2’-5’ cap structure [65]. This 
is followed by processing of the 3’ end and addition of a 
poly(A) tail. These types of regulation imply an 
extraordinary degree of co-evolution between intron, IEP 
and host gene that can best be explained by selective 
pressures to regulate intron splicing and ORF expression 
so as to not impart any phenotypic cost associated  
with expression of the (often essential) interrupted host 
gene.
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As noted earlier, many proteins encoded within introns 
in organellar genomes are initially translated as fusions 
with upstream exon sequences, requiring subsequent 
proteolytic processing to provide an active protein with 
an amino terminus in domain IV [40,41,66]. Little is 
known about the molecular machinery required for this 
process, due in part to the technically demanding nature 
of organellar biology, but this arrangement creates 
opportunities for regulatory cross-talk between 
translation of the upstream exon and splicing, in ways 
that need to be determined experimentally.

Host factors that regulate mobility: mutualism or 
repression?
Host-encoded proteins function to stimulate the splicing 
of group I and II introns. In the case of group II introns, 
host-function-assisted splicing is also crucial for mobility, 
as the spliced intron RNA is an active intermediate in the 
mobility pathway [67]. Detailed biochemical and 
structural studies have shown that host proteins function 
as maturases to stabilize the active group I or II RNA 
structure, as chaperones to resolve ‘kinetic traps’ that 
limit the rate of RNA folding, or as transporters to ensure 
the level of Mg2+ is sufficient for efficient folding and 
splicing. The requirement for host-encoded proteins is 
especially evident for many organellar group II introns: at 
least 14 nuclear gene products promote efficient splicing 
of the two group II introns in the chloroplast-encoded 
psaA gene of Chlamydomonas reinhardtii [68,69]. 
Another example of host-facilitated intron splicing 
involves the Mg2+ transporter Mrs2p, and the chaperone 
activity of three DEAD-box proteins, Mss116p, Ded1p 
and Cyt19p, to promote group II intron splicing in the 
mitochondria of fungi [70-74].

In terms of mobility, the primary response of a host 
genome to the presence of mobile elements is repressive, 
as unregulated mobile element activity will lead to an 
unbearable mutational load. In recent years, a number of 
studies have uncovered host proteins that downregulate 
the activities of mobile introns, many of which (not 
unexpectedly) are involved in aspects of RNA processing. 
These proteins include RNase E and RNase I, which 
negatively regulate group II intron mobility by reducing 
the steady-state level of intron RNA [75-77]. At the same 
time, a greater appreciation of the intricate relationships 
between introns and host factors that stimulate their 
mobility has arisen from observations that group I and II 
introns are obligately dependent on host-encoded 
functions to complete the mobility process. In the case of 
group I introns, the involvement of the intron-encoded 
homing endonuclease in mobility is limited to the 
introduction of a DSB (or of a single-strand nick [78,79], 
depending on the endonuclease) in cognate alleles that 
lack the intron. Completion of the mobility process 

requires host-encoded proteins that function in DNA 
recombination, replication and repair pathways [80-82]. 
Likewise, the retromobility pathways of group II introns 
are dependent on host machinery, as illustrated by the 
Ll.LtrB intron in Escherichia coli where host factors, 
including the major replicative polymerase Pol III, repair 
polymerases Pol II, Pol IV and Pol V, the endonuclease 
RNase H1, and DNA ligase, all function to complete a 
retromobility event [75]. Thus, the two intron types 
exploit different aspects of the host’s nucleic acid 
transaction pathways.

Molecular lifeboats – abandon ship!
Up to this point we have considered the dynamic 
interplay between introns, their intramolecular 
inhabitants and their hosts, without considering 
evolutionary and environmental factors that might 
influence these partnerships. One traditional view of 
introns is that they are purely selfish DNA elements, 
imparting neither benefit nor burden to the host genome 
in which they reside. Recent evidence, however, has 
forced a re-evaluation of this viewpoint, particularly in 
the light of experimental data showing that introns can 
mobilize in response to stress-induced conditions [77,83], 
as has been demonstrated for other mobile elements 
[84,85]. These data raise the fascinating possibility that 
introns are ‘plugged’ into host metabolic pathways in 
ways that control and favor intron dissemination in times 
of environmental stress (Figure 3).

For instance, the group I intron endonuclease I-TevI 
(described in Figure 2) is subject to post-translational 
control under oxidative stress [83]. A zinc finger in an 
interdomain linker of I-TevI is redox-sensitive, and under 
oxidizing conditions is disrupted by loss of the zinc ion, 
leading to spurious DNA cleavage and intron movement 
to sites less similar in sequence to its usual allelic target. 
Reducing conditions restore zinc-finger function, 
cleavage and homing fidelity. This redox-responsive zinc-
ion cycling suggests a mechanism for rapid, regulated 
group I intron dispersal under conditions of oxidative 
stress (Figure 3).

Group II introns respond to metabolic stress with a 
burst of retrotransposition to new sites by a mechanism 
different from that used by group I introns. Retro
transposition of the lactococcal Ll.LtrB group II intron in 
E. coli is not only regulated by RNase E [76], but is also 
wired into the cell’s global genetic circuitry via the two 
small-molecule effectors ppGpp and cAMP [77]. These 
global regulators, which are elevated during the ‘stringent 
response’ to amino acid starvation and upon glucose 
starvation, respectively, stimulate retrotransposition. 
Whereas the RNase E effect is mediated at the level of the 
invading intron RNA, the global regulators are proposed 
to act by stalling of chromosomal replication forks and/
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or altering the transcriptional state of the nucleoid (that 
is, chromosome status), both of which might provide 
introns with access to the genome (Figure 3).

Clearly, the mechanisms whereby these variant introns 
respond to oxidative and nutritional stresses in order to 
disseminate are different, but with similar outcomes – 
the ‘abandoning of ship’ for more hospitable genomic 
environs. For the group I intron, the mobility machinery 
itself, the intron endonuclease I-TevI, transduces the 
signal [83]. Whereas intron levels can also affect 
retrotransposition of the group II intron [76], the signal 
can, in addition, be transmitted through changes in 
macromolecular disposition of the host [77]. One (yet to 
be demonstrated) evolutionary consequence of this 
coupling between sensing of environmental conditions 
and intron dissemination is the potential to generate 
genetic novelties that are useful to the cell under stress. A 
documented mechanism for introns to generate genetic 
diversity is through alternative splicing pathways [86,87]. 
In bacteriophage Twort, which infects Staphylococcus 
aureus, the ORF orf182 is interrupted by three similar 
group I introns, and analysis of spliced products revealed 
that some transcripts lack one exon, suggestive of 
programmed exon skipping [88]. Similarly, trans-splicing 
between highly similar group II introns in organellar 
genomes also has the potential to generate novel 
transcripts [89]. It is tempting to speculate that these 
alternative splicing events can be regulated by the host to 
generate novel protein products under specific cellular 
conditions.

Evolving perceptions about self-splicing introns
Recent results have challenged our perceptions regarding 
self-splicing introns, from the notion that they represent 
simple genomic parasites imparting neither cost nor 
benefit to the host genome, to that of sophisticated 
mobile DNA elements fully integrated into host-cell 
metabolism in ways that could be viewed as molecular 
mutualism. Host organisms devote considerable 
resources, whether by design or accident, to both 
positively and negatively influence intron behavior, and 
elucidating the molecular basis of host-factor 
involvement in the regulation of intron splicing and 
mobility is one area ripe for future investigation. In 
particular, the mechanism underlying the processing of 
intron ORFs that are initially translated as fusion proteins 
with upstream exons in organellar introns represents an 
obvious gap in our knowledge, but this is a technically 
daunting problem to address. However, it is questions of 
an evolutionary slant that will challenge intronologists 
for years to come. Foremost among these is the possibility 
that introns could provide some benefit to hosts by 
generating genetic diversity as a consequence of 
transposition events brought on by cellular stress.

Figure 3. Model for intron-host interactions. The top half of the 
figure indicates that RNA chaperones and, sometimes, maturases 
and/or ribosomes are required to facilitate splicing of group I and 
group II introns, whereas replication, recombination and repair 
functions are necesary for homing of these elements in a host cell 
in a well balanced growth environment [80,95]. Splicing of group II 
introns is, in turn, required for their mobility [15]. The bottom of the 
figure indicates how mobile introns respond to stress conditions in 
their host cell. For group I introns, oxidative stress results in group 
I endonuclease substrate infidelity, allowing transposition of the 
intron to sites with less sequence similarity than the normal allelic 
target [83]. For group II introns, nutritional stress increases their rate 
of transcription, thus raising the level of intron RNA, and also alters 
the disposition of the nucleoid (the bacterial DNA) in ways that 
favor retrotransposition; together these changes result in a burst of 
retrotransposition of group II introns in response to the stress [77].
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Mutations affecting eyespot 
morphology in Bicyclus 
anynana butterflies shed 
light on the developmental 
basis of novel traits.
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Eyespot morphology in 
Bicyclus anynana is affected 
by mutations in a locus 
that is also important for 
embryonic segment polarity, 
and is thought to encode a 
negative regulator of Wingless 
signalling that may play an 
important part in the evolution 
of novel traits. Three different 
mutations in this locus lead to 
different eyespot size and/or 
color phenotypes. The butterfly 
depicted in the present image 
carries a mutation that leads 
to greatly enlarged eyespots.

For more information , see S.V. Saenko 
et al., BMC Biology 2010, 8:111
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